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Abstract Patterns of host–parasite association are poorly

understood in tropical forests. While we typically observe

only snapshots of the diverse assemblages and interactions

under variable conditions, there is a desire to make infer-

ences about prevalence and host-specificity patterns. We

studied the interaction of ticks with non-volant small

mammals in forests of Borneo. We inferred the probability

of species interactions from individual-level data in a

multi-level Bayesian model that incorporated environ-

mental covariates and advanced estimates for rarely

observed species through model averaging. We estimated

the likelihood of observing particular interaction frequen-

cies under field conditions and a scenario of exhaustive

sampling and examined the consequences for inferring host

specificity. We recorded a total of 13 different tick species

belonging to the five genera Amblyomma, Dermacentor,

Haemaphysalis, Ixodes, and Rhipicephalus from a total of

37 different host species (Rodentia, Scandentia, Carnivora,

Soricidae) on 237 out of 1,444 host individuals. Infestation

probabilities revealed most variation across host species

but less variation across tick species with three common rat

and two tree shrew species being most heavily infested.

Host species identity explained ca. 75 % of the variation in

infestation probability and another 8–10 % was explained

by local host abundance. Host traits and site-specific

attributes had little explanatory power. Host specificity was

estimated to be similarly low for all tick species, which

were all likely to infest 34–37 host species if exhaustively

sampled. By taking into consideration the hierarchical

organization of individual interactions that may take place

under variable conditions and that shape host–parasite

networks, we can discern uncertainty and sampling bias

from true interaction frequencies, whereas network attri-

butes derived from observed values may lead to highly

misleading results. Multi-level approaches may help to

move this field towards inferential approaches for under-

standing mechanisms that shape the strength and dynamics

in ecological networks.
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Introduction

The quantification of interactions between host and parasite

species, which is fundamental for understanding patterns of

host specificity and the dynamics of host–parasite associa-

tions, is often hindered by insufficient data (Anderson and

May 1991). The search for host–parasite associations might

be tedious, given generally low parasite prevalence and

infestation rates. Using ticks (Acari: Ixodidae), most of

which are not rigid host specialists especially in their

immature stages (Durden 2006) as an example, inferring

host specificity requires a large range of potential host

species to be considered in field sampling and analysis.

There is considerable uncertainty as to whether any absence

of observed tick–host interaction is a true lack of species

interaction or simply a matter of not having observed it due

to low prevalences or a small number of host individuals

being examined (Cumming 2004; Petney et al. 2007). In

fact, many tick species may readily switch between host

species if their availability changes (Klompen et al. 1996),

such as under variable forest and climate conditions. Any

concerns about altered host–parasite relationships therefore

need an accurate understanding of existing prevalence and

species interaction patterns as well as the conditions under

which host–parasite relationships may change (Krasnov

et al. 2007; LoGiudice et al. 2003). Inevitably, the intricate

nature of aspects such as species specificity and comple-

mentarity in interactions—be it host–parasite or any other

food web or mutualistic interaction—requires consideration

of community-level data for proper quantification, since

interactions between pairs of species are not independent of

other species in the same web (Colwell and Futuyma 1971;

Hurlbert 1978). The traditional characterization of host

specificity as the sole number of host species approached by

a parasite species, for instance, neglects bias by under-

sampling rare species or the functional and phylogenetic

relationship among members of the host community

(Mason et al. 2005; Poulin and Mouillot 2005).

Recently, ecological network approaches have been

increasingly used for investigating the interaction of species.

These techniques provide helpful frameworks for under-

standing central aspects of ecology, such as structural patterns

in food webs and the functional and complementary roles of

species in ecosystems (Bersier et al. 2002; Clauset et al. 2008).

Based on adjacency matrices that summarize the presence/

absence or frequency of observed interactions among species

pairs, however, measures of network attributes may be con-

founded when species detection and the observation of

interactions are less than perfect. In addition, infestation rates

and ‘zero-encounters’ of non-infested animals are also

meaningful parasitological data, but are only rarely consid-

ered in summarizing analyses at the community level. The

necessity to account for incomplete detection, sampling and

uncertainty in parameters has been well recognized in popu-

lation and community ecological studies (MacKenzie et al.

