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congener. The cost of somatic allocation in this case may 
manifest itself via reduced per-capita competitive ability, 
which (at least in simulation studies) allows the smaller, 
fast-maturing species to outcompete the larger, slow-matur-
ing species when drought is minimal or nonexistent.
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Introduction

Animal body size is under strong selection because it 
determines several life-history attributes and is shaped by 
divergent and contrasting evolutionary pressures (e.g., 
reproduction and survival, Blueweiss et  al. 1978; Peters 
1983; Wikelski and Trillmich 1997; Nagel and Schluter 
1998; Winne et  al. 2010). Because reproductive output 
rather than somatic growth maximizes fitness (Gibbons 
et al. 1981; Brown and Sibly 2006), increased body size at 
maturity is costly unless it confers additional benefits, (e.g., 
increased survival, fecundity, or resistance to environmen-
tal extremes; Peters 1983; Kingsolver and Pfennig 2004).

Trade-offs between reproduction and future survival 
(Williams 1966) ultimately shape life-history variables 
such as growth, maturity, and fecundity in response to 
habitat suitability and predictability. In temporally varying 
environments, optimal life-history strategies are especially 
sensitive to conditions affecting age-specific or size-spe-
cific growth or mortality (e.g., Werner 1986; Taborsky et al. 
2003). In fluctuating environments, the relative strengths of 
size-dependent and size-independent mortality can lead to 
antagonistic selection pressures between early maturation 
and large body size through delayed maturation (Stearns 
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1976; Roff 1992; Brown and Sibly 2006). High size-inde-
pendent mortality selects for early maturation because it 
minimizes the likelihood of failing to reach maturity prior 
to death, whereas negative size selection (selection for 
larger animals) would confer an advantage to animals that 
grow quickly to a minimum “refuge size” (e.g., Nakaoka 
1998) at the cost of reproduction (Brown and Sibly 2006).

Severe climatic episodes offer temporally strong selection 
pressure on body size and affect cost of reproduction trade-
offs (Brown and Brown 1998; Clutton-Brock and Pember-
ton 2004). Episodic selection events (e.g., drought) present 
chronic selection pressures and are expected to increase in 
severity and frequency in some freshwater systems under cli-
mate change (e.g., Overpeck and Udall 2010). Climate change 
and increased drought are expected to select against larger-
bodied animals because of increased metabolic costs associ-
ated with elevated temperatures and drought-induced altera-
tion of food chain structure (Sheridan and Bickford 2011; 
Brose et al. 2012; Woodward et al. 2012). However, body size 
interacts with other factors that determine survival under peri-
odic perturbations (e.g., dispersal ability, estivation; Gehlbach 
et al. 1973; Willson et al. 2006; Bårdsen et al. 2011).

Aquatic and semi-aquatic animals that inhabit isolated 
wetlands undergoing drought emigrate or estivate with vary-
ing degrees of success (Gibbons et  al. 1983; Withers 1993; 
Willson et al. 2006; Buhlmann et al. 2009; Luhring and Todd 
2010; Luhring et  al. 2011). For animals that are unable to 
disperse during times of drought (e.g., Schalk and Luhring 
2010), the ability to withstand environmental extremes (envi-
ronmental resistance) is at a premium. Isolated populations of 
animals experiencing periodic environmental extremes (e.g., 
Wikelski and Trillmich 1997; Winne et  al. 2010) provide 
an especially powerful insight into within-population size-
dependent mortality as a function of environmental extremes.

To investigate in greater mechanistic detail how trade-offs 
between body size and reproduction could affect the persis-
tence of nondispersing animals under drought conditions, we 
conducted an analysis that combines empirical data with a 
species-specific size-structured demographic model of sala-
mander population dynamics. For the empirical portion, 
we drew on demographic data from field studies and size-
dependent estivation potential derived from laboratory stud-
ies (Etheridge 1990). These models simulate the relative suc-
cess of divergent life-history strategies in two closely related 
and sympatric species across a continuum of hydrological 

conditions and competition scenarios. Differences in persis-
tence rates between large and small species provide funda-
mental insights into interactions among life-history strate-
gies, environmental stochasticity, and body size.

Following model construction, we used hydrologic and 
demographic data from past and ongoing research at the 
Savannah River Ecology Laboratory in Aiken, South Carolina 
to examine the effects of three droughts (1989–1990, 2001–
2002, and 2011–2013) on aquatic salamander population 
demographics. We used field data from 1993, 2006–2011, 
and 2014 to evaluate the effects of these droughts on subse-
quent size-class distributions and to compare model outputs 
to the post-drought size distributions of wild populations.

