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importance along stress gradients at the species level and 
the community level can improve our understanding of 
plant community organization in salt marshes and other 
ecosystems with sharp environmental gradients.
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Introduction

Competition along environmental gradients has long been 
considered a major force in structuring plant communi-
ties (Austin and Austin 1980; Bartelheimer et al. 2010; 
Connell 1983), but the role of this process in community 
organization remains controversial. One theory predicts 
that competition is reduced in unproductive environments 
(Grime 1979), whereas Tilman (1982, 1988) proposes 
that competition plays a similar role along the productiv-
ity gradient, but the underlying mechanisms change. With 
the recent emphasis on facilitation, this historic debate has 
been included in a new conceptual model of stress-gradient 
hypothesis (SGH) that predicts a shift of plant–plant inter-
actions from competitive to facilitative with increasing 
physical stress (Bertness and Callaway 1994; Brooker et al. 
2005).

Over the past two decades, numerous empirical stud-
ies have been conducted to address the validity of SGH 
but fail to agree on its generality and applicability of the 
findings that facilitative effects may increase, remain con-
stant, or even decrease along stress gradients (Brooker 
et al. 2008; Michalet et al. 2006). These discrepancies may 
be attributed to different research approaches (e.g., experi-
mental vs. observational) (Maestre et al. 2005), perfor-
mance measures (Brooker et al. 2008; Lortie and Callaway 
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2006), plant traits considered (Gross et al. 2010; Maestre 
et al. 2009a), stress-gradient types (Maestre et al. 2009a; 
Smit et al. 2009) and its length (Lortie and Callaway 2006), 
and ontogenetic effects (le Roux et al. 2013; Schiffers and 
Tielborger 2006) among different studies. In addition, most 
previous studies have simplified the complexity of natural 
communities by examining the interactions between only 
a single or a few pairs of species (Brooker et al. 2008; 
Maestre et al. 2005). This design evaluates the variation 
of magnitude and direction of pairwise interactions rather 
than shifts of competition and facilitation frequencies along 
stress gradients as opposed by the original SGH, and fre-
quency does not necessarily correlate to the intensity or 
importance of interactions (Maestre et al. 2009a). Many 
attempts have been made to resolve this long-standing 
debate by adding complexity to the general conceptual 
framework of SGH, including consideration of biotic stress 
(Smit et al. 2009), species life history strategies (Bowker 
et al. 2010), and non-linear relationships between interac-
tion and stress (le Roux and McGeoch 2010). Malkinson 
and Tielborger (2010) argued that the net outcome of facili-
tation and competition should be reflected in the fitness of 
individual plants as a product rather than the addition of 
these two processes, which may lead to more realistic non-
linear stress–interaction relationships (SIR).

Another frequently ignored issue is the difference between 
“importance” and “intensity” of interactions (Brooker et al. 
2005; Gaucherand et al. 2006), which are not always well-
correlated (Brooker and Kikvidze 2008). Because the rela-
tive contribution of competition to plant performances com-
pared to other factors (i.e., competition importance) may 
decrease with increasing stress, while competition intensity 
remains constant, the studies using different indices may 
draw contradictory conclusions (Brooker 2006). Hence, the 
actual response norm of plant–plant interactions may not be 
as simple as previously assumed.

In natural communities with multiple species, indirect 
interactions, including facilitation, can also influence com-
munity structure (Callaway and Pennings 2000; Tielborger 
and Kadmon 2000), especially when competition mecha-
nisms vary between species pairs (Brooker et al. 2008). 
This can result from direct competitive interactions, such as 
“a competitor’s enemy is a friend” (Miller 1994), or from 
diffuse effects when target species are influenced by mul-
tiple competitors (Wilson and Keddy 1986). Few studies 
have examined the generality and importance of these indi-
rect interactions in structuring plant communities (but see 
Levine 1999).

No plant germinates as a competitive dominant. Com-
petitive hierarchies shift under different physical conditions 
(Wang et al. 2006), which contributes to the maintenance 
of diversity in heterogeneous environments (Reynolds 
1997; Tilman 1994). In coastal salt marshes, competitive 

dominants have been found to displace other species to 
more stressful areas uninhabitable to the dominants (Bert-
ness 1991; Pennings and Callaway 1992; Pennings et al. 
2005). In such ecosystems, salinity and soil anoxia are the 
most important factors affecting the competitive outcome 
of co-existing species (Bertness 1991; Wang et al. 2006). 
However, disturbances, such as accretion and grazing by 
mammals, can also modify plant communities through 
direct effects on physiological processes and the mediation 
of competitive interactions (Geho et al. 2007). In the Yang-
tze estuary, sedge communities dominate the seaward edge 
of the marsh with varying composition in different areas, 
but how competitive outcomes and their roles shift along 
environmental gradients remains unclear. Exploration of 
these issues can improve our understanding of community 
organization, and help predict community dynamics under 
different scenarios of global change.

