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densities. Our results suggest that lemmings and voles 
should be treated separately in future empirical and theo-
retical studies in order to better understand the role of pre-
dation in this study system.
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Introduction

Theoretical and empirical work suggest that predation can 
explain why certain prey populations fluctuate in time and 
space (Murdoch et  al. 2003; Turchin 2003). In order to 
fully understand how predator–prey systems are structured, 
it is necessary to quantify two interactive processes—the 
functional and numerical responses of predators (Solomon 
1949).

The functional response, defined as the predator con-
sumption rate in relation to prey density, is the basic preda-
tory response to changes in prey numbers, as energy for 
predator reproduction and growth is derived from con-
sumed prey. The functional response involves the full range 
of foraging behaviours and occurs on a fast time scale. Hol-
ling (1959a, b) described three functional response types 
that are regarded as the theoretical basis for predator–prey 
interactions. The type I functional response illustrates a lin-
ear relationship between kill rate and prey density, whereas 
the type II response has a concave shape, and the type III 
functional response is sigmoid in shape. Given their dis-
similar contributions to stability in a predator–prey sys-
tem (Kuno 1987; Murdoch and Oaten 1975), it is of cen-
tral importance to distinguish between different functional 
response curves.

However, despite functional response being an impor-
tant concept in theoretical ecology, the number of empirical 

Abstract T he functional response is a key element of 
predator–prey interactions. Basic functional response the-
ory explains foraging behavior of individual predators, but 
many empirical studies of free-ranging predators have esti-
mated functional responses by using population-averaged 
data. We used a novel approach to investigate functional 
responses of an avian predator (the rough legged-buzzard 
Buteo lagopus Pontoppidan, 1763) to intra-annual spa-
tial variation in rodent density in subarctic Sweden, using 
breeding pairs as the sampling unit. The rough-legged 
buzzards responded functionally to Norwegian lemmings 
(Lemmus lemmus L. 1758), grey-sided voles (Myodes rufo-
canus Sundevall, 1846) and field voles (Microtus agrestis 
L. 1761), but different rodent prey were not utilised accord-
ing to relative abundance. The functional response to Nor-
wegian lemmings was a steep type II curve and a more 
shallow type III response to grey-sided voles. The differ-
ent shapes of these two functional responses were likely 
due to combined effects of differences between lemmings 
and grey-sided voles in habitat utilisation, anti-predator 
behaviour and size-dependent vulnerability to predation. 
Diet composition changed less than changes in relative 
prey abundance, indicating negative switching, with high 
disproportional use of especially lemmings at low relative 
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field estimates is relatively low compared to theoretical 
work (Abrams and Ginzburg 2000). This can partly be 
explained by difficulties in measuring functional responses 
under field conditions. For instance, it is not clear which 
temporal, spatial and population/individual scales that are 
most relevant in order to test predator–prey theory. Accord-
ing to Holling’s first principles (Holling 1959a), the func-
tional response is the consumption rate of an individual 
predator measured over a short period of time and has an 
immediate effect on prey mortality. This is in contrast to 
the numerical response, which describe changes in natal-
ity and mortality rates—demographic processes that cause 
long-term effects in the predator and prey populations. The 
total effect of predation can be derived by multiplying the 
functional and numerical responses (Sinclair and Pech 
1996), but the logical inconsistency of combining pro-
cesses operating at different time scales has been pointed 
out (Inchausti and Ballesteros 2008; Oksanen et al. 1992). 
As a result, functional responses are often studied on the 
same temporal scale as predator population dynamics. An 
alternative to population-level functional responses is to 
study how individual predators or packs react to changes 
in prey density in their territories or home ranges. This 
approach is a closer approximation to underlying foraging 
theories and is likely to offer better mechanistic explana-
tions and understanding of foraging decisions, but has only 
rarely been adopted for field studies (e.g. Jost et al. 2005; 
Koivunen et al. 1996; Moleón et al. 2012).

Further, the focus of many empirical studies has been 
on a single resource species, or similar resource species 
treated collectively as a functional group. But predators are 
often selective in their prey choice and kill some prey spe-
cies disproportionately more often in relation to their abun-
dance. Such prey selection can have effects on functional 
responses in multi-prey systems (Fryxell and Lundberg 
1998; Messier 1995) and may also contribute to commu-
nity dynamics. In multi-prey communities, predation pat-
terns are therefore not only shaped by absolute prey densi-
ties, but also by relative densities of different prey, which 
may lead to switching behaviour (Murdoch 1969). The 
classic case is “positive switching” in which the predator 
directs disproportionately more attention to the more abun-
dant prey—a behaviour that will have a stabilising impact 
on community dynamics (Oaten and Murdoch 1975). The 
opposite pattern, termed “negative switching” (Chesson 
1984), has received less attention but is not uncommon 
(Rindorf et al. 2006), and increases the probability of local 
extinctions of rare prey. But although the concepts of dif-
ferent functional response types and switching are related, 
there is no generally applicable link or theoretical frame-
work between them (Asseburg 2006).