Materials and methods

The SIREN model (see the Electronic supplementary mate-
rial for the corresponding Matlab source code) simulates 
two well-mixed salamander populations (differing in size 
at maturation) in an isolated wetland over a 5000-year 
period. It is a discrete-time model (with a 1-year time step), 
with size-specific survival, growth, and fecundity modeled 
through a size-structured Leslie matrix in Matlab (R2009a, 
The MathWorks, Natick, MA, USA). Drought severity and 
species-specific competition strength between the two pop-
ulations are varied systematically (described further below) 
to test effects on population persistence caused by differ-
ences in life-history strategies. A subsequent set of single-
species simulations was run with varying demographic 
parameters to test model output sensitivity to differing val-
ues of mass, annual survivorship, and fecundity.

At each time step, a random drought length was drawn 
from an exponential distribution with mean h (in years). 
Values of h ranged between 0 and 0.3—an upper limit that 
led to deterministic extinction for each species. Drought 
length was then converted to days and discretized into three 
drought severity classes (no drought—demographic param-
eters unaffected; short drought—some mortality, growth 
and reproduction unaffected; and long—no growth, no 
reproduction), each with its own transition matrix. Drought 
severity class-specific transition matrices (Eqs.  1, 2, 3, 
4, 5, 6) were constructed for six (S. lacertina) or four (S. 
intermedia) size classes and used according to the drought 
severity class (discussed below) for each time step:
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(2)Lsd =
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short period, or not at all), drought survival was assumed to 
be size-dependent, and no recruitment or growth into the 
next size class occurred (Eqs. 3, 6).

As body size (not age) determines estivation potential 
(Etheridge 1990) and thus ability to survive droughts, we 
grouped animals by size (although age and size classes are 
equal in some cases). We added a density-dependent term 
G(t) for S. lacertina or g(t) for S. intermedia to the fecun-
dity terms (Caswell 2001), given by:

Here, N(t) and n(t) are equal to the total abundances of non-
hatchling lesser and greater sirens, respectively, at time t 
(Eqs. 7a, 7b). The variable B is a system-wide constant that 
determines the strength of density dependence, selected to 
prevent unchecked exponential population growth. Compe-
tition coefficients (CC) convert the number of heterospecif-
ics into effective conspecific competitors (CC12: lesser into 
greater sirens; CC21: greater into lesser sirens) for simula-
tions that included competition (Eqs. 7a, 7b; discussed fur-
ther in “Competition models”).

There are few age/size-specific estimates for survival or 
fecundity for sirenids. We estimated survival values that 
mimic a type-III survivorship curve, typical of animals 
(such as amphibians) that experience high levels of mortal-
ity in early life stages (Pearl and Miner 1935; Wells 2007; 
Table  1). Once individuals reached the largest size class, 
they were assumed to remain in that size class in subse-
quent years (minus annual death rate or drought extirpa-
tions). Fecundity estimates were based on estimates from 
populations in the Upper Coastal Plain of South Carolina 
(lesser siren: Sever et  al. 1996; greater siren: Luhring, 
unpublished data).

We derived size classes for lesser sirens from a population 
in Texas (Gehlbach and Kennedy 1978). We used estimated 
greater siren size classes (in mm snout-vent length; SVL) from 
a well-studied population of marked S. lacertina (Luhring 
2008, 2009) and converted these values to mass (in grams) via 
a regression equation relating mass to SVL (Eq. 8):

The mass of the 6th size class (540  g) is an underesti-
mate of the maximum size of greater sirens (23  % of 

(7a)G(t) = exp−B((CC12n(t))+N(t))

(7b)g(t) = exp−B((CC21N(t))+n(t)) .

(8)M = (3× 10−6)× (SVL3.1884).