Because salt marshes have steep physical gradients and 
contain relatively few plant species, they are ideal for stud-
ying the determinants of biotic interactions. We here stud-
ied interspecific interactions among three sedges in Chong-
ming Dongtan wetland in the Yangtze estuary, with two 
controlled experiments to precisely examine the change 
of competition intensity (or importance) and competi-
tive outcomes of sedge species along salinity and distur-
bance (accretion and clipping) gradients. Specifically, we 
addressed the following questions: (1) How do salinity and 
disturbance affect the competitive outcomes among domi-
nant sedges (Scirpus mariqueter, Scirpus triqueter, and 
Carex scabrifolia) in species-poor salt marshes? (2) How 
do the nature and magnitude of plant–plant interactions 
vary along the stress gradients? (3) Are there any indirect 
interactions among competing species that may affect plant 
community structure and functioning?

Materials and methods

Study area

Dongtan Wetland of International Importance is on Chong-
ming Island in the Yangtze estuary (31°25′–31°38′N, 
121°50′–122°05′E), and occupies 230 km2. In this ecosys-
tem, salinity ranges from 1 to 20 g NaCl L−1 in different 
areas, which affect the performance and distribution of 
halophytic plants (Wang et al. 2009). The sedimentation 
rate exceeds 10 cm year−1 in seaward areas in this rap-
idly developing marsh (personal observation), which may 
have both positive (nutrient input) and negative effects 
(burial) on pioneer plants (Mendelsshon and Kuhn 2003; 
Werner and Zedler 2002). In addition, cattle are pastured 
in the south part of the marsh in sedge-dominated areas, 
which greatly affects the distribution and structure of plant 
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communities in Chongming Dongtan wetland. Native her-
bivores (crabs and insects) are found throughout the marsh, 
but have less effect on the target species in our study.

We worked with three native sedge plants (S. mari-
queter, S. triqueter, and C. scabrifolia), because they are 
important pioneer species in this marsh with similar growth 
forms. S. mariqueter and S. triqueter are perennial rhizom-
atous, corm-forming sedges that reproduce both sexually 
and vegetatively. S. mariqueter is endemic to China, and 
distributed in salt marshes from the Yangtze estuary to the 
Hangzhou Bay. S. mariqueter-dominated salt marshes are 
the most important habitats for migratory birds in the area 
(Sun et al. 2001). S. triqueter is a widely distributed sedge 
on brackish mudflats in estuaries, ditches, lakes, ponds, riv-
ers, and rice fields (Deegan et al. 2005). C. scabrifolia is 
a perennial rhizomatous sedge found on beaches, coastal 
wetlands, and brackish riversides (Li 1998). In the Yangtze 
estuary and Hangzhou Bay, C. scabrifolia is a pioneer spe-
cies found in the early-to-middle stage of salt marsh suc-
cession (Wu et al. 2008).

At Chongming Dongtan, sedge and invasive Spartina 
alterniflora (smooth cord grass) meadows dominate the 
seaward areas, whereas Phragmites australis (common 
reed) and S. alterniflora dominate higher marsh elevations 
(Wang et al. 2009). In the seaward area, S. mariqueter mon-
ocultures occupy the marsh edge at lower elevations and 
the middle intertidal zone with high salinity and sedimenta-
tion rates, and in mixtures with S. triqueter at the same ele-
vation with less saline water and higher grazing pressure. 
C. scabrifolia is a subordinate species occasionally found 
in disturbance-generated saline bare patches at the seaward 
edge of the high marsh and at the landward edges of sedge 
meadows (Table 1). These three species are often found in 
mixtures and as monocultures in the field.

Experimental design

We collected ramets of S. mariqueter, S. triqueter, and 
C. scabrifolia in late April 2008 from their pure stands in 
the intertidal zone of Chongming Dongtan salt marsh in 

the Yangtze estuary. Ramets of similar size were selected 
as the material for common garden experiments at the 
Coastal Ecosystems Research Station of the Yangtze estu-
ary on Chongming Island. We performed two experiments 
with a shared control (at a salinity of 8 ppt, unmanipu-
lated). The first was a two-factor (salinity × species com-
bination) controlled experiment with three salinity treat-
ments: 0 g NaCl L−1 (0 ppt), 8 g NaCl L−1 (8 ppt), and 
16 g NaCl L−1 (16 ppt) to quantify the effect of environ-
mental factors on sedge interactions. The other was a two-
factor (disturbance × species combination) experiment 
with four disturbance treatments (unmanipulated control, 
accretion, clipping, and accretion + clipping) at a con-
stant salinity of 8 ppt which was approximately the aver-
age salinity at the site of ramet collection. Ramets were 
planted in all possible combinations of these three spe-
cies (seven species combinations in total: S. mariqueter, 
S. triqueter, C. scabrifolia, S. mariqueter + S. triqueter, 
S. mariqueter + C. scabrifolia, S. triqueter + C. scabrifo-
lia, and S. mariqueter + S. triqueter + C. scabrifolia). All 
treatments were replicated four times for a total of 168 pots 
(6 treatments × 7 species combinations × 4 replicates). 
The total plant density was set to six ramets per pot follow-
ing a replacement design (i.e., six ramets in monoculture, 
three ramets of each species in two-species mixture, and 
two ramets of each species in three-species mixture). Under 
this design, the competition intensity actually represented 
the interspecific interaction relative to the intraspecific 
interaction. However, the replacement design was accept-
able for our study, as the intraspecific competition of these 
three sedge species was minor at a wide range of the ini-
tial planting density (from 1 to 16 ramets per pot), probably 
due to the clonal regulation by genets (Wang, unpublished 
data). Besides, we focused on the competition hierarchy of 
these three sedge species and the variation of interspecific 
interactions along stress gradients rather than the absolute 
value of competition intensity (or importance) in certain 
conditions.

