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melanization have a significant effect on life history traits. 
Offspring number and lifespan decreased in females with 
tan and brown cuticles, while the fecundity and lifespan of 
black females were not affected. Importantly, we inserted 
the implants again and found a significant decrease in the 
strength of encapsulation response in females with tan 
and brown cuticles. In contrast, black females increased 
melanotic reactions against the nylon implant, suggesting 
immunological priming. The results show that cuticle mel-
anization plays an important adaptive role under the risk of 
being infected, while the lack of these benefits before the 
insertion of nylon monofilaments suggests that there are 
costs associated with an activated immunity system.

Keywords Cuticle melanization · Fecundity · 
Immunological priming · Lifespan · Trade-offs · Tenebrio 
molitor

Introduction

Melanin is responsible for a major part of the variation in 
coloration in both vertebrates and invertebrates (Fox 1976; 
McGraw 2006; Hsiung et al. 2015). This substance has 
been shown to be involved in a wide range of vital adap-
tive functions as diverse as camouflage (Kettlewell 1973; 
Hoekstra et al. 2006), photoprotection (Ortonne 2002), sex-
ual signaling (Jawor and Breitwisch 2003; Svensson and 
Waller 2013), thermoregulation (Vences et al. 2002), pro-
tection against reactive oxygen species (Galván and Solano 
2015) and strengthening insect cuticles (Riley 1997). The 
role of melanin pigmentation has also been demonstrated in 
immune defense (Wilson et al. 2001; Männiste and Hõrak 
2014, but see Contreras-Garduño et al. 2007). For exam-
ple, in invertebrates, a major aspect of the innate immune 

Abstract Cuticle melanism in insects is linked to a num-
ber of life history traits: a positive relationship is hypoth-
esized between melanism, immune function, fecundity 
and lifespan. However, it is not clear how activation of the 
immune system affects trade-offs between life history traits 
in female mealworm beetles (Tenebrio molitor) differing 
in cuticle melanization. The females with tan, brown and 
black cuticles examined in the present study did not differ 
in the intensity of encapsulation response, fecundity and 
longevity when their immune system was not activated. 
However, we found that immune activation and cuticle 
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defense system against invading pathogens involves mela-
nin. Within a few hours of infection, the invader is encap-
sulated in melanin layers (Nappi et al. 1995; Gillespie et al. 
1997) and then dies by suffocation, or as a result of toxic 
compounds released by phenoloxidase (PO) activity (Siva-
Jothy et al. 2005; Sugumaran 2002). Melanin itself has 
antimicrobial activity, which is likely to contribute to its 
effectiveness in defense (Montefiori and Zhou 1991; Mon-
tefiori et al. 1990; Sidibe et al. 1996) and wound healing 
(Sugumaran 2002).

The heritability of cuticle melanization in arthropods 
reaches 0.77 (Yurtsever 2000; Lee and Wilson 2006; Cot-
ter et al. 2008; Singh et al. 2009; Roff and Fairbairn 2013). 
This suggests that the heritability of cuticle melanization is 
high enough to allow rapid evolutionary change in a pheno-
type. The relationship between cuticular melanization and 
several life history traits such as immune function, devel-
opmental time and fecundity has been studied extensively 
in insects. Immune defense is vital for an organism, as it 
reduces the deleterious impact of other infectious organ-
isms. Many studies report a positive relationship between 
cuticular darkness and immune function. This includes PO 
activity (Wilson et al. 2001; Reeson et al. 1998; Cotter et al. 
2004; Armitage and Siva-Jothy 2005; Bailey 2011), encap-
sulation response (Mikkola and Rantala 2010; Bailey 2011; 
Kivleniece et al. 2010, but see Dubovskiy et al. 2013a, b), 
hemocyte density (Cotter et al. 2004; Armitage and Siva-
Jothy 2005), immune activation with an artificial parasite 
(Freitak et al. 2005), susceptibility to parasitoids (Wilson 
et al. 2001), fungal disease (Wilson et al. 2001; Barnes 
and Siva-Jothy 2000; Krams et al. 2013a) and viral disease 
(Reeson et al. 1998). However, there is also evidence for 
a negative relationship between cuticular melanization and 
immune traits such as antibacterial (lysozyme-like) activity 
(Cotter et al. 2004), hemocyte density (Rolff et al. 2005), 
PO activity (Rolff et al. 2005) and susceptibility to a viral 
disease (Goulson and Cory 1995).