Species matrices (L: S. lacertina; l: S. intermedia) with 
subscripts n, sd, and ld represent transition matrices for 
non-drought, short-drought, and long-drought years, 
respectively (Eqs.  1, 2, 3, 4, 5, 6). Pi and pi denote non-
drought survival,Pdi and pdi denote size-dependent drought 
survival, and Fi and fi denote fecundity for size class i 
(capitalized and lowercase letters for S. lacertina and S. 
intermedia, respectively). Because short drying episodes 
are common in isolated wetlands and generally do not kill 
yearlings (Luhring and Todd 2010), no drought-induced 
size-dependent survivorship occurs during drying events 
shorter than 60  days (Eqs.  1, 4). For short droughts last-
ing between 60 and 250  days (wetland holds water long 
enough for growth), drought survival is assumed to be size 
dependent, and recruitment only occurs when the drought 
is short enough for size-class 0 juveniles to survive and 
grow into the next size class (Eqs. 2 and 5, where j(t) is a 
binomial indicator of whether juveniles can survive into the 
next year). We used the intercept of the body-mass-depend-
ent drought survival equation (see Eq.  9 below), equal to 
145 days, as the maximum length survivable by size class 
0 juveniles. For long droughts (i.e., wetland fills for a very 
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animals captured during the study were larger). How-
ever, larger animals are generally male (Luhring, unpub-
lished data), and the growth of individually marked ani-
mals is largely curtailed after reaching the 6th size class 
(Luhring 2008).

We derived size-dependent drought survival values (Pd or 
pd), which dictate the maximum drought length that a given 
size class can survive, from body mass M, based on data from 
laboratory-induced estivation experiments (Etheridge 1990):

We assumed a fixed probability of immigration (0.01) via 
flooding in non-drought years at each time step, and used 
it to generate a Bernoulli random deviate to determine if 
immigration occurred in a given year. Sirenids are poor 
overland dispersers (Schalk and Luhring 2010), and 
likely rely on temporary waterways to form during heavy 
rains in order to colonize isolated wetlands (Snodgrass, 
unpublished data). For time steps in which stochastic 
immigration did occur, a total of 1–50 immigrants (drawn 
randomly from a uniform distribution) were added to 
each size class. Immigration allowed our simulated wet-
lands to act as open populations and prevented periodic 
extinctions from causing permanent extirpation (enabling 
average persistence estimates across several extinction 
and colonization events). Because the effects of emigra-
tion would be small relative to the total population size, 
it was assumed that emigration and death were both cap-
tured in class-specific mortality rates. At the end of each 
time step, the total population size of non-hatchlings was 
recorded in the N or n matrices for greater and lesser 
sirens, respectively. We used the mean number of years 
with a nonzero population as a proxy for persistence 
probability.

Competition models

We added competition to the model by converting the 
heterospecific population into effective conspecifics via 

(9)Pd = (0.0002×M2)+ (0.3701×M)+ 145.63.

a CC. For example, a greater siren competition coeffi-
cient (CC21) of 0.5 means that 50 % of the greater siren 
population size is added to the total lesser siren popula-
tion prior to calculating density for that time step. A lesser 
siren competition coefficient (CC12) of 1.0 would indicate 
that lesser sirens have a per-capita competition effect on 
greater sirens equal to that of other greater sirens. Asym-
metric competition occurred when competition coeffi-
cients differed between species. Potential competition 
between these species is a realistic assumption as they 
have broadly overlapping diets, physiologically similar 
feeding mechanisms, and overlap in body size during the 
first 2 years of their lives.

We first ran the model with both siren types co-occur-
ring in the simulated wetland, with varying CC and mean 
drought severity (h). We examined the combined effects of 
competition coefficients (0, 0.5 and 1.0) and mean drought 
severities (0, 0.05, 0.01… 0.30) on population persistence 
for each species. We ran each possible combination of 
greater siren CC, lesser siren CC, and h (total of 63 unique 
combinations) 100 times for 5000-year simulations with 
both species present.

Single‑species sensitivity analysis

In addition to competition models, we performed a 
global sensitivity analysis on size-class demographic 
parameters (mass, survivorship, fecundity) to assess 
their effects on model output and the robustness of 
our predictions. We ran 1000 simulations of 5000-year 
increments for a single species at a fixed value of mean 
drought severity (h). We varied parameter values at the 
inflection point of persistence versus mean drought 
severity in the absence of competition (e.g., Fig.  1a). 
Persistence was most sensitive to the change in model 
parameter values at the inflection point and we wanted 
to explore model robustness in response to uncertainty in 
our parameter estimates. We screened model simulation 
outputs for runs in which parameters violated biological 

Table 1   Demographic 
parameters and standard 
deviation values of size classes 
used to draw from normal 
random distributions for model 
parameters of both greater siren 
(S. lacertina) and lesser siren 
(S. intermedia)