A prerequisite for estimation of functional responses is 
that prey density is highly variable. This is a characteristic 

feature of Arctic and boreal communities where many her-
bivores show fluctuations in population size with ampli-
tudes ranging over several orders of magnitude (e.g. Krebs 
and Myers 1974; Stenseth and Ims 1993). These herbivores 
and their predators are therefore promising study systems 
(Boutin 1995). In northern Europe, interactions between 
predators and Microtus and Myodes voles have received 
particular attention (reviewed by Hanski et al. 2001; Hent-
tonen and Hanski 2000). Population dynamics of voles in 
this region are primarily influenced by interactions between 
Microtus voles and mustelids Mustela spp. (Henttonen 
et  al. 1987; Turchin and Hanski 1997), but there is also 
an important multi-species component involving Myodes 
voles and a guild of various rodent predators, both avian 
and mammalian (Korpimäki et al. 2002). Indeed, modelling 
suggests that differential prey vulnerability and species-
specific functional responses are necessary to explain the 
complex community dynamics of boreal voles (Hanski and 
Henttonen 1996). These results can be extended to the Fen-
noscandian mountain region, where the rodent community 
is similar to the well-studied community in the boreal zone, 
but with different species involved. The key species in the 
mountain birch forest is the grey-sided vole Myodes rufo-
canus (Sundevall, 1846), whereas the Norwegian lemming 
(Lemmus lemmus L., 1758) is the most important species in 
mountain tundra (Henttonen and Wallgren 2001; Ims and 
Fuglei 2005). Population dynamics of the grey-sided vole 
are more likely to be caused by predator–prey interactions 
(Hansen et al. 1999; Turchin et al. 2000), whereas lemming 
dynamics are more consistent with a lemming–vegetation 
interaction in northernmost Fennoscandia (Oksanen et  al. 
2008). It has been proposed that the Norwegian lemming 
is a less suitable prey than voles (Hagen 1952; Taitt 1993), 
a suggestion that has received some experimental support 
(Andersson 1976; Barth et  al. 2000). However, empirical 
studies describing functional responses and prey preference 
regarding grey-sided voles and Norwegian lemmings are, 
to our knowledge, lacking.

In this study, we studied interactions between a migra-
tory avian predator, the rough-legged buzzard (Buteo lago-
pus Pontoppidan, 1763), and the key rodents in the Fennos-
candian subarctic region, Norwegian lemmings, grey-sided 
voles, and field voles (Microtus agrestis L., 1761). We 
investigated prey density, diet choice and prey selection in 
separate territories of rough-legged buzzards within a sin-
gle breeding season characterised by peak rodent densities, 
using a breeding pair as our focal unit. Our objectives are to 
investigate predation patterns of buzzards by (1) modelling 
prey-dependent functional responses, (2) analyse whether 
the buzzards exhibited different functional responses to 
each prey species, and (3) whether relative prey densities 
was related to prey selection, or whether non-random prey 
selection causes prey switching.
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Materials and methods

Study area

This study was conducted in Stora Sjöfallet National Park 
with surroundings in NW Sweden (67°45′N, 17°30′E). The 
study area encompassed 150 km2 of subarctic environment. 
The northern part of the study area comprised the alpine 
heaths surrounding the lakes Autajaure and Sitasjaure (alti-
tudes ranging from 600 to 1,000 m a.s.l.). The vegetation 
was dominated by fresh and dry heaths, with mostly dwarf 
birch (Betula nana L., 1753), crowberry (Empetrum her-
maphroditum Hagerup, 1927) and bilberry (Vaccinium myr-
tillus L., 1753). The southern part represented lower alti-
tudes (450–700  m  a.s.l.) along the northern shore of lake 
Akkajaure, where the main vegetation was moderately pro-
ductive mountain birch (Betula pubescens ssp. czerepanovii 
Orlova, 1791) woodland.

Rough‑legged buzzard monitoring

The rough-legged buzzard has a circumpolar distribution 
in the northern hemisphere (Hagemeijer and Blair 1997), 
and breeds in mountain regions, boreal taiga and on arctic 
tundra (Cramp and Simmons 1980). In peak rodent years, 
it is the most abundant avian predator in the Fennoscan-
dian mountains, particularly in the transition zone between 
mountain birch forests and alpine tundra, where the nest 
usually is built on a cliff ledge. The rough-legged buzzard 
is widely considered as a specialist predator and shows 
strong aggregative and reproductive responses to fluc-
tuations in small mammal populations (e.g. Hagen 1969; 
Potapov 1997; Sundell et al. 2004). Our study was part of 
a long-term study on raptors and owls in Stora Sjöfallet 
National Park, where the rough-legged buzzard population 
closely tracks the rodent cycle. The numerical response of 
the rough-legged buzzard at our study site is illustrated in 
Fig. 1, showing that density of breeding pairs was almost 
perfectly correlated with rodent density during 2001–2006.

The present study was conducted in a single year, 2001. 
Field surveys started in May 2001 shortly after the rough-
legged buzzards had arrived in the study area. Of 32 occu-
pied nesting territories, 9 were included in this study, rep-
resenting breeders both on alpine heath (n = 4) and in the 
adjacent birch forest (n  =  5). Occupied territories were 
visited 1–3 times during the summer to obtain data on 
brood size. Sampling from two habitat types was necessary 
for covering an adequate range of densities for functional 
response estimation. Territories included in this study were 
selected because adult hunting areas and roosting sites were 
observable (and not overlapping between territories) and 
partly also by topographic constraints (territories in boul-
der fields, steep slopes and on the border between the birch 

forest and heath habitats were not included). The minimum 
distance between two nest sites included in this study was 
1.3 km (mean ± S.E. 4.6 ± 1.8).

Rodent monitoring

We used the trapping protocol described by Krebs et  al. 
(2002) to estimate density of rodent populations within 
buzzard territories. Two parallel snap-trap lines separated 
by 100  m were set out 300–500  m from the nest during 
the late nestling period of the buzzards in the period 14–27 
July 2001. Each trap line had 20 stations placed at 15-m 
intervals. A small flag was placed at the centre of each sta-
tion, and three traps were evenly distributed at a distance of 
1–2  m from the flag. Traps were set for 48  h per territory 
and checked four times at 12-h intervals. We used peanut 
butter and raisins as bait. The trapping effort was 240 trap-
nights per territory, and we used the number of captured 
individuals of each species per 100 trap-nights as an index of 
rodent density. The species-specific indices were calculated 
as 100 × number of captures/corrected effort. We took non-
availability of sprung traps into account by calculating the 
corrected effort as (modified from Nelson and Clark 1973):

which in our case meant that we subtracted 0.25 from the 
total effort for each trap sprung (sprung traps included all 
captures of all species as well as trap errors).