2002; Lande et al. 2003; Royle et al. 2005) and for estimating

diversity measures (Golicher et al. 2006) but less so in the

analysis of species interaction networks (Lafferty and Dunne

2010). Moreover, it has recently been emphasized that future

steps in the network analysis of ecological data need to

account for environmental variation (Blüthgen and Klein

2011; Olesen et al. 2008). The seminal illustration by Rob-

inson (2009) that the quantitative examination of ecological

relations at upper organizational levels of aggregated data

may lead to wrong conclusions and that individual-level data

are the key to understand upper-level patterns, however, has

been little considered in network analysis. In this study we

aimed to investigate the host–tick associations of small

mammal assemblages at the network level. In view of this aim,

we were interested in considering uncertainty in interaction

frequencies aggregated into adjacency matrices and how this

may bias any inference on derived indices of host specificity.

Most efforts in describing host–tick associations in Southeast

Asia to date were performed with a taxonomic background

(Petney et al. 2007). Consequently, there is considerable

uncertainty as to whether host–tick associations are suffi-

ciently well recorded, and whether the lack of host–tick

associations is simply a lack of records or a true absence of

interaction. Moreover, given the relatively low prevalence of

ticks on tropical vertebrates (Durden et al. 2008; Geevarghese

and Mishra 2011), detecting a larger range of host–tick

associations in the wild is only possible with intensive long-

term sampling, but such a sampling scheme would also be

more extensive, and so there are likely to be changes in

environmental conditions in time and space. Host availability,

for example, might change with overall forest conditions

(Wells et al. 2007a) or shifts in host abundance and space use

with seasonal resource availability, such as during fruiting

seasons (Adler 1998). If the individual foraging success of

ticks is influenced by environmental factors or host species

availability, then variability in the strength of interactions

between hosts and parasites at the community level is an

emergent consequence of the conditions under which indi-

vidual interactions take place and we expect such dynamics in

interactions to be confounded with host specificity. In this

study we illustrate how the application of a multi-level model

may overcome problems in the analysis of incompletely

sampled data such as in our study.

Materials and methods

Study sites, sampling and tick identification

Small mammals were live-captured at six different lowland

forest sites in Sabah, Borneo in an effort to understand the
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effects of forest logging on small mammal ecology (Wells

et al. 2007a): unlogged forest at Poring, Kinabalu National

Park (06�020N, 116�420E), Danum Valley Conservation

Area (4�570N 117�480E), Tawau Hills National Park

(04�230N, 117�530E); and logged forests at Luasong Field

Centre (4�360N, 117�230E), Kg. Monggis (06�130N,

116�450E), Kg. Tumbalang (06�080N, 116�530E). Each of

these study sites was sampled 3 times at equal intervals

throughout seasons and years between October 2002 and

November 2004. This resulted in a total trapping effort of

40,552 trap-nights in lowland forests. We further con-

ducted small mammal trapping in montane forests at

Mesilou, Mount Kinabalu (6�000N, 116�350E) and Mount

Alap, Crocker Range National Park (5�490N 116�200E) at

altitudes between 1,875 and 2,230 m a.s.l. with a minor

trapping effort of 966 trap nights, following a similar

handling protocol as in lowland forests (Wells et al. 2011).

All captured small mammals were lightly anaesthetized

with inhalation narcotics (diethylether or isoflurane/forene)

before being examined and marked before release at the

capture location (Wells et al. 2007a). All encountered ticks

were collected either from the container in which the animals

were handled or were removed with forceps from the body

and stored in 95 % ethanol for later identification in the

laboratory. Ticks were identified by L. A. D. and T. N. P.

based on available reference collections and various sources

of literature. Some larval ticks needed to be cleared in lac-

tophenol and slide-mounted in Hoyer’s medium in order to

adequately visualize morphological characters. We could

not identify immature stages of Dermacentor sp. ticks

because neither larvae nor nymphs of any of the four species

known to occur in Borneo (Dermacentor atrosignatus,

Dermacentor auratus, Dermacentor compactus, and Der-

macentor steini) have been described. Similarly, immature

stages have not been described for all of the species of

Haemaphysalis known to occur in Borneo and a few

immature specimens we collected that belong to this genus

did not match any published descriptions; these ticks are

listed as Haemaphysalis sp. 1 and sp. 2, respectively in

Table 1 and elsewhere. Voucher tick specimens from this

study are deposited in the Sabah Parks Museum in Sabah,

Malaysia, and the U.S. National Tick Collection at Georgia

Southern University, USA.