Pots were 20 cm (diameter) × 25 cm (height), with 
drainage holes at the bottom. Sediments were washed sand 

Table 1  Description of habitat characteristics of three sedge communities in Chongming Dongtan salt marsh

Grazing intensity was assessed according to the performance of these sedge species and the number of cattle pastured in unit area. Low grazing 
intensity: plant height >30 cm, cattle density <1 ha−1 . Mid grazing intensity: plant height 10–30 cm, cattle density 1–10 ha−1. High grazing 
intensity: plant height <10 cm, cattle density >10 ha−1

Community Habitat characteristics

Coverage (%) Elevation (m) Salinity (ppt) Sedimentation 
rate (cm a−1)

Grazing intensity Distribution area

Scirpus mariqueter 10–80 3–3.6 2–15 5–25 Low–mid Northeast, middle, southeast

Scirpus triqueter 30–90 3.2–3.5 2–10 0–10 Mid–high Southeast

Carex scabrifolia 50–90 >3.4 5–20 0–5 Low Middle, southeast
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with 4 g Osmocote slow-release fertilizer (N/P/K 14:14:14, 
the Scotts Company, Marysville, OH, USA) added to each 
pot. We used 24 concrete pools (6 treatments × 4 rep-
licates) of 1.2 × 1.2 × 0.8 m, each containing 7 pots of 
all the species combinations randomly assigned to cer-
tain salinity or disturbance treatment. The water level was 
maintained at the sediment surface.

In late April, all the ramets were planted and those that 
died within 2 weeks were replaced. The pots were placed 
in fresh water until the treatments were performed in late 
May. Water level and salinity were adjusted weekly or after 
rain and accretion treatments. Every month, all the water in 
the pools was replaced, and the pots were rotated randomly 
between pools to avoid position effects. Accretion and clip-
ping treatments were applied every 3 weeks from late May 
to mid-August (five times in total). In the accretion treat-
ment, washed sand was added until the sediment surface 
increased by 1 cm each time. The accretion rate (~5 cm/
growing season) was similar to that in the area, where the 
ramets were collected (Wang 2010). The sediment surface 
of accretion pots was 5 cm lower initially, so the sand vol-
ume in each pot was equal at the end of the experiment. 
The accretion treatment was designed to mimic the burial 
effect but not the nutrient input effect of natural sedimen-
tation process. However, pioneer sedge plants are usually 
not nutrient limited in Chongming Dongtan (Wang 2010), 
so the difference should have minor effect on plant perfor-
mance. In the clipping treatment, all the plants were clipped 
to a height of 10 cm above the sediment surface to simulate 
cattle grazing, which was common in the south part of the 
marsh (Xu and Zhao 2005). In mid-October, approximately 
2 months after the last accretion and clipping treatment, all 
plants were harvested and separated by species into fruits, 
shoots, and roots. Then, fruit number and total ramet num-
ber of each species were counted, and the height of the six 
tallest ramets of each species was measured. All harvested 
plant materials were oven dried at 80 °C to a constant mass 
and then weighed.

We used a full pairwise design rather than the phytom-
eter approach to obtain sufficient information on interspe-
cific interactions. By the end of the experiment, the sedges 
under benign physical conditions (i.e., low salinity and dis-
turbance) had grown to fully occupy their pots both above- 
and belowground, suggesting that the experiment had run 
long enough to examine plant–plant interactions.