A positive relationship between cuticular melanization 
and the strength of immune response suggests the concen-
tration of cuticular melanin as an indicator of immune func-
tion, while the negative relationships indicate trade-offs 
between the efficiency of the immune system and cuticular 
melanin as predicted by life history theory (Stearns 1989). 
A number of studies have revealed the costs of immunity 
(Schmid-Hempel 2003; Sheldon and Verhulst 1996; Roff 
and Fairbairn 2013; see González-Santoyo and Córdoba-
Aguilar 2012 for a review). Evidence shows that there are 
trade-offs between cuticle melanization and some fitness-
related traits (Roff and Fairbairn 2013; Talloen et al. 2004). 
For example, darker individuals had a slower growth rate 
and exhibited larger wing asymmetry in a satyrine butterfly 
Pararge aegeria (Talloen et al. 2004). Melanic forms have 
been found to develop longer and weaker resistance against 

pathogens (Wilson et al. 2001; True 2003; Cotter et al. 
2008; Wittkopp and Beldade 2009; Dubovskiy et al. 2013a, 
b). A recent report notably suggests that the condition-
dependent component of melanin-based coloration is much 
stronger in invertebrates than vertebrates (Roulin 2015).

On the one hand, trade-offs between cuticle melaniza-
tion, immune function and other traits may arise because 
melanin-based cuticular darkening and melanotic encap-
sulation response share the same melanin production path-
way (González-Santoyo and Córdoba-Aguilar 2012). On 
the other hand, organisms exhibiting different intensities 
of cuticular melanization may be adapted to different envi-
ronmental conditions with differing pathogen pressures and 
thus represent equally fit survival strategies (Galeotti et al. 
2003). For example, if there is a linkage disequilibrium 
between genes coding for dark and pale cuticle coloration, 
these genes would code not only for a certain concentra-
tion of melanin, but also for some physiological features 
that allow a color morph to outcompete other morphs under 
specific ecological conditions (Ducrest et al. 2008). How-
ever, if the expression of genes coding for the alternate phe-
notypes is sensitive to environmental factors, individuals 
expressing different cuticle melanization would achieve a 
higher fitness only under specific environments. Such local 
adaptations may show up as a covariation between cuticle 
melanization and other life history traits only under highly 
specific conditions (Gonzales et al. 1999). Some studies 
found that environmental factors affect both the magnitude 
and the sign of covariations between coloration and life 
history traits in vertebrates (Gonzales et al. 1999; Fargallo 
et al. 2007; Piault et al. 2008; Roulin et al. 2008; Moore 
et al. 2014). Identifying the factors that mediate covaria-
tion between cuticle melanization, environmental factors 
and life history traits is important in order to determine the 
functional role of cuticle coloration.

Several studies on invertebrates have recently dem-
onstrated the role of ecological conditions on trade-offs 
between immune function and fecundity (Zerofsky et al. 
2005), availability of food (Moret and Schmid-Hempel 
2000; Krams et al. 2014a, 2015), especially nitrogen-rich 
proteins, lifespan (Ye et al. 2009; Krams et al. 2013b) 
and larval competitive ability (Kraaijeveld and Godfray 
1997). Selection for increased cuticular melanization 
in mealworm beetles Tenebrio molitor resulted in an 
increase in immune response (Armitage and Siva-Jothy 
2005). Barnes and Siva-Jothy (2000) found that pathogen 
resistance is phenotypically plastic in T. molitor, where 
lower mortality, higher degree of cuticular melaniza-
tion and stronger immune function were found in beetles 
reared at high larval densities. These findings support a 
crucial role of environmental conditions in general and 
pathogens and parasites in particular in life history trade-
offs, showing that if there are costs involved with the 
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maintenance of pathogen resistance, then higher invest-
ment in this trait is expected when the risk of pathogen-
esis is high (Wilson and Reeson 1998). Life history the-
ory predicts different strategies in different sexes, where 
males are considered to be selected for mating rates, 
while females are thought to invest more in their immu-
nity or longevity (Stearns 1992). Thus, higher invest-
ment in immunity and other fitness-related traits might be 
expected in females, especially if their coloration is dark, 
their environment contains pathogens and/or they have 
been affected by pathogens earlier. However, consistent 
evidence on positive relationships between cuticular mel-
anization, the strength of immune response and female 
fitness is still missing.