We characterized all small mammal species by taxo-

nomic family and order (Wilson and Reeder 2005). We

further categorized specific patterns of habitat use into

terrestrial, scansorial (with climbing activity to 5 m height

but species not known to occur in upper canopy levels), and

arboreal based on Wells et al. (2006) and personal obser-

vations. We categorized forest types into either old-growth

or logged for all lowland sites, or as montane old-growth

forests. Each sample was further described by sampling

month and year. We quantified local host abundance as the

number of individuals from the same species investigated

within the particular sampling session. Although this is a

rather coarse measure of host abundance, we expect this

measure, which is directly linked to capture success (i.e.

nearly all captured individuals were examined) to be a

Table 1 Tick species encountered on 37 different host species in rainforests of Sabah, Borneo

Species Sub-family No. of individuals

collected

No. of host

species observed

No. of estimated host

species out of 37 (CI)

Prostriata

Ixodes granulatus Ixodinae 80 (17 M, 62 F, 1 N) 9 36 (11–37)

Metastriata

Amblyomma testudinarium Amblyominae 24 (24 N) 7 37 (11–37)

Dermacentor sp. 1 Rhipicephalinae 140 (116 N, 24 L) 16 37 (11–37)

Dermacentor sp. 2 Rhipicephalinae 128 (121 N, 7 L) 12 34 (10–37)

Rhipicephalus haemaphysaloides Rhipicephalinae 2 (2 L) 2 36 (10–37)

Haemaphysalis bispinosa Haemaphysalinae 10 (4 N, 6 L) 3 35 (10–37)

Haemaphysalis cornigera Haemaphysalinae 96 (27 N, 69 L) 10 35 (8–37)

Haemaphysalis koningsbergeri Haemaphysalinae 1 (1 M) 1 34 (10–37)

Haemaphysalis papuana Haemaphysalinae 108 (93 N, 15 L) 13 36 (11–37)

Haemaphysalis semermis Haemaphysalinae 1 (1 N) 1 35 (8–37)

Haemaphysalis traguli Haemaphysalinae 1 (1 L) 1 34 (10–37)

Haemaphysalis sp. 1 Haemaphysalinae 3 (3 N) 2 35 (11–37)

Haemaphysalis sp. 2 Haemaphysalinae 3 (3 N) 2 37 (8–37)

Immature stages of two species of Dermacentor and two species of Haemaphysalis do not match any species for which larvae (L) and/or nymphs

(N) have been described but represent distinct morphotypes. The number of different stages [female (F), male (M), N, L] are given in
parentheses. CI Credible interval
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meaningful indicator of either true abundance or foraging

activity of small mammals: both of these factors add up to

the exposure of host species to ticks. As some spiny rats

(Maxomys rajah and Maxomys surifer) were not distin-

guishable from one another in the field, we added the

unidentified individuals proportionally to the number of

identified individuals of both species for sampling efforts.

These unidentified individuals were not infested by ticks

and were therefore excluded from observation data of host

tick associations.

In this study, we use the term ‘infestation probability’ as

the probability that a host individual is infested with a tick,

whereas we use ‘prevalence’ as a species-level attribute,

describing the proportion of host individuals from a pop-

ulation being infected with ticks.

Data analysis

Ecological network data typically consist of two sets of

interacting organisms such as hosts and parasites, flowering

plants and pollinators, or predators and prey, mostly linked

in bipartite relationships, and relational ties are mostly

summarized into adjacency matrices at the species-level

with a(i,j) given for each pair of interacting species i and j.

If a(i,j) is a quantitative measure of individual interactions

(i.e. total pair counts), these interactions may take place

under variable environmental conditions. Moreover, the

relative observation frequencies might be burdened by

uncertainty due to sampling efforts and the under-repre-

sentation of interactions observed for rare species.

With such a background in mind, we established a

hierarchical model that accounted for individual-level

variation in host–tick associations based on a logistic

regression and from which species-level inference can be

made. In an individual-level regression model, we assumed

the dyad-specific infestation probability of host individual

h with tick species j to be a function of tick species identity

given as a variable intercept l(j) and conditional on

covariates linked to six host traits (HT: host species iden-

tity, family, order, body weight, habitat use, local host

abundance) and four environmental attributes (ET: sam-

pling area, forest type, sampling year and month) such that

logitðWðh; jÞÞ ¼ lðjÞ þ
Xn¼6

x

axðjÞHTx þ
Xn¼4

y

byðjÞENVy:

ð1Þ

We linked the model of infestation probability w(h,j) to

our binary tick presence–absence data through a Bernoulli

distribution.