Data analysis

Performances (total biomass, root:shoot ratio, density, 
height, and flowering ratio) of S. mariqueter, S. triqueter, 
and C. scabrifolia were analyzed by one-way ANOVA 
(post hoc Tukey’s HSD test) testing the effects of salin-
ity or disturbance treatments. Competition intensity was 

quantified by the relative neighbour effect (RNE) of each 
competing species in the mixture following Markham and 
Chanway (1996):

in which P−N is the performance of a species (indicated by 
biomass) in a monoculture, and P+N is the performance of 
a species (indicated by biomass) in a mixture. The RNE 
value varies between −1 (maximum facilitation) and 1 
(maximum competition). When calculating RNE, we used 
biomass per pot rather than biomass per ramet, because all 
three species were clonal and could reach maximum bio-
mass within a growing season at a wide range (1–16 ramets 
per pot) of the initial transplant density (Wang, unpublished 
data). These sedge species mainly competed for space if 
provided with sufficient nutrients. Therefore, competition 
would result in a decline of ramet number and total bio-
mass rather than a decline of biomass per ramet of each 
competing species (which is often observed in solitary 
plants). RNE values from different species’ combinations 
were analyzed by nested design ANOVA (post hoc Tukey’s 
HSD test) to test treatment and species (nested in treat-
ment) effects on competition intensity. We assessed relative 
competitive ability based on the RNE values of competing 
species in the mixture (plants with lower RNE values were 
less affected by their neighbour and considered the com-
petitive dominant).

Stress intensity was assessed as percentage performance 
reduction of each species in the monoculture under each 
treatment compared with the maximum monoculture per-
formance of each species among all treatments to avoid the 
confusion of stress gradients and environmental gradients 
(see He and Bertness 2014). Competition importance was 
quantified as the impact of competition relative to total 
magnitude of environmental and biotic factors, modified 
from Seifan et al. (2010):

in which P−N is the performance of a species (indicated 
by total biomass) in a monoculture under certain treat-
ment, P+N is the performance of a species (indicated by 
total biomass) in a mixture under certain treatment, and 
Pmax−N is the maximum P−N among all treatments. The 
numerator (P−N − P+N) represents the impact of compe-
tition on plant performance, and the denominator is com-
posed of two parts: environmental effects (|Pmax−N – P−N|) 
and competition effects (|P−N − P+N|). We defined envi-
ronmental effects as the difference between the maximum 
plant performance without neighbours and its performance 
in monoculture at the certain point along the stress gradi-
ent (|Pmax−N − P−N|) rather than the definition of Seifan 
et al. (2010) (|Pmax±N − P−N|). As demonstrated in Mingo 
(2014), the importance index of Seifan et al. (2010) can 

RNE = (P−N−P+N)/max(P−N,P+N)

Cimp = (P−N−P+N)/(|Pmax−N−P−N| + |P−N−P+N|)
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never exceed the value of 0.5 in facilitation, probably 
because they include the biotic interaction impact in the 
environmental effect term in the case of facilitation. How-
ever, our Cimp index has a definite range between −1 and 1, 
with a positive value indicating competitive interaction and 
a negative value indicating facilitative interaction. When 
only competitive interactions occur (P−N > P+N), the equa-
tion can be simplified as follows, which is equal to the ini-
tial importance index proposed by Brooker et al. (2005):

Because of the difficulty in testing the SGH at an entire 
community scale along true stress gradients (Bowker et al. 
2010), we attempted to assess stress intensity, competi-
tion intensity, and competition importance at the commu-
nity level on a biomass basis, assuming all the competing 
plants in a pot were a single species. Community P−N was 
calculated as the expected mixture biomass of co-existing 
species with no interspecific interactions (i.e., average 
monoculture biomass of each species in a certain species 
combination) in a certain treatment, community P+N was 
the actual mixture biomass of a certain species combination 
in a certain treatment, and Pmax−N was the maximum P−N 
among all treatments. The relationships between competi-
tion intensity or importance and stress intensity were ana-
lyzed using linear regression.

To evaluate indirect interactions among the sedges, we 
tested the effects of the presence of two competing species 
and the interaction term on the biomass of the target spe-
cies using two-way ANOVA (post hoc Tukey’s HSD test). 
Data were log transformed if necessary to improve the 
homogeneity of variance for analysis.

Results

Species responses to salinity and disturbance

Both high salinity and disturbance had negative effects 
on all species, but the response patterns were not consist-
ent among different parameters and species. Total biomass 
of all these sedges significantly decreased with increasing 
salinity (Fig. 1a). The most sensitive species, S. triqueter, 
had a biomass reduction of nearly 66 % at 16 ppt com-
pared with that at 0 ppt, whereas the biomass of S. mari-
queter and C. scabrifolia was suppressed by 42 and 52 %, 
respectively (Fig. 1a). Root:shoot ratio increased along the 
salinity gradient but not significantly (Fig. 1b). Ramet den-
sity did not change much in S. mariqueter but decreased 
with increasing salinity in S. triqueter and C. scabrifolia 
(Fig. 1c). Ramet height slightly increased at 8 ppt and was 

Cimp = (P−N−P+N)/(Pmax−N−P+N).

significantly reduced at 16 ppt in all three species (Fig. 1d). 
C. scabrifolia did not flower during the growing season, 
and the other two species showed a similar decline of flow-
ering ratio with increasing salinity (Fig. 1e).