The rough-legged buzzards perched in top of trees or 
hovered while hunting, which allowed us to observe where 
each individual hunted. Consequently, the trap lines were 
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Fig. 1   Fluctuations in small mammal abundance (open circles, 
dashed lines, right y-axis) and the numerical response of rough-leg-
ged buzzards (Buteo lagopus) (filled circles, solid lines, left y-axis) 
to small mammals at Stora Sjöfallet National Park in northern Swe-
den 2001–2006. Rodent abundance was estimated by snap trapping, 
index values are presented as number of captures per 100 units of 
effort (trap days). Number of pairs that laid at least one egg were 
included in the rough-legged buzzard variable, density of breeding 
pairs expressed as the number of breeding pairs/10 km2
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placed in the most frequently used hunting areas of each 
territory. Our rodent monitoring methods have been evalu-
ated by an ethical commitee and are licensed by the Swed-
ish Board of Agriculture.

We have no information from our study are regarding 
rodent abundance prior to 2001. But according to other 
monitoring studies in northern Fennoscandia, 2001 was a 
peak year for lemmings and voles at several sites (Kilpis-
järvi, Cornulier et al. 2013; Ammarnäs and Stora Sjöfallet, 
Ecke et  al. 2010; Sarek/Padjelanta, Nyström et  al. 2006; 
Abisko and Vassijaure, Olofsson et al. 2009).

Diet composition

Diet composition was studied by analysis of regurgitated 
pellets and prey remains collected at nests and roost sites. 
Pellets of adult buzzards were collected at roosts and 
perches. Pellets from nestlings accumulated in and below 
the nest and were collected after the brood had fledged. 
Small mammals (voles, lemmings and shrews) were identi-
fied to species by molar teeth patterns or characteristic fur 
(Niethammer and Krapp 1982). The minimum number of 
ingested mammalian prey was estimated by counting the 
number of unique molar teeth in each pellet. Bird remains 
were identified to taxonomic order by using the keys of 
Brom (1986) and Day (1966). If a pellet contained only 
fur or feathers, it was assumed that one prey specimen had 
been ingested. Totals of each prey type were converted to 
biomass using mean values from all trapping sessions for 
rodents (grey-sided vole: 31.5 g; Northern-red backed vole, 
Myodes rutilus Pallas, 1779: 30.0 g; field vole: 31.3 g; Nor-
wegian lemming: 48.6  g) and literature values for other 
mammals (Siivonen 1976) and birds (Huhtala et al. 1996; 
Pasanen and Sulkava 1971). Adult buzzards do not process 
small rodent prey before delivery at the nest (Hellström, 
unpublished data), a behaviour that is common in some rap-
tor species (Korpimäki et al. 1994 and references therein). 
Therefore, our comparisons of adult and juvenile diets are 
not confounded by pre-delivery prey processing by adults.

Estimation of consumption rates

We estimated kill rates based on the combined adult and 
nestling diets. The number (NP) of grey-sided voles, field 
voles and lemmings killed by each rough-legged buzzard 
pair per day during the nestling period was calculated in 
accordance with Lindén and Wikman (1983), a formula 
that is widely used in the raptor literature:

where DER is the daily energy requirements (average 
food intake in grams per day) of adults and nestlings, 

(2)NPi =

(

2 × DERadults + Brood size×DERnestlings

)

× PPi

MMPi

respectively, and brood size is the number of fledged nest-
lings. PP is the proportion of the prey type (by biomass) 
in the diet of each buzzard pair and MMP is the mean 
mass (g) of a single prey item of species i. Daily energy 
requirements (DER) of rough-legged buzzards have been 
estimated in previous studies (Pasanen and Sulkava 1971; 
Potapov 1993; Reid et al. 1997). These three studies have 
found DER to be in the range 100–140 g/day under condi-
tions with no food stress, with high agreement across stud-
ies. For adults, we therefore used DER = 110 g/day (aver-
age of estimates for males and females in the detailed study 
on energy budget in Potapov 1993, sect. 10.2), and for 
nestlings DER  =  140  g/day (averaged from Pasanen and 
Sulkava 1971, sect. VII; Potapov 1993, fig. 9.25).

Prey selection and switching

We calculated two measures of prey selection or preference at 
both population and pair level—selection ratios (Manly et al. 
2002) and standardised selection ratios. Selection indices are 
often referred to as preference indices. For our purposes, pref-
erence means any deviation from random use of prey, and 
thus not necessarily an active choice made by the predator.

Selection ratios are calculated as ri/ni, where ri =  pro-
portion of species i in the diet and ni = proportion of prey 
i available in the environment. Selection ratios from 0 to 
1 reflect avoidance, and ratios from 1 to infinity relative 
over-representation or preference. Selection ratios can be 
standardised so that values range from 0 to 1 (and sum to 1)  
according to:

Standardised selection ratios are equivalent to Manly’s 
alpha index (Chesson 1978; Manly et  al. 1972), and esti-
mates the probability that the next prey item will be of class 
i if it were possible to make all resources equally available 
(Manly et al. 2002, p. 51). In the null case of no selective 
feeding, αi = 1/m, where m is the number of possible prey 
types. αi > 1/m indicates preference.

Switching behaviour was evaluated with a graphical 
approach (Murdoch 1969; O’Donoghue et  al. 1998) by 
comparing the percent of a given prey species in the diet 
with its relative availability. The null hypothesis is that the 
relative availability should fall on a line with unit slope, but 
at strong preference the null hypothesis is a curve (convex 
for preferred prey and concave for non-preferred prey; see 
Murdoch and Oaten 1975). If points fall below the null-
hypothesis curve at low relative densities, and above the 
curve at high relative densities, this is taken as evidence for 
positive switching (Oksanen et  al. 2001), while the oppo-
site pattern indicates negative switching.