From this individual-level probability w(h,j), species-

level infestation probability can be modelled as an average

infestation probability U(i,j) as:

logitðUði; jÞÞ ¼ lðjÞ þ
Xn¼6

x

axðjÞmean(HTxðiÞÞx

þ
Xn¼4

y

byðjÞmeanðENVyÞ: ð2Þ

To allow the iterative computation to converge more

quickly (see Gelman and Hill 2007), we included

redundancy parameters for all multi-level parameter

estimates as given here for l(j):

lðjÞ� ¼ lðjÞ �mean
Xn

j¼1

lðjÞ
 !

: ð3Þ

The variance [termed hereafter ‘‘var()’’] allocated during

Markov chain Monte Carlo (MCMC) updates to each of the

different components in the individual-level regression

model can be calculated as the squared coefficient estimate

multiplied by the variance in the covariate for continuous

variables (e.g. varðaxðjÞÞ ¼ ax
2 � varðHTxÞ for HTx), for

categorical variables the finite sample variance was

calculated over redundancy parameters such as var(l(j)*).

Having estimated infestation probability U(i,j), we were

able to use this probability to directly calculate indices of

host specificity or to generate interaction matrices. We

estimated interaction frequency, F(i,j), between host spe-

cies i and tick species j from the infestation probability

U(i,j) as a binomial distribution process:

Fði; jÞ�BINðNðiÞ;Uði; jÞÞ ð4Þ

where N(i) is the number of trials, for which we used two

scenarios. The first used the number of host individuals

sampled in our field study, i.e. N(i) is the total abundance

of host species sampled (‘‘FieldScenario’’). The second

scenario assumed exhaustive and equal sampling of all host

species, and used N(i) = 1,000 trials in binomial distribu-

tions (‘‘ExhaustiveSample’’).

For calculating host specificity, we used a measure

derived from Rao’s quadratic entropy (Rao 1982) based on

specific infestation probabilities as:

QdðjÞ ¼
XN

i¼1

XN

s¼1

dði; sÞUði; jÞUðs; jÞ ð5Þ

where d(i,s) is the taxonomic distance between the two host

species i and s and where U(i,j) and U(s,j) are the infestation

probabilities of host species i and s with tick species j.

Taxonomic distance was simply based on the species’

genus, family and order identity, given as half the number of

nodes between pairs of species in the resulting taxonomic

tree, ranging between 0 and 4. This basic index combines

three important aspects of host specificity, namely the

number of utilized host species, their specific infestation

probability and the taxonomic range of host species utilized.
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Prevalence and infestation probability do not necessarily

correspond to host availability if it is assumed that spe-

cialized species use resources disproportionately more than

their availability (Feinsinger et al. 1981). In order to

account for overall host availability, we considered the

proportion of the total number of individuals from the

respective species examined as a coarse but meaningful

measure of its relative availability independent of tick

prevalence. For simplicity, we have chosen this coarse

measure of overall host availability, but local abundance

and overall host availability can also be modelled in a

hierarchical framework if accurate mark-recapture data are

available (Royle et al. 2005; Wenger and Freeman 2008).

We thus extended the aforementioned index to account for

overall host availability in a similar fashion as taxonomic

difference:

QdaðjÞ ¼
XN

i¼1

XN

s¼1

dði; sÞUði; jÞUðs; jÞ NðiÞ
NTOTAL

NðsÞ
NTOTAL

ð6Þ

and calculated a similar index without including taxonomic

distance as:

QaðjÞ ¼
XN

i¼1

XN

s¼1

Uði; jÞUðs; jÞ NðiÞ
NTOTAL

NðsÞ
NTOTAL

: ð7Þ

We calculated the ratio of the sum of indices to the sum

of weighting factors, to estimate the relative strength of

taxonomic distance and host availability (see Poulin and

Mouillot 2005) such as:

S:TDðjÞ ¼ QdaðjÞ
QaðjÞ ð8Þ

for an index that largely accounts for taxonomic distance

among hosts and

S:AVðjÞ ¼ QdaðjÞ
QdðjÞ ð9Þ

for an index that largely accounts for the contribution of

host availability to species specificity.