In the current study, we examined the type of response 
that T. molitor females mount against the insertion of a 
nylon monofilament in their hemocoel. We also tested 
whether T. molitor females with dark cuticles invest in 
individual immune priming (Moret 2006; Kivleniece et al. 
2010; Krams et al. 2011a; Mikonranta et al. 2014), lifespan 
and fecundity more than females with brown and tan cuti-
cles. This is important because covariations between cuti-
cle melanization and life history traits can sometimes be 
detected only under specific conditions, for instance, where 
one phenotype enjoys the existing ecological benefits while 
other ones are selected against (Gonzales et al. 1999; Piault 
et al. 2009; Roulin 2009; Moore et al. 2014).

Materials and methods

Insects

To avoid inbreeding effects (Polkki et al. 2012), we 
mixed beetles taken from a long-term, over 10-year labo-
ratory population maintained at the University of Tennes-
see, Knoxville (60 %), with beetles obtained from Big 
Apple Pet Supply (30 %) (Boca Raton, FL, USA) and 
those obtained from a natural population (10 %). We used 
the next generation of beetles for this study, which was 
maintained on a diet of chick starter mash supplemented 
with occasional vegetables and fruit, such as carrots, 
apples and potatoes. The beetles were kept at 24 ± 2 °C. 
We removed pupae from the culture on the day of pupa-
tion. They were weighed and their sex was determined 
by examining genitalia on the eighth abdominal segment 
(Bhattacharya et al. 1970). The pupae and newly emerged 
adult females were kept individually in 200 ml plastic 
containers filled with food ad libitum. Only individuals 
with no visible abnormalities were used in the experi-
ments. All of the experimental trials were performed in 
winter 2014/2015.

Study design

We weighed 12 days old virgin females to the nearest 
0.1 mg (mean body weight ± SD = 109.46 ± 7.02 mg). 
The beetles were randomly assigned to experimental and 
control groups (Fig. 1). In the treatment group, each female 
was placed on ice and received one sterile nylon monofila-
ment implant (2 mm length, 0.18 mm diameter, knotted at 
one end) through their pleural membrane between the third 
and fourth abdominal sternite (Rantala et al. 2002; Krams 
et al. 2011a, b; Daukšte et al. 2012) for 6 h at 24 ± 0.5 °C. 
Females of the control group were handled similarly, but 
their cuticle was not punctured and these animals were not 
implanted.

The treatment females were further divided into three 
subgroups: breeding, repeated implantation and survival 
subgroups (Fig. 1). The control group was divided into 
two subgroups: breeding and survival subgroups. Each of 
these subgroups (3 subgroups in the treatment group and 
2 subgroups in the control group) consisted of females of 
three different types of cuticle (elytra) coloration: ‘black’, 
‘brown’ or ‘tan’ (Figs. 1, 2).

Treatment group, breeding subgroup: on day 17 after 
imaginal eclosion (5 days after the insertion and removal of 
the implants), we placed two males to each of 30 females 
of each elytra color class (90 individuals in total) for 24 h. 
These females were left alone in their boxes to lay eggs for 
7 days. We counted the number of larvae on day 55 after 
imaginal eclosion (Fig. 1).

Treatment group, survival subgroup: after the removal of 
the implants, 30 females of each color class (90 individu-
als in total) were provided with bran and fresh apple. Their 
survival was verified on a daily basis. These females were 
not allowed to reproduce (Fig. 1).