(3)αi = ri

/

ni ×

1
∑m

j=1 rj

/

nj
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Statistical analyses

Diet composition was modelled with multinomial logit 
models (Venables and Ripley 2002), where the response 
matrix comprised counts of grey-sided voles, lemmings, 
field voles and birds in pellets. Habitat (birch forest or tun-
dra heath) and age (nestling or adult) were included as pre-
dictor variables. Multinomial models were fitted with the 
multinom function in the nnet R-package (v.7.3-7; Vena-
bles and Ripley 2002). Territory A was excluded from this 
analysis, since diet data for adults could not be obtained as 
pellets were deposited on inaccessible cliff roosts.

Analyses of prey selection ratios and standardised selec-
tion ratios were calculated in accordance with Manly et al. 
(2002). Since prey availability and consumption was meas-
ured separately for each rough-legged buzzard pair, our 
study was of the design III sampling protocol (see chap. 
4 in Manly et  al. 2002). Selection ratios and associated 
standard errors were calculated with the widesIII-function 
in the R-package adehabitatHS (v.0.3.8; Calenge 2006), by 
assuming that proportions of each prey type available were 
estimated (and not accurately known). The null-hypothe-
sis curve for prey switching was calculated following the 
approach by O’Donoghue et al. (1998).

Prey-dependent functional responses were modelled as 
Holling’s functional responses (hyperbolic type II and two 
versions of the sigmoid type III), Lotka-Volterra (linear 
type I without intercept) and as constant (null model, type 
0). We investigated three different sets of hypotheses: (1) 
no difference in the functional response to different prey 
species, (2) the functional response differs between species, 
but the type is similar for all prey species, and (3) the func-
tional response differs between species and the predator 
shows different (non-linear) types of responses to different 
prey species.

Nonlinear functional responses were modelled as:

where subscripts denote observation i of prey species j (in 
our analysis, j had two levels, 1 = lemmings and 2 = grey-
sided voles) and x is prey density. We used calculated kill 
rates and % of prey biomass as the response variable y in sep-
arate analyses. Equation 4 belongs to the family of Michae-
lis–Menten equations, and can be re-parameterised to Hol-
ling’s original notation (Real 1977). Parameter a represents 
the asymptotic kill rate, and b (the half-saturation constant) 
is the prey density at half the maximum kill rate a. θ con-
trols the shape of the curve (concave down or sigmoid). The 
type II response was obtained by setting θ = 1. If θ = 2, we 
obtain the most commonly used (sigmoid) type III response 
(hereafter referred to as type IIIa). The phenomenological 

(4)yij = N





aj × x
θj

ij

b
θj

j + x
θj

ij

, σ 2
j





form of the type III response (hereafter type IIIb), where θ 
is an estimated parameter was also modelled. Hypothesis 
1 (a single curve describes the functional response to both 
species) was evaluated by dropping the subscripts j in Eq. 4. 
Hypothesis 2 corresponded to fixing the parameter θ to the 
same value for both prey species for type II (θj = 1) and IIIa 
(θj = 2) responses, while having no constraints on θj for type 
IIIb. Finally, different response types (hypothesis 3) to dif-
ferent prey species was evaluated by fixing θj at a particular 
value (1 or 2) for at least one prey species and not allowing 
θ1 = θ2. The linear type I functional response was described 
as yij = N

(

aj × xij, σ
2
j

)

 where a equals search rate, and the 
constant null model as yij = N

(

µj, σ
2
j

)

.
From our set of hypotheses, we constructed 14 candidate 

models (Table 1). The functional response models were fit-
ted to the data with (nonlinear) generalised least squares 
(Pinheiro and Bates 2000) by using the gnls-function in the 
R-package nmle (Pinheiro et  al. 2013). In all models, the 
variance was estimated separately for each prey species.

Territory I was excluded from analyses of prey selection 
ratios and the functional response to lemmings, as we could 
not estimate lemming density in this territory. The hunting 
territory of the male in this pair was divided between a high 
ridge, where lemmings were abundant, and the adjacent 
birch forest (grey-sided vole habitat). Trap lines could only 
be placed in the birch forest due to the impassable terrain, 
and lemming density was consequently underestimated. 
This territory was included in the analyses of functional 
responses to grey-sided voles, as both adults were observed 
to frequently catch this species in the area where our traps 
were set.

The information-theoretic approach (Burnham and 
Anderson 2002) was used to select the best model among 
candidate models, defined as the model with the lowest 
information criteria, in this case AICC (Akaike’s Informa-
tion Criterion corrected for small sample size). All statis-
tical analyses were performed in R 3.0.2 (R Development 
Core Team 2013).

Results

Rodent density

The population estimates of the four arvicoline rodent 
species in the study area (grey-sided vole, Northern red-
backed vole, field vole and Norwegian lemming) indicated 
a high degree of both intra- and interspecific spatial varia-
tion in density within the same summer season. The most 
abundant species, the grey-sided vole, was trapped in all 
territories, but density estimates decreased along the pro-
ductivity gradient from birch forest to heath vegetation. 
There was a 41-fold difference in density between highest 
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and lowest density estimates. Lemmings were trapped in all 
territories except one, but showed less intraspecific varia-
tion in density (a 14-fold difference) than grey-sided voles. 
Highest lemming indices were obtained above the tree line, 
particularly in high-altitude territories dominated by fresh 
heath vegetation. Field voles and Northern red-backed 
voles showed a patchy distribution pattern. High densities 
of field voles were recorded in two territories in a mosaic 
landscape with a high proportion of dry fens and low herb 
meadows. The Northern red-backed vole was restricted to 
low altitudes in the birch forest, and occurred at very low 
densities.