Species Class Mass STD Survival STD Fecundity STD

Siren lacertina 1 8 2 0.01 0.001 0 0

2 60 15 0.2 0.01 0 0

3 120 30 0.5 0.025 0 0

4 215 53.75 0.7 0.035 200 50

5 350 87.5 0.9 0.040 300 75

6 540 135 0.9 0.040 400 100

Siren intermedia 1 8 2 0.01 0.001 0 0

2 33 8.25 0.2 0.01 150 37.5

3 59 14.75 0.5 0.025 275 68.75

4 96 24 0.7 0.035 400 100



727Oecologia (2015) 178:723–732	

1 3

assumptions (e.g., survival  >  1.0, fecundity  <  0) and 
removed them prior to sensitivity analyses (1–2  % of 
runs). We regressed the response variable (persistence) 
on the parameter values (size-specific mass, survival, 
fecundity) using linear regressions conducted in R v. 
2.7.2 (R Development Core Team 2008) to generate 
adjusted-R2 values and regression slopes as metrics of 
parameter influence (Holdo et  al. 2011). We conducted 
all simulations in Matlab® v. 7.8.0.347 (R2009a, The 
MathWorks).

Field data

We used individually measured greater siren body size 
data from two distinct trapping efforts at Dry Bay, an 
isolated wetland on the US Department of Energy’s 

Savannah River Site (SRS) in the Upper Coastal Plain of 
South Carolina, USA (1993, Tucker, unpublished data; 
2006–2014, Luhring, unpublished data) to test the prem-
ise that prolonged drought events select against smaller 
body sizes in sirens. One of us (TML) used a variety of 
trap types (Luhring 2008; Luhring and Jennison 2008) 
to ensure consistent captures across size classes. Greater 
sirens, however, were not reliably captured until they 
reached the second size class (200  mm SVL). Dry Bay 
greater siren captures varied in their proximity to three 
severe droughts (1989–1990, 2001–2002, 2011–2013) 
1.25–1.60  years in duration (McCleod, Lide, Luhring, 
unpublished data; Fig.  2a). To provide a common ref-
erence point of capture records across years, we plot-
ted the body size of each capture as a function of time 
since the most recent severe drought. We used body-size 
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distributions in June 2011 (Fig.  2b) as an approxima-
tion for pre-drought body-size distributions, as they were 
sampled 8.4  years after the most recent drought (2001–
2002). We used growth rates from individually marked 
and recaptured sirens (Luhring 2008, 2009) and published 
young-of-year sizes (Goin 1947) to project the trajectories 
of size classes over time following drought (recruitment 
growth: dashed line; drought survivors: solid lines asso-
ciated with numbered size-class circles; Fig.  2a). Size-
class lines passing through a gap in recorded body sizes 
would indicate the loss of that size class during the previ-
ous drought (essentially back-casting growth rates to the 
most recent drought event). Histograms of size distribu-
tions across time were constructed with a reference line 
(dashed) to track the advancement of post-drought recruit-
ment into the sixth size class (~6 years post-drought) and 
the eventual closure of size-class gaps in the absence of 
drought (Fig. 2b–g).

Results

Competition models

Scenarios with any combination of CC of zero or interme-
diate (CC = 0.5) strength predicted no appreciable effect 
on species persistence (Fig.  1). When interspecific and 
heterospecific competition were equal (when CC  =  1), 
however, the predicted patterns of extirpation changed. 
In all combinations of competition scenarios in which 
the smaller species had a CC equal to 1, it repeatedly 
extirpated the larger species at lower values of drought 
severity. When both species had CC’s equal to 1 (i.e., 
each species had an equal negative effect on the other 
that was equivalent to its own intraspecific competition), 
the smaller species frequently extirpated the larger spe-
cies up to a certain value of drought severity, whereupon 
the larger species was predicted to be able to maintain a 
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demarcate years since the last major drought. Numbered circles (a) 
correspond to lines projecting the growth of size classes follow-
ing droughts (size-specific growth rates from marked individuals; 
Luhring 2008). Histograms (b–g) show body-size distributions of 

lettered boxes in main figure (a). The smallest two non-recruit size 
classes pass through the size-class gaps and indicate the loss of those 
size classes during each drought. Body-size distributions of animals 
prior to (b) and following (c–g) droughts show post-drought recruit-
ment (vertical dashed lines indicate average projected size of post-
drought recruits during sampling period) eventually closing the gap 
caused by drought-induced size-dependent mortality
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nonzero population in most years. The larger species was 
only able to exclude the smaller species at lower levels 
of drought severity when it exerted a disproportionately 
stronger and unidirectional competition effect (CC for 
larger species on smaller species = 1 and CC for smaller 
species on larger = 0).