In the disturbance experiment, the clipping treatment 
had more significant effects on plant performance than the 
accretion treatment. For all three species, total biomass 
was significantly reduced in clipping and accretion + clip-
ping treatments (Fig. 2a). S. triqueter was the most toler-
ant to disturbance (especially clipping), which only had a 
biomass reduction of 54 % in monoculture under the most 
severe disturbance treatment (accretion + clipping) com-
pared with S. mariqueter (82 % biomass reduction) and C. 
scabrifolia (87 % biomass reduction) (Fig. 2a). Root:shoot 
ratio increased with increasing disturbance, but the dif-
ference was only marginally significant for S. triqueter 
(ANOVA, P = 0.07) (Fig. 2b). Responses of ramet den-
sity and height were similar to those of biomass except 
that S. triqueter had the highest density in accretion treat-
ment (Fig. 2c, d). Flowering ratio of S. mariqueter was 
significantly reduced in clipping and accretion + clipping 
treatments, whereas that of S. triqueter did not vary sig-
nificantly among disturbance treatments at a relatively low 
level (Fig. 2e).

Competitive hierarchy among sedge species

In the salinity experiment, although the relative competi-
tive ability of the three sedge species differed, competition 
intensity across all competing species did not vary among 
salinity treatments except in S. triqueter–C. scabrifolia 
mixtures (Table 2; Fig. 3). The competitive dominant S. 
mariqueter was always less affected by neighbours, espe-
cially at high salinities (Fig. 3a, c ), and the competitive 
hierarchy between S. triqueter and C. scabrifolia reversed 
from low to high salinity (Fig. 3e). In the three-species 
mixture, S. triqueter was less affected by neighbours (i.e., 
more competitive) than S. mariqueter at 0 ppt (Fig. 3g), 
which differed from the competitive outcomes of pairwise 
competition (Fig. 3a). 

Similar to the results of the salinity experiment, distur-
bance did not alter the average competition intensity of all 
competing species on the whole but did affect the relative 
competitive abilities of these sedges (Table 2; Fig. 3). In 
two-species mixtures, C. scabrifolia was the competitive 
inferior in all treatments (Fig. 3d, f), but the dominance of 
S. mariqueter over S. triqueter disappeared in the accre-
tion + clipping treatment (Fig. 3b). In the three-species 
mixture, the competitive hierarchy of S. mariqueter > S. tri-
queter > C. scabrifolia was maintained except in the clip-
ping treatment (Fig. 3h).
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Variation of plant–plant interactions along the stress 
gradient

The stress-interaction relationship (SIR) was affected by 
competition indices used, plant traits and species consid-
ered, but did not vary between stress types (Fig. 4). In both 
salinity and disturbance experiments, competition intensity 
was relatively constant along the stress gradient (Fig. 4a, c). 
Competition importance, however, significantly decreased 
with increasing stress (Fig. 4b, d).

Although these three sedge species have similar morphol-
ogy, their response norms were not consistent. In the salinity 
experiment, the competition intensity of S. triqueter was the 
lowest at intermediate stress (around 0.2–0.3), whereas that 
of the other two species slightly decreased with increasing 
stress (Fig. 4a). In the disturbance experiment, these sedges 
responded similarly as in the salinity disturbance, but only 
S. triqueter occupied the entire stress gradient (Fig. 4c).

At the community level, however, negative relationships 
between competition importance and stress disappeared 

Fig. 1  Growth and reproduc-
tion performances (mean ± SE, 
n = 4) of Scirpus mariqueter 
(Sm), Scirpus triqueter (St), and 
Carex scabrifolia (Cs) in mono-
culture in relation to salinity. 
a Total biomass, b root:shoot 
ratio, c density, d height, e 
flowering ratio. Different lower 
cases denote significant differ-
ences (Tukey’s HSD test) of 
each species among different 
salinity treatments
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(Fig. 5). Notably, the whole communities were either 
highly suppressed or facilitated in low stress conditions, 
but the interactions became neutral at the harshest end of 
the stress gradient (i.e., competition importance variation 
decreased along the stress gradient) (Fig. 5).

Indirect interactions

Indirect interactions were detected for all three species in 
different treatments in both experiments. In the salinity 

experiment, there were significant interactions between two 
competitors (i.e., indirect interactions) on S. mariqueter 
at low salinity, on S. triqueter at high salinity, and on C. 
scabrifolia in all treatments (Table 3).

Similarly, indirect interactions were not consistent among 
disturbance treatments. S. mariqueter was significantly affected 
by the interaction between two competitors in the control only, 
S. triqueter was significantly influenced in the clipping treat-
ment only, and C. scabrifolia was significantly affected in the 
control, accretion, and clipping treatments (Table 3).