Diet composition

A total of 959 prey items were identified from 505 pellets 
and occasional larger prey remains. The dietary analysis 
confirmed that the rough-legged buzzard relied heavily on 
small mammalian prey, as rodents constituted 79–98 % of 
all prey items and 69–98  % of prey in terms of biomass. 
Overall, lemmings (41  %) and grey-sided voles (36  %) 
constituted three-quarters of biomass intake on a popu-
lation level. An additional 11 % of the diet was made up 
by field voles. The remaining proportion of the diet was 
shared between other small mammals (0.2  %) and birds 
(13 %). Diet composition (in terms of proportion of all prey 

items) was best explained by an interaction between habitat 
(birch forest or tundra heath) and age of bird (nestling or 
adult) (Fig. 2), as this model (AICC = 1,814.55, K = 12, 
weight  =  0.65) was (weakly) supported over the model 
with additive effects of habitat and age (AICC = 1,815.55, 
K = 9, weight = 0.35). Remaining models including only 
age or habitat as predictors had very low AICc-weights 
(<0.0001). As expected, based on the distribution pattern 
of prey species, grey-sided voles were more common in 
the diet in the birch forest than in tundra heath, while the 
opposite was observed for lemmings, field voles and birds. 
Further, in both habitats, adults had a higher proportion of 
lemmings and field voles in the diet than nestlings, while 
nestling diet comprised a larger share of grey-sided voles 
and birds (Fig.  2). The interaction effect between habitat 
and age was likely caused by the larger difference between 
the proportion of birds in nestling and adult diets in the 
heath habitat than in the birch forest habitat (Fig. 2).

Functional response

The rough-legged buzzards exhibited strong functional 
responses to both grey-sided voles and lemmings (Fig. 3). 
They also responded functionally to field voles (not shown), 
but since we only have two estimates of field vole density 
>0, the shape of this response could not be analysed. We 

Table 1   Model-selection of functional responses to the data in Fig. 3

The nonlinear functional response model (Type II, IIIa, IIIb) was yij = N
(

aj × x
θj

ij /

(

b
θj

j + x
θj

ij

)

, σ 2
j

)

. Type I was modelled as 

yij = N
(

aj × xij , σ
2
j

)

 and Type 0 as yij = N
(

µj , σ
2
j

)

. j denotes prey species, 1 = lemmings and 2 = grey-sided voles. Set 1 contained models 
with shared parameters across prey species, while set 2 and 3 estimated species-specific responses. All responses were of the same type in set 
2, while set 3 evaluated responses of different types. Alternative models were defined by constraining parameters (see column Constraints). The 
model with the smallest AICC-value (Akaike’s information criterion, corrected for small sample size) had most support. LogL is the negative 
log-likelihood (NA indicates non-convergence), and K the number of estimated parameters (regression coefficients + 2 variance estimates). Δi is 
AICc for the model of interest − min(AICC). wi is the weight, or the relative likelihood

Set Type Parameters Constraints (a) Biomass (n = 17) (b) Kill rates (n = 17)

LogL K AICc Δt wi Rank LogL K AICc Δt wi Rank

1 0 μ −71.81 3 151.47 13.88 0.0005 11 −41.60 3 91.04 24.17 <0.0001 9

I a −73.93 3 155.71 18.12 0.0001 13 −44.65 3 97.15 30.28 <0.0001 11

II a, b θ = 1 −69.01 4 149.36 11.78 0.0013 10 −34.14 4 79.61 12.74 0.0007 7

IIIa a, b θ = 2 −68.07 4 147.47 9.88 0.0033 7 −39.98 4 91.30 24.43 <0.0001 10

IIIb a, b, θ −66.86 5 149.17 11.59 0.0014 9 NA

2 0 μj −68.34 4 148.01 10.42 0.0025 8 −39.28 4 89.89 23.02 <0.0001 8

I aj −70.76 4 152.86 15.28 0.0002 12 −44.16 4 99.66 32.79 <0.0001 12

II aj, bj θ1 = θ2 = 1 −60.67 6 141.73 4.15 0.0586 5 −25.78 6 71.97 5.10 0.0331 5

IIIa aj, bj θ1 = θ2 = 2 −59.16 6 138.72 1.13 0.2648 2 −23.57 6 67.54 0.67 0.3030 2

IIIb aj, bj,θj NA NA

3 II & IIIa aj, bj θ1 = 1, θ2 = 2 −58.59 6 137.59 0.00 0.4662 1 −23.23 6 66.87 0.00 0.4242 1

II & IIIb aj, bj, θ2 θ1 = 1 −57.04 7 140.53 2.94 0.1070 3 −21.43 7 69.30 2.43 0.1256 3

IIIa & II aj, bj θ1 = 2, θ2 = 1 −61.23 6 142.86 5.28 0.0333 6 −26.12 6 72.64 5.77 0.0237 6

IIIa & IIIb aj, bj, θ2 θ1 = 2 −57.61 7 141.66 4.08 0.0608 4 −21.77 7 69.98 3.11 0.0897 4



1247Oecologia (2014) 174:1241–1254	

1 3

therefore focused on the functional response to grey-sided 
voles and lemmings.

Models with species-specific parameters were strongly 
supported over global models in which grey-sided voles 
and lemmings shared parameters. All five global models 
had Akaike-weights <0.001 (Set 1 in Table 1) and the spe-
cies-specific models thus received almost all support. Anal-
yses with different response variables (kill rates and % of 
prey biomass) gave very similar results regarding the over-
all shapes of the functional responses (Table 1). The high-
est ranked model contained a type IIIa response to grey-
sided voles and a type II response to lemmings. However, 
the model with type IIIa responses to both species received 

similar support (Table 1). The functional response to grey-
sided voles was weak at low densities and clearly sigmoid 
in shape. The inflection point of the type IIIa response 
to lemmings was at very low density. Such a functional 
response is density-dependent only over a narrow spectrum 
of low densities, and probably of limited importance in 
reality. The type II response was therefore the more likely 
predation pattern on lemmings.