Treatment group, repeated implantation subgroup: 30 
females of each of elytra color class (90 individuals in 
total) received the second nylon implant for 6 h 5 days after 
the removal of the first implant (day 17 after imaginal eclo-
sion). In this way, we checked whether the first activation 
of the immune system resulted in an increased immune 
response 5 days later and whether this possible individ-
ual immune priming was related to cuticle melanization 
(Fig. 1).

Control group, breeding subgroup: 30 females of each 
elytra color group (90 individuals in total) were paired with 
two males on day 17 after imaginal eclosion for 24 h, and 
we counted offspring number on day 55 after imaginal 
eclosion (Fig. 1).

Control group, survival subgroup: 30 females of each 
elytra color group (90 individuals in total) were kept sepa-
rately with food ad libitum and we checked for their sur-
vival until the last individual died (Fig. 1).
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Cuticle coloration

To assess the cuticle melanization, we followed the rec-
ommendations by Barnes and Siva-Jothy (2000). In brief, 
we assessed the beetle coloration under a Nikon stereo 

Fig. 1  The experimental 
protocol used to study immune 
response, fecundity and lifespan 
of female mealworm beetles

Fig. 2  The elytra melanization classes (tan, brown, black) of female 
mealworm beetles (color figure online)

Fig. 3  Median cuticle melanization in three elytra color classes of meal-
worm beetles; the box indicates the 25–75 % percentiles, the whiskers 
indicate the min–max range, the numbers indicate the sample size
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microscope with LED illumination. ‘Tan’ females were 
easy to tell from the rest of the groups, because their elytra 
was light brown (Fig. 2). The elytra of ‘brown’ beetles was 
dark brown and easily distinguishable from ‘tan’ beetles 
(Fig. 2). Discrimination of ‘brown’ and ‘black’ beetles 
was done by including into the ‘black’ group only females 
with no traces of brown coloration to their elytra even 
under higher zoom positions (Fig. 2). We also took digital 
images of the beetles and analyzed them using image anal-
ysis software (Image J, Abramoff et al. 2004). The elytra 
melanization was expressed as a grayscale value between 
0 (white) and 240 (black). We found a significant effect 
of coloration on the darkness grayscale values obtained 
(ANOVA: df = 2, F = 3628.10, P < 0.0001, Fig. 2). The 
grayscale values were significantly different between 
each elytra color category (‘tan’ = 135.40 ± 11.45, 
‘brown’ = 188.52 ± 6.98, ‘black’ = 223.25 ± 7.93) 
(Tukey tests: all P < 0.001, Fig. 3).

Immune assays

To quantify the strength of encapsulation response to a for-
eign body, we analyzed the lightness of each nylon insert. 
It is widely acknowledged that insect immune systems 
respond to the insert by attempting to encapsulate the for-
eign body as though it were a parasitoid or fungal invasion 
(e.g., Rantala et al. 2000; Dubovskiy et al. 2013a, b). The 
resulting melanization correlates with the level of immune 
system response (e.g., Sadd et al. 2006; Krams et al. 
2011a, 2013a, b; Rantala et al. 2000, 2002). The ability to 
encapsulate a synthetic substrate is also positively related 
to the encapsulation of parasites (Paskewitz and Riehle 
1994; Gorman et al. 1998) and to the ability to resist an 
entomopathogenic fungal disease (Rantala and Roff 2007; 
Dubovskiy et al. 2013a, b; Krams et al. 2013a). Over-
all, high levels of melanization or darkening of the inserts 
indicates increased levels of immune system activity and 
response (Yourth et al. 2001, 2002; Krams et al. 2013a, b). 
However, it is important to note that a number of studies 
failed to find a positive correlation between melanization 
of artificial inserts and the ability to encapsulate real para-
sites (e.g., Schwartz and Koella 2002; Mallon et al. 2003; 
Honkavaara et al. 2009; Nagel et al. 2014).

To quantify lightness, we photographed each of the 
removed inserts from two directions under constant light 
conditions using a Nikon stereo microscope. We then 
analyzed the digital images using image analysis soft-
ware (Image J, Abramoff et al. 2004). We marked the area 
of that portion of the insert that had been within the bee-
tle’s body and the program calculated the lightness value. 
Since increasing melanization indicated a stronger immune 
response in this study, we calibrated reflectance of an 
implant before the insertion to zero level.