Fig. 2  Growth and reproduc-
tion performances (mean ± SE, 
n = 4) of Scirpus mariqueter 
(Sm), Scirpus triqueter (St), 
and Carex scabrifolia (Cs) 
in monoculture in relation to 
disturbance. a Total biomass, 
b root:shoot ratio, c density, d 
height, e flowering ratio. Differ-
ent lower cases denote signifi-
cant differences (Tukey’s HSD 
test) of each species among 
different disturbance treatments
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Discussion

Our results showed that the relative competitive abilities 
of salt marsh sedges in the Yangtze estuary shifted under 
different physical conditions. At the species level, com-
petition intensity remained relatively consistent along the 
stress gradient, but competition importance decreased with 
increasing stress. However, competition importance tended 
to be neutral and less variable with increasing stress at the 
community level. Sedge responses to interspecific compe-
tition, salinity, sediment burial (accretion), and simulated 
herbivory (clipping) appeared to explain their distribution 
in the Yangtze estuary. Indirect interactions among com-
petitors in three-species mixtures, however, were common, 
reducing the negative effects of dominant species and pro-
moting coexistence.

Competitive hierarchy along environmental gradients

Although the role of competition in generating plant zona-
tion along physical gradients has long attracted the atten-
tion of ecologists (Whittaker 1975), the relative importance 
of competition in generating community structure is not 
predictable even in well-studied plant communities (Farina 
et al. 2009; Lamb and Cahill 2008). Our results suggested 
that environmental factors (e.g., salinity) or disturbances 
(sedimentation and grazing) altered the performances and 
competitive abilities of the sedge species, which might in 
turn affect their distributions in estuarine salt marshes.

Salinity is the most important physical factor in the 
Chongming Dongtan wetland, explaining most of the habi-
tat partitioning among the dominant plants (Wang et al. 
2009; Wang 2007). In addition, this marsh is exposed to 
various types of natural and anthropogenic disturbances. 
Sedimentation can potentially promote plant growth by 
reducing inundation and increasing nutrient inputs (Men-
delsshon and Kuhn 2003) but can negatively affect plants 
through burial (Werner and Zedler 2002). Grazing by herbi-
vores can strongly influence the distribution and abundance 
of plants in salt marsh systems as well (Geho et al. 2007; 

Holdredge et al. 2009). We recognize that the clipping 
treatment assumed equal palatability and herbivore prefer-
ence among different species, which is not true in the field. 
However, because these three sedge species have similar 
morphology and nutrient composition, selective herbivory 
by cattle is minor in the area, where the materials were col-
lected (personal observation). Of the sedges we studied, S. 
triqueter was more salt sensitive but less affected by clip-
ping (simulated grazing) than the other two competitors, 
whereas S. mariqueter was less affected by high salinity 
(Figs. 1, 2). Consequently, the competitive hierarchy of 
the three sedges shifted along the salinity and disturbance 
gradients. S. triqueter was competitively dominant in fresh-
water and clipping treatments but became competitively 
inferior under saline conditions (Fig. 3g, h). The field dis-
tribution of these sedges at Chongming Dongtan with spa-
tially heterogeneous salinity and disturbance gradients is 
consistent with these findings (Xu and Zhao 2005), sug-
gesting that salinity and grazing mediate competitive out-
comes and dictates community organization in this system.

Co-occurrence of different environmental factors has 
also been shown to affect the outcome of plant–plant inter-
actions in non-intuitive ways (Baumeister and Callaway 
2006; Riginos et al. 2005; Smit et al. 2009). Hence, dis-
turbance may interact with salinity (e.g., Gilbert and Fraser 
2013) and affect natural plant communities differently than 
demonstrated by our common garden experiment. How-
ever, we did not examine these effects because of the unac-
ceptable workload with a full factorial design considering 
salinity and disturbance types simultaneously in our study.

Notably, the complex nature of plant–plant interactions 
could not be simply interpreted by either the “competitive 
release” or “competitive change” hypothesis. Most pre-
vious studies used a phytometer approach to examine the 
competitive abilities of various species rather than a full 
pairwise design because of space and time constraints in 
most cases (Fraser and Miletti 2008). However, the com-
petition hierarchy may be non-transitive in some cases 
(Buss and Jackson 1979), and complex interactions among 
competitors may limit the validity of results from such 

Table 2  Results of nested 
design ANOVA testing the 
effects of treatment and species 
(nested in treatment) on the 
competition intensity (indicated 
by relative neighbour effect 
values of competing plants) in 
different species combinations

Relative neighbour effect (RNE) quantifies the proportion of biomass reduction of each species due to 
neighbour existence. See “Materials and methods” for more details

Sm, Scirpus mariqueter; St, Scirpus triqueter; Cs, Carex scabrifolia; 