Single‑species sensitivity analysis

Sensitivity analyses on single-species models indicated 
that the maximum size reached had the strongest effect on 
model behavior at a fixed value of mean annual drought 
severity (h; Table  2). Other parameters with appreciable 
effects were related to life-history values of the largest size 
class for each species.

Field data

Body-size distributions following each of three severe 
droughts were consistent with the loss of the 1st and 2nd size 
classes (size-class lines pass through gaps in the data for 2014, 
1993, and 2007; Fig. 2c–f, respectively) and are indicative of 
drought-induced size-specific mortality. The predicted growth 
of post-drought hatchlings following droughts (dashed line in 
Fig. 2a–g) corresponds with peaks in the lower range of size-
class distributions (vertical dashed line in Fig. 2c–g), indicat-
ing that post-drought reproduction occurred and thus ruling 
out breeding failure as a potential cause of size-class gaps. At 

4.0–5.5 years post-drought (Fig. 2g), recruits neared the sixth 
size class and size-class gaps were no longer evident.

Discussion

Optimal life-history strategies in our simulated wetlands 
varied with drought and competition intensity because of 
divergent pressures on maturation and growth. Fitness was 
optimized through fast maturation when perturbations were 
mild and infrequent (sensu Gibbons et al. 1981; Brown and 
Sibly 2006), as our fast-maturing small species (S. inter-
media mature in the 2nd year and reach 120 g; Davis and 
Knapp 1953; Frese et  al. 2003) outcompeted our larger, 
late-maturing species (S. lacertina mature in the 4th year 
or later and reach >1.25 kg; Luhring 2008; Fig. 1). How-
ever, as drought severity increased in our simulations, early 
maturation and smaller size led to more frequent drought-
driven extirpations of S. intermedia and the subsequent 
release of larger and more drought-resistant S. lacertina 
from competition. These patterns are borne out in land-
scape distributions, with S. lacertina mostly inhabiting 
isolated and less permanent wetlands while being largely 
absent from connected permanent wetlands where S. inter-
media are most abundant (Snodgrass et  al. 1999; Luhring 
and Jennison 2008).

In single-species models (no competition), species per-
sistence through droughts was most sensitive to maximum 
size reached for each species (Table  2). However, persis-
tence of S. lacertina populations was also highly sensitive 
to fecundity and survivorship of the largest size class; a 
pattern seen in long-lived vertebrates (sensu lato Congdon 
et  al. 1994). Unlike long-lived species with low fecun-
dity that depend on high juvenile survival for recruitment 
(e.g., turtles, Congdon et al. 1994), large adult S. lacertina 
are highly fecund and their size permits them to occupy a 
size refuge that protects them from drought-induced mor-
tality. This high fecundity and increased drought resist-
ance enable large adults to serve as population reservoirs 
that can quickly repopulate wetlands following prolonged 
droughts. This “reservoir effect” is seen in a wild S. lac-
ertina population going through droughts in three sequen-
tial decades (1990s, 2000s, 2010s) where drought-induced 
mortality of smaller individuals (Fig. 2a) is followed by a 
wave of recruitment after the drought ends (dashed line in 
Fig. 2a–g).

Size-specific drought survival has been documented 
for three vertebrate species which estivate in or near wet-
lands during droughts on the SRS (Order Squamata: black 
swamp snake, Seminatrix. pygaea, Willson et  al. 2006; 
Order Testudines: chicken turtle, Deirochelys reticularia, 
Buhlmann et  al. 2009; Order Caudata: S. lacertina, this 
study). In contrast to greater sirens, black swamp snakes 

Table 2   R2 and sensitivity indices (Si) for each model parameter 
tested at fixed values of h

Parameter Siren lacertina (h = 0.2) Siren intermedia 
(h = 0.1)