We further calculated the specialization index d0 based

on Kullback–Leibler distances (Blüthgen and Menzel

2006). We calculated this index for observed counts as well

as for random draws from the two scenarios (FieldSce-

nario, ExhaustiveSample). We calculated network indices

for interaction networks from the entire data set regardless

of forest type, as the effects of forest type and other

covariates on infestation probabilities were negligible (see

‘‘Results’’).

The model was fitted in a Bayesian framework, with the

following priors, chosen to be imprecise: for all variance

terms U(0,100) and for all sample means N(0,1). We fitted

the model with MCMC based on the Gibbs sampler in

OpenBUGS 3.1.1 (Lunn et al. 2009). Posteriors were

gathered by running ca. 5,000 iterations of two chains after

discarding 100,000 iterations. Convergence and mixing

was assessed visually. MCMC results are given as either

posterior mode and 95 % highest posterior density credible

intervals (CI) for U(i,j) and variance terms or medians and

5–95 % quantiles for estimates from binomial distribu-

tions. The model code is given in the electronic supple-

mentary material (ESM) 1.

Results

We recorded a total of 13 different hard tick species

(Ixodidae) belonging to the five genera Amblyomma, Der-

macentor, Haemaphysalis, Ixodes, and Rhipicephalus, on

237 out of 1,444 host individuals from a total of 37 dif-

ferent host species (Rodentia, Scandentia, Carnivora,

Soricidae) (Table 1). The resulting observed network

included 309 host–tick associations, with a total of 597 tick

individuals being sampled. The most commonly observed

tick species were immature stages (larvae and nymphs) of

two species of Dermacentor sp. with 140 and 128 indi-

viduals, respectively. Up to four different tick species were

sampled from the same host individual. Twenty-three host

individuals were infested with C5 tick individuals, but

most ticks were encountered as singletons.

Overall infestation probabilities revealed relatively less

variation across tick species but these differed across host

species with 75 % (CI 57–89 %) of the variation in

infestation probability explained by host species identity

compared to only 4 % (CI 1–11 %) of variation in infes-

tation probability explained by tick species identity and

\1 % (CI 0–4 %) by host–tick interaction effects. The

highest infestation probabilities were estimated to be

associated with the rat species Leopoldamys sabanus,

Maxomys rajah and the montane Maxomys alticola along

with the tree shrews Tupaia longipes and Tupaia gracilis,

all of which are relatively common species. For these

species, all 13 tick species were likely to have infestation

probabilities [1 % (posterior modes [1 %, CI 0.5–9 %)

(Fig. 1, ESM 2). For the majority of ca. 78 % of all host–

tick associations, however, pair-wise infestation probabil-

ities were likely to be \0. 5 % (based on posterior mode,

CI for these estimates: 0–6 %). Notably, there was con-

siderable uncertainty in estimating infestation probabilities

with generally large credible intervals: while the overall

patterns of a few relatively large infestation probabilities

(mostly associated with a few common host species) and

mostly low infestation probabilities appears to be a robust

result, detailed interpretation of individual infestation

probabilities was not feasible. Local host abundance

explained another 8–10 % (all CI 1–23 %) of variation in

infestation probability with a positive relationship (odds

Oecologia (2013) 172:307–316 311
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ratios posterior modes 1.08–1.65 for all species). In con-

trast, forest type, forest site, host body weight, habitat use,

year and month of sampling had little effect on infestation

probabilities (all posterior mode \1 %, all CI 0–10 %).

The maximum observed number of host species infested

was 16 for Dermacentor sp. 1, thirteen for H. papuana, and

12 for Ixodes granulatus, whereas three tick species were

only recorded from single host species. Conclusions about

host specificity of ticks from these observed numbers,

however, would be highly misleading, as the estimated

number of host species to be infested by each tick species

was larger and likely to be more evenly sized across tick

species: if randomly drawn from binomial distributions

based on infestation probabilities and the field-based sce-

nario of host individuals examined (‘‘FieldScenario’’), all

13 tick species were most likely to be associated with from

five to seven host species during single draws (all CI 3–10

species) (Fig. 2). In fact, these estimated numbers of

interactions from single random draws were biased by

sampling size. If all host species were equally exhaustively

sampled (‘‘ExhaustiveSample’’), all tick species would be

likely to be associated with 28–31 host species per single
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Fig. 1 Posterior mode

estimates of infestation

probabilities for the 13 recorded

tick species on 37 different host

species based on an individual-

level logistic regression model.