NS, not significant, * P < 0.05, ** P < 0.01, *** P < 0.001

Source of variation Species combination

Sm + St Sm + Cs St + Cs Sm + St + Cs

Salinity experiment Treatment NS NS * NS

Species (treatment) * NS ** ***

Disturbance experiment Treatment NS NS NS NS

Species (treatment) * *** * *
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Fig. 3  Relative neighbour 
effect (RNE) (mean ± SE, 
n = 4) of competing species 
in different species combina-
tions in a, c, e, g salinity and 
b, d, f, h disturbance experi-
ments, indicating the propor-
tion of biomass reduction of 
each species in the presence 
of neighbours. a, b Sm + St 
mixture, c, d Sm + Cs mixture, 
e, f St + Cs mixture, g, h 
Sm + St + Cs mixture. Dashed 
lines indicate the average RNE 
level of species composing the 
mixture assuming no interspe-
cific interactions. Abbreviations 
are identical to those in Fig. 1. 
Different upper cases denote 
significant differences (Tukey’s 
HSD test) among different treat-
ments, and different lower cases 
denote significant differences 
among different species in each 
treatment
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experiments. In addition, the two aspects of competitive 
ability, “competitive effect” and “competitive response” 
(Goldberg and Landa 1991), are not always correlated. 
Recent studies have revealed that the hierarchy of competi-
tive effect ability of perennial North American prairie spe-
cies is consistent along environmental gradients, whereas 
that of competitive response abilities varies among the 
treatments (Fraser and Miletti 2008; Wang et al. 2010). 
Indeed, some consistent competition hierarchy might be an 
artefact of the measured competitive ability traits. Shift of 
competitive hierarchies along environmental gradients is 
common (Wang et al. 2006) and can be the main driving 
force in structuring community composition. This, together 
with competitive intransitivity (Laird and Schamp 2008), 
can contribute to the maintenance of diversity in heteroge-
neous environments (Reynolds 1997; Tilman 1994).

Surprisingly, the competitive abilities of these sedges in 
mixtures could not be directly predicted by their individual 
physiological responses to the disturbances. S. mariqueter 
was competitively dominant over S. triqueter in the clip-
ping treatment (Fig. 3b), but it was less tolerant of clipping 

in monocultures (Fig. 2a). S. mariqueter was also more 
competitive than C. scabrifolia in accretion treatments 
(Fig. 3d), but C. scabrifolia was more tolerant of accretion 
than S. mariqueter in monocultures (Fig. 2a). Gross et al. 
(2010) found similar results that “dominant species were 
not always the least strained,” highlighting the importance 
of explicitly distinguishing between responses to physical 
stresses and competition abilities.

Test of stress‑gradient hypothesis

The stress-gradient hypothesis (SGH) predicts that com-
petition is more frequent in benign environments, whereas 
facilitation plays more important roles with increasing 
stress. Although He et al. (2013) argued in a recent meta 
analysis that competition was consistently reduced with 
increasing stress across stress types, plant traits, ecosys-
tems, and methodologies, they might have overlooked the 
complex nature of stress-interaction relationships (SIR), 
because the authors used a competition intensity index and 
data at only two extremes along the stress gradient.

Fig. 4  Variation in a, c compe-
tition intensity, calculated as the 
proportion of biomass reduction 
in the presence of neighbour, 
and b, d competition impor-
tance, calculated as the propor-
tion of biomass reduction due to 
competing neighbours to total 
biomass reduction due to salin-
ity and disturbance stress and 
competition. Stress is calculated 
as the proportion of biomass 
reduction due to the salinity or 
disturbance of each species in 
monoculture. See “Materials 
and methods” for more details 
of calculating stress, competi-
tion intensity, and competition 
importance
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Fig. 5  Variation in a, c compe-
tition intensity and b, d compe-
tition importance based on total 
biomass at the community level 
along stress gradients in salinity 
and disturbance experiments. 
See “Materials and methods” 
for more details of calculating 
stress, competition intensity, 
and competition importance at 
the community level

Table 3  Results of two-way ANOVA testing the main and interactive 
effects of competing species A and competing species B on the total 
biomass of three target species in different salinity (0, 8 or 16 ppt) or 

disturbance [control, accretion (Acc), clipping (Clip) or both accre-
tion and clipping (Both)] treatments

Eight ppt (unmanipulated) is the shared control treatment for both the salinity and disturbance experiments. Species A and species B denote Scir-
pus triqueter and Carex scabrifolia for Scirpus mariqueter, Scirpus mariqueter and Carex scabrifolia for Scirpus triqueter, and Scirpus mari-
queter and Scirpus triqueter for Carex scabrifolia, respectively

NS, not significant, * P < 0.05, ** P < 0.01, *** P < 0.001

Source of variation Scirpus mariqueter Scirpus triqueter Carex scabrifolia

Salinity experiment 0 ppt 8 ppt 16 ppt 0 ppt 8 ppt 16 ppt 0 ppt 8 ppt 16 ppt

Species A *** *** NS ** * * *** *** **

Species B *** ** NS NS NS * *** *** **

A × B ** * NS NS NS * *** *** **

Disturbance experiment Acc Clip Both Acc Clip Both Acc Clip Both

Species A * *** *** ** ** NS *** *** *

Species B NS *** NS NS NS NS *** *** **

A × B NS NS NS NS * NS *** ** NS
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We found that the role of competition in proportion to 
abiotic factors (i.e., competition importance) decreased 
with increasing stress with relatively constant competition 
intensity, but the results were dependent on the quantifica-
tion of stress. Because the outcome of biotic interactions 
depends on the relative positions of target species from 
their niche optima (Liancourt et al. 2005), in most spe-
cies combinations, no significant differences of competi-
tion intensity among different treatments can be detected 
because of their different stress tolerance (Table 2; Fig. 3). 
In the salinity experiment, the most salt sensitive sedge, 
S. triqueter, suffered more from competition in the most 
stressful environment (Fig. 4a), but the other two species 
had a slight decline of competition intensity with increas-
ing stress. This result indicates that the response norm is 
species-specific and depends on tolerance to certain stress 
type (Maestre and Cortina 2004; Michalet et al. 2006).