Statistics

The strength of the encapsulation response was distributed 
normally in all groups (Kolmogorov–Smirnov tests: all 
P > 0.20). We used ANOVA to test differences in offspring 
numbers across control and treatment groups and elytra 
melanization classes. Lifespan was analyzed using a Cox 
proportional hazards model, while we used a linear mixed 
model with female identity as a random factor to find pos-
sible treatment and elytra color effects on the activation of 
the immune system. All statistical tests used in this study 
were two-tailed.

Results

Offspring number

Cuticle darkness had no effect on offspring number in the 
control group (F2,87 = 0.29, P > 0.05, Fig. 4). In contrast, 
we found a significant effect of cuticle melanization on off-
spring number after the activation of the immune system 
in beetles of the treatment group, revealed as cuticle mel-
anization group and treatment interaction (F2,174 = 20.22, 
P < 0.001, Fig. 4). All three cuticle melanization groups 
differed significantly from each other in the number of 
offspring produced after the insertion of the nylon mono-
filament. The offspring number of tan females was smaller 
than that of brown females (Tukey HSD: P = 0.004), and 
brown females produced less offspring than black females 
(P < 0.001, Fig. 4). The decrease in the number of offspring 

Fig. 4  Average offspring number (±95 % CIs) of three elytra color 
classes in the control (open circles) and treatment (black circles) 
groups of mealworm beetles
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was found to be greatest among tan females, while the 
fecundity of black females was not impaired by the acti-
vation of their immunity system: the offspring number of 
the black females of the treatment group did not differ from 
that of the black females in the control group (Tukey HSD: 
P > 0.05, Fig. 4).

Lifespan

Cuticle color was not related to the longevity of females 
in the control group (χ2 = 0.90, P > 0.05, Fig. 5). In the 
treatment group, the insertion of implants significantly 
decreased lifespan, as revealed by a significant interaction 
between elytra color and treatment (χ2 = 48.92, P < 0.001, 
Fig. 5). While the activation of the immunity system via the 
insertion of the nylon monofilament did not affect the lifes-
pan of the females with black elytra (z = −0.03, P > 0.05), 
the implantation significantly decreased the lifespan of the 
females with tan (z = 5.29, P < 0.001) and brown cuticles 
(z = 6.85, P < 0.001, Fig. 5).

Encapsulation response

The first activation of the immune system via the inser-
tion of the nylon monofilament did not show any differ-
ence in the intensity of implant melanization among the 
female groups (ANOVA: F2,87 = 1.19, P > 0.05, Fig. 6). 
The second implantation reflects the investment into encap-
sulation ability done by females between the first and sec-
ond implantations. We found the encapsulation response 
to be significantly different among cuticle color groups 
(F2,122 = 63, P < 0.001, Fig. 6). Females with black elytra 
increased the strength of their encapsulation response 
(t122 = 2.34, P = 0.021), suggesting immune priming 
of melanotic reactions. In contrast, the strength of the 
encapsulation response decreased in females with brown 
(t122 = −9.92, P < 0.001) and tan cuticles (t122 = −9.53, 
P < 0.001).

Discussion

Life history theory asserts that the schedule and duration of 
key events in an organism’s lifetime are shaped by natural 
selection to produce the largest possible number of surviv-
ing offspring (Stearns 1992). Males of many species tend to 
increase the number of copulations (Bateman 1948), and in 
case of terminal investment in reproduction male individu-
als may increase their sexual attractiveness at the expense 
of their longevity (Krams et al. 2014b, 2015). In females, 
fitness is often positively linked to lifespan (Trivers 1972), 
while longevity largely depends on investment into immune 
function (Lin et al. 1998; Krams et al. 2014a).