For the analysis with kill rates as the response variable, 
both asymptotic kill rates and half-saturation constants dif-
fered between responses to grey-sided voles and lemmings. 
Asymptotic kill rate of grey-sided voles was 2.17 times 
greater than the corresponding asymptote for lemmings, 
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whereas the half-saturation constant for lemmings was 
13.94 times lower than the half-saturation constant in the 
response to grey-sided voles. The difference in the asymp-
tote of the functional response was not evident when % of 
prey biomass was analysed as the response variable (as the 
functional response leveled out at ~65 % for both species), 
but half-saturation constants differed in the same direction 
as for kill rates (ratio grey-sided voles/lemmings: 5.19). 
The two functional responses thus differed markedly in the 
rate of approach to the asymptote, which was expressed 
as a substantially steeper functional response to lemmings 
than to grey-sided voles (Fig. 3; Table 2).

Prey selection and switching

According to selection ratios, different rodent prey cat-
egories were not utilised in accordance with relative avail-
ability, neither on the population (Table  3) nor territory 
(Fig.  4) levels. On the population level, grey-sided voles 
occurred half as often in pellets compared to alterna-
tive prey (i.e. lemmings and field voles) as would be pre-
dicted from their relative abundance. Selection ratios for 
lemmings versus alternative prey (all vole species com-
bined) showed that lemmings were taken 1.7 times more 
often than suggested by relative availability. However, 
this pattern was not consistent at the individual (or pair) 
level. Analyses of data obtained from each pair showed 
that grey-sided voles were taken in proportion to rela-
tive abundance at low relative densities (Fig. 3a), but that 
standardised selection ratios declined with relative abun-
dance (GLM, Gaussian error structure with logit-link: 
logit(selection ratio) = −0.26 − 1.58x, analysis of devi-
ance χ1

2  =  0.08, p  =  0.0009). At low relative densities, 
lemmings were apparently more vulnerable to predation 
than grey-sided voles (Fig. 3b), but as for grey-sided voles, 
standardised selection ratios for lemmings declined as rela-
tive density increased [GLM, Gaussian error structure with 
logit-link: logit(selection ratio) =  1.55 −  2.90 x, analysis 
of deviance χ1

2 = 0.28, p < 0.0001]. The graphical analy-
sis presented in Fig. 4 indicated that the predation patterns 
on grey-sided voles and lemmings were not consistent with 
positive switching, but rather with negative switching.

Discussion

In this study, we demonstrated that an avian predator, 
the rough-legged buzzard, showed different functional 
responses to its two most important prey species, Norwe-
gian lemmings and grey-sided voles. The response curve 
to lemmings was noticeably steeper at low-to-intermediate 
prey densities than the response to grey-sided voles. The 
rough-legged buzzard can thus be categorised as a rodent 

specialist with an opportunistic foraging strategy, which 
has also been observed in Siberian rough-legged buzzards 
(Wiklund et al. 1998). But we also observed that grey-sided 
voles and lemmings were not preyed upon according to rel-
ative abundance, and further that diet composition differed 
between adults and nestlings.

We analysed functional responses to spatial heteroge-
neity in prey densities, rather than to temporal variation. 
Spatial within-year heterogeneity of rodents is common in 
taiga and tundra landscapes of Fennoscandia, and is related 
to productivity patterns and habitat preferences of differ-
ent rodent species (Oksanen and Henttonen 1996; Oksanen 
et al. 1999). Thus, this high degree of within-year variation 
was not a consequence of our sampling protocol and selec-
tion of specific predator territories, and long-term studies in 
our study area have shown that the habitat-related pattern 
of vole and lemming abundance observed here was con-
sistent over three cycles from 2001 to 2011 (Taylor 2009; 
Hellström, unpublished data). We assumed that density 
indices obtained by snap-trapping was highly correlated 
and linearly related to true densities, a suggestion sup-
ported by previous studies on Myodes and Lemmus species 
(Gruyer et al. 2008; Hanski et al. 1994). However, the rela-
tionship between snap-trap indices and density estimates 
might differ depending on species and habitats (e.g. Øvre-
jorde 2007), which can potentially bias calculations of par-
ticularly prey preference. But various removal estimators 
(White et al. 1982) applied to snap-trapping data for lem-
mings and grey-sided voles in our study area yield abun-
dance estimates that are linearly related to density indices 
and further do not support a species-dependent relation 
between snap-trap indices and abundance estimates (Hell-
ström and Angerbjörn, unpublished data). Current data 
therefore indicate that removal trapping using snap-traps 
reflects true abundance (both absolute and relative) without 
major biases and differences between species.

Table 2   Parameter estimates from the most supported functional 
response models (selected as the model with smallest AICC value in 
Table 2)

Parameter names refer to Eq. 4

Response 
variable

Model Parameter Estimate SE 95 % CI

Biomass Table 1a, II 
and IIIa

alemming 69.37 12.55 42.25–96.48

blemming 2.93 1.47 −0.26–6.11

avole 64.38 6.71 49.89–78.87

bvole 15.21 3.08 8.55–21.87

Kill rate Table 1b, II 
and IIIa

alemming 7.80 0.55 6.61–8.99

blemming 1.16 0.35 0.41–1.92

avole 16.94 1.77 13.11–20.76

bvole 16.21 3.17 9.37–23.05
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Scaling issues and functional responses

It is necessary to test predictions from foraging theory 
using various observational scales. Arditi and Ginzburg 
(1989) suggested that functional responses should be stud-
ied on the same temporal scale as population dynamics (i.e. 
numerical responses), otherwise predator–prey models are 
contradictory due to the combination of fast and slow pro-
cesses. This is in contrast to mechanistic explanations for 
the functional response, which was derived from behav-
iours of individual predators (Holling 1959a, b). Popula-
tion level responses are indeed the cumulative effects of 
individual responses occurring on a behavioural time scale, 
and both the population and individual level approaches are 
thus necessary for finding scale-independent features of 
predation. Researchers concerned with regulation of prey 
populations have primarily adopted the population scale 

approach, usually by averaging kill rates and prey density 
within a breeding interval and then repeating the sampling 
over several seasons (Abrams 1994). But the variation in 
both predator and prey behaviour would be lost by such 
averaging of important parameters, and can lead to unex-
pected results (Chesson 1984). Instead, the “individual 
scale approach” allows for a detailed study of how individ-
uals vary in their response to prey density.