R2 Si R2 Si

M1 0.005 6.824 <−0.001 1.149

M2 −0.001 1.678 −0.002 1.114

M3 <−0.001 2.387 0.002 2.020

M4 −0.001 2.003 0.322 20.600

M5 0.028 15.409 – –

M6 0.442 60.301 – –

P1 0.020 13.284 <−0.001 1.093

P2 <0.001 3.159 −0.001 0.620

P3 0.007 8.311 <−0.001 0.921

P4 0.008 8.511 −0.001 1.128

P5 0.004 6.409 – –

P6 0.102 29.036 – –

F2 – – −0.001 0.549

F3 – – 0.001 1.607

F4 0.002 4.986 0.002 2.072

F5 0.005 7.203 – –

F6 0.055 21.449 – –
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(the smallest aquatic snake in North America), and chicken 
turtles (with their relatively fast maturation) exemplify the 
small body size and quick maturation usually predicted 
for organisms in fluctuating environments (Stearns 1976; 
Roff 1992). Both species experience increased mortality of 
larger individuals (primarily large females) during droughts 
(Buhlmann et al. 2009; Winne et al. 2010). These patterns 
of contrasting size-dependent mortality and life-history 
strategies of sympatric vertebrates led us to examine the 
possible explanation for this divergence.

Large animals with high energy reserves are predicted to 
be more resistant to food shortages (Peters 1983; Lindstedt 
and Boyce 1985). This contrasts with predictions that larger 
animals, while having a lower mass-specific metabolic 
demand (Dobson and Headrick 1995), have an increased 
total metabolic cost and fare poorly when resources are 
scarce (e.g., Wikelski and Trillmich 1997; Winne et  al. 
2010). One key facet of this apparent discrepancy is the 
degree to which body size inhibits or augments survival in 
lean times as a function of body mass composition. Black 
swamp snakes estivate in wetlands as do sirenids, but the 
largest individuals are females with high reproductive 
investment (live-bearing) that reproduce shortly before the 
onset of seasonal droughts and are left with few energy 
reserves to resist environmental extremes (Winne et  al. 
2010). Larger chicken turtles (adult females) likewise expe-
rience higher mortality during droughts (Buhlmann et  al. 
2009), which may be a function of the increased metabolic 
demand of larger individuals. Sirenids allocate an increas-
ing proportion of their body mass to lipid storage as they 
grow larger (Etheridge 1990), which may permit lipid stor-
age rates to outpace the increased metabolic demand asso-
ciated with increased total body mass.

Although larger body size is also associated with 
increased fecundity in ectotherms, the fitness advantage 
conferred by increased fecundity through growth is only 

advantageous if lifetime fecundity likewise increases 
(Shine 1988). Because juvenile greater sirens are unlikely 
to survive a severe drought, female greater sirens would 
increase their lifetime fecundity and minimize the risk of 
complete reproductive failure by distributing reproductive 
activity across multiple years. Greater sirens maximize 
interannual survival in drought-prone habitats by growing 
rapidly to a size that protects them from drought mortal-
ity. However, growth at smaller sizes may come at the cost 
of fecundity. While an exceptionally large adult female in 
Alabama (Hanlin and Mount 1978) was estimated to have 
1400 ova, greater sirens in their first years of reproduction 
(the smallest three greater sirens in Fig. 3) produce nearly 
half as many oocytes (74.3 vs. 140.3) as fully mature lesser 
sirens on the SRS, despite being nearly twice as long (273.7 
vs 150.2 mm) (Sever et al. 1996; Fig. 3). While larger ani-
mals may indeed be more fecund, growth and reproduction 
trade-offs seen in sirenids appear to be driven by increased 
environmental resistance at the cost of relative fecundity.

Increasingly frequent and extreme floods and droughts 
resulting from global climate change are expected to have 
wide-ranging effects on amphibians (Walls et al. 2013 and 
references therein). Flood and drought regimes determine 
landscape-scale distributions of aquatic salamanders by 
affecting connectivity and species persistence (Snodgrass 
et al. 1999; Schalk and Luhring 2010, this study). Increased 
flooding would promote landscape connectivity of wetlands 
(Schalk and Luhring 2010) and enable the smaller species 
to colonize wetlands that previously would have been more 
isolated. This could potentially lead to local depression or 
extirpation of the larger species. However, in non-flood 
years, these newly colonized wetlands could serve as eco-
logical traps for the smaller species under conditions of 
increased drought frequency and severity. Greater sirens 
may be able to resist increasingly severe droughts through 
delayed reproductive investment. However, delayed repro-
duction would increase vulnerability to competition from 
colonization waves (which would be more frequent with 
increased flooding) of the smaller species. Additionally, 
delayed reproduction would make recruitment increas-
ingly dependent on successive years of suitable conditions 
to allow juveniles to reach size-based resistance to drought 
conditions.
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