It has been recently shown that melanin pigmentation 
is linked with the ability to cope with infections: darker 
melanic individuals usually have a lower infection inten-
sity and a greater immune response than paler individuals 
(Jacquin et al. 2011; Prokkola et al. 2013). Darker melanic 
individuals can even reduce the fecundity of parasites 
(Roulin et al. 2001). Two hypotheses have been suggested 
to explain the covariation between the intensity of melanin 
pigmentation and the expression of life history traits. The 

Fig. 5  Average lifespan (±95 % CIs) of three elytra color classes 
in the control (open circles) and treatment (black circles) groups of 
mealworm beetles

Fig. 6  Strength of encapsulation response against the first and sec-
ond implantation in tan, brown and black elytra color classes of 
female mealworm beetles
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genetic link hypothesis states that positive links between 
melanin-based coloration and the strength of immune 
function could be explained by the pleiotropic effects of 
genes coding for melanin pigmentation on the immune 
system (Ducrest et al. 2008; Gasparini et al. 2009). The 
exposure hypothesis posits that melanin-based pigmenta-
tion and immunity are linked, because melanin pigmenta-
tion develops and may be exploited in habitats that differ 
in parasite exposure (Galeotti and Rubolini 2004; Roulin 
2004). In T. molitor, beetles reared at high larval densities 
showed a higher degree of cuticular melanization and lower 
mortality against an entomopathogenic fungus than those 
reared solitarily (Barnes and Siva-Jothy 2000). Larvae and 
pupae of T. molitor can assess conspecific densities using 
both mechanical and chemical cues (Tschinkel and Will-
son 1971; Kotaki and Fujii 1995). This indicates that per-
ceived pathogen exposure did not differ among T. molitor 
individuals used in this study, because all the beetles grew 
under similar larval densities. Thus, our results are likely to 
support the genetic link hypothesis, because females with 
black elytra showed signs of immune priming, while tan 
and brown females mounted a weaker encapsulation upon 
second challenge. Furthermore, these effects cannot be 
attributed to a density-dependent prophylactic response to 
rearing density.

The genetic link and the exposure hypotheses are con-
sidered to be competing explanations of melanism. Dis-
entangling their mechanisms is important for understand-
ing the adaptive function of melanin-based pigmentation. 
However, our results cannot provide any decisive evidence 
on the distinction of the two hypotheses. First of all, the 
strength of the immune response, the number of offspring 
and lifespan did not differ among females with different 
cuticle melanization before the activation of the immune 
system, suggesting costs of cuticle coloration. The ben-
efits of the dark cuticle appeared only when the immune 
responses against artificial infection were induced. This 
demonstrates that the innate immunity of adult insects may 
be adjusted to changes in the risk of infection by individ-
ual priming, which increased the lifespan of the females 
with black cuticles. This provides support for the parasite 
exposure hypothesis, since T. molitor females needed an 
environmental cue to prime their innate immunity. Thus, 
the exposure and the genetic link hypotheses might not 
be mutually exclusive explanations of the adaptive role of 
cuticle melanization in T. molitor. To provide further tests 
for these hypotheses, different levels of larval densities and 
parasite exposures should be manipulated in future work. 
This is important in order to test whether darker or paler 
cuticles are associated with adaptations to one highly spe-
cific environment and represent the lack of adaptations in 
other circumstances (Kawecki and Ebert 2004). This is a 
key aspect when considering the role of environmental 

heterogeneity in the maintenance of polymorphism (Piault 
et al. 2009; Roulin 2009).

It is known that melanogenesis involves the formation 
of melanin pigments and toxic by-products from the action 
of PO on quinone precursors, and occurs primarily in the 
cuticular structures, midgut epithelium and hemolymph 
(Cerenius and Söderhäll 2004). However, the strength of 
the encapsulation response did not differ between black 
and paler females before their immune system was acti-
vated via the insertion of the nylon monofilament. The 
absence of excess activation in females with black elytra 
can be explained by energetic costs and oxidative stress of 
permanently activated immune system (Freitak et al. 2003; 
Krams et al. 2014b). The damaging action of chemical radi-
cals produced during the activation of the immune response 
against intruders can also harm the host cells and tissues 
(von Schantz et al. 1999; Finkel and Holbrook 2000; Met-
calfe and Alonso-Alvarez 2010). Melanic insect morphs 
exhibit an unusually high concentration of cuticular mela-
nin (Barnes and Siva-Jothy 2000; Wilson et al. 2001, 2002), 
and the immune system of black females potentially gener-
ates too harmful a response. It is probably more adaptive 
for the immune system to avoid the permanent harm to self 
and respond just when the host is under attack by infection, 
even if the response is delayed.