Patterns detected on longer time scales may further be 
obscured by changes in densities of other species other than 
the focal predator–prey unit. For instance, the rough-legged 
buzzard responds numerically mainly to vole fluctuations, 
and lemmings are not a pre-requisite for successful breed-
ing (Hellström 2007). Although vole and lemming cycles 
are generally tightly coupled, lemmings repeatedly fail to 
reach peak densities when voles do (Henttonen and Kai-
kusalo 1993). It is possible that the functional response to 

Table 3   Selection ratios and standardised selection ratios for grey-sided voles versus alternative prey and for lemmings versus alternative prey

Selection ratios are calculated at the population level, standard errors and confidence intervals refer to estimates of selection ratios. Standardised 
selection ratios (equivalent to Manly’s alpha) are shown for comparison. Differences between selection ratios are also presented. Confidence 
intervals around the differences do not include zero, and therefore show that different rodent prey were not preyed upon in direct relation to rela-
tive availability
a A lternative = lemming + field vole
b A lternative = vole = grey-sided vole + field vole

Comparison Prey category Selection  
ratio

Stand.  
selection ratio

SE 95 % CI Diff. selection  
ratio

95 % CI Diff. 
selection ratio

Grey-sided vole  
vs. Alt.a

Grey-sided voles 0.71 0.32 0.05 0.61–0.82 −0.80 −0.70 to −0.88

Alternative 1.51 0.68 0.25 0.96–2.06

Lemming vs. Alt.b Lemmings 1.44 0.63 0.38 0.59–2.29 0.59 0.42–0.77

Alternative 0.84 0.37 0.05 0.73–0.96
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grey-sided voles would shift from a type III curve in simul-
taneous lemming and vole peaks to a steep type II function 
in years when only voles peak. Such context-dependent 
responses could have interesting consequences on popula-
tion dynamics, but have so far largely been over-looked.

Time-scale averaging of functional responses further 
excludes the possibility to take spatial variation in predation 
pressure into account, a factor that is often ignored in inves-
tigations of predator–prey systems, but might be an impor-
tant component of vole and lemming dynamics (Ekerholm 
et al. 2001). Oksanen et al. (1999) found that the dynam-
ics of tundra-living grey-sided voles were characterised 
by dynamics with more truncated peaks than grey-sided 
vole dynamics in more productive patches. The functional 
response of buzzards to grey-sided vole is one plausible 
explanation to this pattern, as the type III response indicates 
that buzzard functional response can be density-dependent 
at low densities (i.e. on tundra heath vegetation), and hence 
could dampen population peak densities in less preferred 
habitats of grey-sided voles. In birch forests, where grey-
sided voles are highly abundant, per capita rates of preda-
tion pressure from buzzards on grey-sided voles were likely 
less important as the functional response reached saturation 
level at intermediate densities. Predation on lemmings fol-
lowed a different pattern, and was characterised by negative 
switching where the proportion of lemmings in the diet of 
buzzards were higher than expected at low relative abun-
dance and lower than expected in mountain tundra heaths 
where lemmings are the dominant prey. Low absolute and 
relative densities of lemmings largely coincided with pro-
ductive patches such as birch forest or grasslands. Oksanen 
(1993) suggested that lemmings could not establish popula-
tions in forested areas due to apparent competition medi-
ated by least weasel (Mustela nivalis) predation, a hypothe-
sis that can be refined to also include avian predators given 
the negative switching by buzzards presented here (but see 
Ims et  al. 2011 for an alternative hypothesis). Negative 
switching is likely to have a destabilising impact on com-
munity dynamics (Chesson 1984) and has been observed 
in other raptors (e.g. Palma et al. 2006). There are several 
proposed explanations for negative switching, includ-
ing confusion of predator’s search by more abundant (and 
less preferred) prey (Kean-Howie et  al. 1988), changes in 
behaviour under high predation risk (Abrams and Matsuda 
1993), differences in nutritional status between prey types 
(Abrams 1987), and a need for information-sampling of 
the availability of different prey types. In relation to forag-
ing theory, negative switching does not support the classic 
energy-maximising model (i.e. optimal diet or contingency 
models; Fryxell and Lundberg 1998; Stephens and Krebs 
1986), but the observed dietary conservatism instead sup-
ports the balanced diet hypothesis. In terms of raw energy 
content, the larger lemmings are more profitable prey, and 

energy-maximising models would predict that buzzards 
should ignore other prey types at high lemming densities, 
but we instead found that voles comprised a large share of 
the diet even at the highest lemming densities. For a full 
evaluation of contrasting hypotheses, we would however 
need to obtain direct estimates of handling times of lem-
mings and voles, as measures of profitability should also 
take species-specific handling time into account. Balanced 
diets are typically attributed to herbivores as plants often 
differ in chemical composition. Carnivores, on the other 
hand, mostly feed on prey species with similar nutrient 
and chemical composition, but a difference between voles 
and lemmings in this aspect has long been discussed (see 
below).