The SIR became more explicit when we quantified spe-
cies-level stress for each species in each pot separately : 
competition intensity remained relatively constant along 
the stress gradient, but competition importance decreased 
proportionally with increasing stress in both salinity and 
disturbance experiments (Fig. 4). However, these com-
monly found negative relationships might be partially 
caused by the definition and calculation of the competi-
tion importance index. Indeed, competition importance is 
always 1 in an optimum environment (when all biomass 
reduction is caused by competition) and 0 in the harsh-
est environment (when no plants survive, and all biomass 
reduction is caused by stress), which cannot exceed the 
diagonal line with a slope of −1. This can easily lead to the 
negative relationship.

Most studies have examined the stress-gradient hypoth-
esis at the species level, but this may not necessarily reflect 
the trend of average interactions within a community 
(Brooker et al. 2008). When assessing SGH at the com-
munity level using spatial co-occurrence patterns of soil 
lichen communities, Maestre et al. (2009b) found that the 
variation of relative frequency of positive and negative 
interactions depended on the type of abiotic stress (water 
or nutrient) and spatial scales considered. Instead of this 
approach, we evaluated the commonly used competi-
tion intensity and importance indices integrated across all 
species in the sedge community to produce results more 
comparable to those of the previous studies. The negative 
relationship between competition importance and stress 
disappeared at the community level. Instead, competition 
importance became less predictable in benign conditions 
in both the salinity and disturbance experiments (Fig. 5). 
The reason may be that “because stress can act as a filter, 
a greater number of species interactions are possible under 
low stress conditions” (Bowker et al. 2010). The previ-
ous research also suggested that even when competition 

intensity decreased with increasing stress at the species 
level, the relative importance of competition did not neces-
sarily change with environmental stress at the community 
level (La Peyre et al. 2001), indicating that the response of 
the entire plant community to a changing environment may 
differ from that of the component species.

Indirect interspecific interactions

The inconsistency of competitive outcomes in three-spe-
cies and two-species mixtures reveals that indirect inter-
actions are common among these sedges. These complex 
interactions play important roles in species coexistence 
(Brooker et al. 2008). In general, competitive effects do 
not increase proportionally with the addition of an extra 
competitor, which allows many species to survive in mixed 
communities.

As demonstrated in a previous study, competitively infe-
rior species may be released from a dominant species by 
another strong competitor (Levine 1999). In our study, C. 
scabrifolia was inferior to S. mariqueter and S. triqueter 
under most conditions, and hence experienced strong indi-
rect facilitation in accretion treatments (75 and 72 % bio-
mass increase in 3-species mixture, respectively), because 
the two Scirpus species competed heavily with one another. 
However, the occurrence of indirect facilitation could not be 
predicted by the competitive abilities of target species and 
the distances from their environmental optima in our study. 
Although C. scabrifolia was less competitive than S. tri-
queter, it facilitated S. triqueter in three-species mixtures in 
clipping treatment (109 % biomass increase in the three-spe-
cies mixture compared to the results of the S. mariqueter–S. 
triqueter mixture) most likely because of its suppression on 
the dominant S. mariqueter. Another reason for this result 
was that competition with S. mariqueter and C. scabrifolia 
reduced the shoot allocation of S. triqueter, which might also 
reduce its loss from aboveground clipping. This result was 
consistent with those of Gross et al. (2010), who found that 
even dominant species could be facilitated in some cases.

Because of the limitations of common garden experi-
ments which may underestimate facilitation among inter-
acting species, the results should be treated carefully when 
extrapolated to field conditions. Besides, the effects of 
indirect interactions on diversity and how they vary with 
community productivity and limiting resources need to be 
tested in further field work.

Conclusions

Our results suggest that salinity, disturbance and interspe-
cific interaction plays important roles in dictating the per-
formance and distribution of sedges in salt marshes in the 
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Yangtze estuary. In our experiments, the stress-interaction 
relationship (SIR) depends on the scale and competi-
tion indices considered but not the stress types. They also 
reveal, however, that indirect interactions are common 
within the sedge assemblage, diffusing competitive domi-
nance and promoting coexistence in this system of closely 
related plants. These results contribute to our understand-
ing of the mechanisms of segregation and coexistence of 
similar plant species in heterogeneous habitats.
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