In insects, melanin pigments and their precursors are 
important as structural and protective components of the 
cuticle. In the greater wax moth (Galleria mellonella), 
the cuticle of melanic larvae is shown to be substan-
tially thicker than in a non-melanic morph. The cuticle of 
melanic larvae of the greater wax moth can generate a short 
burst of enhanced cuticular PO activity during the early 
stages of fungal penetration (Dubovskiy et al. 2013a, b). A 
thicker cuticle and slower penetration of the intruder allows 
sufficient time for the insect to activate its defenses, such 
as encapsulation of the intruder (Sweeney et al. 1983; Butt 
et al. 1988). It is important to note that a high concentration 
of cuticle melanin plays a significant role in wound heal-
ing after damage by intruders, as seen in mosquito midguts 
following penetration by the malaria parasite (Shiao et al. 
2006). This might be especially important in explaining the 
greater offspring number and the longer lifespan of black T. 
molitor females after the activation of the immune system. 
However, future research is needed to test whether dark and 
pale T. molitor differs with respect to wound healing abil-
ity, the energetic costs of wound healing and whether any 
possible differences in wound healing are responsible for 
the higher fitness of the darker female T. molitor beetles.

In this study, we did not find any costs related to mela-
nin pigmentation of the females with black elytra. How-
ever, a number of studies revealed many trade-offs between 
immunity and other life history traits in T. molitor. Also 
in the greater wax moth, the heavy defense investments 
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made by melanic insects result in a lower body mass, 
decreased longevity and lower fecundity in comparison 
with the non-melanic morph. One possible explanation for 
the similar fecundity of darker and paler females before 
the activation of the immune system is that the egg-laying 
period of brown and tan females was longer than that of 
black females, and exceeded the period of 7 days that was 
allowed to oviposit.

To conclude, the present study shows some benefits 
that the melanized cuticle brings to T. molitor females. 
While fecundity, the strength of encapsulation response 
and longevity do not differ between darker and paler indi-
viduals, highly melanized females can prime their immune 
response, increase their lifespan and not decrease their 
fecundity upon parasitoid-like attacks (here, the insertion 
of the nylon implant). Although cuticular darkening and 
encapsulation response may compete for the same limiting 
resources necessary for melanin synthesis, such as tyrosine, 
we did not find any costs associated with immune response, 
fecundity and longevity in females with black elytra. The 
availability of food is an important predictor of survival and 
reproductive strategies in T. molitor (Krams et al. 2015). 
However, the access to tyrosine, a food-derived melanin 
precursor, was likely the same for dark and pale females 
in this study. It is possible that female beetles differed in 
their ability and efficiency to transform tyrosine and prop-
erly invest it into cuticular and immunity-related melanin. 
We also do not know whether melanin deposited in cuti-
cle could be re-invested into immediate immune response. 
Importantly, relationships between cuticle darkening, 
fecundity, immune response and longevity of T. molitor 
females cannot be estimated without finding possible trade-
offs between these life history traits. Cuticle melanization 
provides a widespread source of pigmentation in insects, 
yet the relationship between cuticle melanin and its use in 
immune response appears to be more complex than previ-
ously thought.

Our results emphasize the fact that the benefit of being 
melanic is accrued only under specific environmental con-
ditions, a phenomenon observed in several vertebrates 
(e.g., Gonzales et al. 1999; Piault et al. 2009). This raises 
the possibility that the covariation between the degree of 
melanism and other phenotypes can be detected only under 
specific conditions (Roulin 2009). Finally, our study shows 
that males and females may differ in trade-offs between 
parameters involved in immune response and reproductive 
strategies, which suggests a more important role of sex- 
and hormone-related regulation of immune function and 
senescence in T. molitor.
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