Prey selection and provisioning

Our study contrasts with the common view that lemmings 
are inferior prey, a viewpoint largely based on Hagen’s large 
collection of prey items (Hagen 1952) that has been repeat-
edly cited in the literature (e.g. Framstad et al. 1997). On a 
population level, lemmings were captured more often than 
expected based on relative availability, whereas voles were 
underrepresented in buzzard diet. Hagen (1952, pp. 539–
540) reported that lemmings were a surprisingly rare prey 
in his studies of the diets of raptors and owls in Norway, and 
further that lemmings were frequently regurgitated by rap-
tors only partially digested. Taitt (1993) suggested that lem-
mings might be distasteful because of substances emitted by 
their dorsal skin glands (Wallin 1967). There are, however, 
other alternate explanations for why lemmings may be more 
vulnerable to predation than voles.

First, encounter rates with different prey depend on 
prey density and overlap in predator/prey habitat selec-
tion. Rough-legged buzzards mainly hunt in open areas 
or in patches with sparse vegetative cover (Sonerud 1986; 
Sylvén 1978), which is the typical habitat for lemmings 
during summer (Heske and Steen 1993). Grey-sided and 
field voles on the other hand mainly occupy habitats with 
a high proportion of shrub cover or boulder fields (Ham-
bäck et al. 1998; Johannesen and Mauritzen 1999; Magnus-
son et  al. 2013), where the risk of encounters with avian 
predators supposedly is lower. Several studies of selective 
predation by birds of prey have demonstrated that a prefer-
ence for a prey type can be explained by coincident habi-
tat choice, both in space and time, of the predator and its 
preferred prey (e.g. Dickman 1992; Dickman et  al. 1991; 
Norrdahl and Korpimäki 1993; Rohner and Krebs 1996). It 
is also possible that predators detect lemmings more easily 
than voles in most habitats. Lemmings, in their “bright yel-
low, reddish brown, white and contrasting jet black hues” 
(Andersson 1976) are certainly more conspicuous than both 
grey-sided and field voles, whose pelage is reddish brown.
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Second, rodent-eating avian predators seem to attack 
different prey species in proportion to their relative densi-
ties (Hakkarainen et  al. 1992; Nishimura and Abe 1988; 
Temple 1987), rather than actively select to attack or ignore 
certain prey types. Prey utilisation patterns therefore seem 
to be also governed by differences in capture success 
between prey types. Lemmings are larger and much slower 
than voles (Oksanen 1993), which suggests that lemmings 
are easier to catch. Lemmings are also known for their 
aggressive anti-predator behaviour (Koponen et  al. 1961) 
and often try to ward off predators (Myllymäki et al. 1962), 
a tactic that can be successful at least against long-tailed 
skuas (Stercorarius longicaudus Viellot, 1819) (Anders-
son 1976). Voles have adopted another behaviour by out-
right fleeing when approached by a predator (Sundell and 
Ylönen 2008), a strategy that is less likely to result in being 
captured (Shifferman and Eilam 2004).

The overall higher vulnerability of lemmings is thus 
probably a result of a high encounter rate due to similar 
habitat choice and high capture success due to their slower 
mobility and behaviour. The cause of selective predation 
on lemmings needs further investigation, but seems to lie 
with the prey rather than with the predator. Prey vulnerabil-
ity is also likely related to habitat, as we found that selec-
tion ratios were variable at the predator-pair level, with 
both grey-sided voles and lemmings having lower selection 
ratios in their respective favoured habitat. The cause for 
this shift in vulnerability warrants further study, but can be 
caused by intra-specific processes and unfamiliarity with a 
non-preferred habitat, but also by competitive interactions 
between lemmings and voles where the inferior competitor 
is forced the occupy patches with high predation risk.

It is important to note that the functional responses 
and prey selection ratios would have been different if we 
had analysed pellets and prey remains collected only at 
nests, since there was a consistent difference between 
adult and nestling diets. For instance, lemmings occurred 
more frequently in the diet of adults, and predation rates 
on lemmings would have been biased low if the functional 
response analysis had been based only on nestling diet. 
Grey-sided voles were found more often in nestling diet, 
and this pattern does not support a load-size effect (Ori-
ans and Pearson 1979; Sonerud 1992), since the expected 
outcome under such a scenario is that lemmings should be 
more frequent in nestling pellets than voles. This difference 
in prey selection can be a consequence of differential patch 
use (Markman et  al. 2004) or foraging behaviour (e.g. 
Davoren and Burger 1999) during self-feeding and nest-
ling provisioning, tactics that can be explained by adap-
tive foraging (Ydenberg 2007). An alternate hypothesis not 
invoking adaptive behaviour is that nestling size and devel-
opment determine provisioning decisions and delivery of 
prey of different sizes to the nest. This is partly supported 

by direct observations of nestling feeding behaviour (Hell-
ström, unpublished data), as lemmings are frequently dif-
ficult to handle, process and swallow for nestlings until the 
very latest stage of the nestling period.

To conclude, there is a need for further theoretical and 
empirical work on community interactions with species-
specific or multi-species functional responses to different 
prey (Hanski and Henttonen 1996; Koen-Alonso 2007; 
Matthiopoulos et al. 2007; Sinclair et al. 1998). We advo-
cate that, in studies and analyses of the rodent community 
in subarctic Fennoscandia, species should be treated sepa-
rately and not as a collective unit, which has been a debated 
issue (see discussions in Falck et al. 1995; Turchin 2003). 
The novel approach adopted in this study also revealed 
that functional responses can vary depending on within-
year variation in the density of different prey species. An 
alternative individual-based approach in which processes 
occurring on different spatio-temporal scales are both cou-
pled and compared (e.g. Englund and Leonardsson 2008) 
therefore seems to be necessary to bridge the gap between 
theoretical and empirical studies of functional responses.
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