Note that posterior mode

estimates do not reflect

uncertainty
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Fig. 2 Impact of sampling intensity and uncertainty on inferring the

number of host species infested by different tick species. Lines
indicate the number of observed host species for each tick species

when data are aggregated into a single adjacency matrix. Black bars
indicate the posterior estimates of the number of host species likely to

be infested by each tick species given the estimated infestation

probabilities and the numbers of observed host individuals (see

‘‘Materials and methods’’: ‘‘FieldScenario’’). Likewise, white bars
indicate posterior estimates of the number of host species likely to be

infested by each tick species if 1,000 individuals of each species were

examined (‘‘ExhaustiveSample’’)
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draw (all CI 21–36 species) (Fig. 2), and to a total of 34–37

host species when all MCMC samples were summarized

(Table 1).

Comparing these model-based estimates to the observed

data revealed two trends when accounting for uncertainty

in observed data, namely lower host specificity (i.e. a larger

range of host species) and alignment of relative (spurious)

differences in host specificity across tick species.

These trends were also confirmed by host-specificity

indices based on Rao’s entropy and the specialization index

d0 based on adjacency matrices: calculating these indices of

host specificity from observed data included considerably

larger ranges of values and differences among the different

tick species compared to estimated indices derived from

random draws (Figs. 3a, b, 4). The taxonomic distinctness of

host species as measured by the index S.TD, for example,

were estimated as equally high for all tick species, suggesting

that all tick species were likely to infest host species from the

full range of taxonomic groups, including tick species

observed only from a small range or single host species

(Fig. 3a). Likewise, the effect of overall host availability on

host specificity (S.AV) is estimated to be similarly low for all

tick species, whereas indices derived from observed data

were biased by having rarely observed tick species associ-

ated by chance with common host species such as the few

records of Rhipicephalus haemaphysaloides, Haemaphysa-

lis semermis and Haemaphysalis traguli (Fig. 3b).

Calculating the specialization index d0 from observed

and randomly drawn interaction frequencies under two

different scenarios also suggested that host specificity was

equally low for all species. Despite the significant bias in

estimating this index from observed data or single draws,

estimates of host specificity by d0 are lower if species have

been exhaustively sampled compared to random draws

under a field-based scenario (Fig. 4). Notably, if all host

species were equally exhaustively sampled, their repre-

sentation in the network would largely differ as would their

infestation probabilities with ticks.
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Fig. 3 Indices of host

specificity adapted from Rao’s

quadratic entropy for the 13

sampled tick species. Black
squares are posterior estimates

with 95 % credible interval bars

from the model and triangles
are calculated values from the

observed data, representing a

single snapshot. S.TD Accounts

for taxonomic distances, S.AV
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Fig. 4 Host specificity of tick species calculated as the specialization

index d’ between the frequency of interactions among pairs of species

aggregated into matrices. Indices are given for observed data (open
triangles) as well as posterior mode estimates with 95 % credible

intervals for the two scenarios of random draws based on field data

(filled squares) and exhaustive sampling (open squares) (see ‘‘Mate-

rials and methods’’). Grey small dots and lines are plotted for 50

arbitrarily selected random draws and corresponding index values

from the field-based scenario, demonstrating the large differences in

d’ from different draws under the same scenario
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Discussion

Describing the connection and interaction patterns between

host and parasite species with the aid of network analysis

has proven useful in elucidating key properties for under-

standing parasite diversity (Vázquez et al. 2005, 2007;

Mouillot et al. 2008). Using a multi-species, multi-level

modelling approach, our results emphasize the conceptual

benefit of inferring network attributes from individual-

based approaches. They show that considering such com-

plexity is critical rather than a negligible detail. Two

principal conclusions can be drawn from this study. Firstly,

when accounting for incomplete sampling and uncertainty,

estimates of interaction frequency may diverge from what

is observed, demonstrating that network attributes and

indices directly derived from observational data may lead

to highly misleading results if there is uncertainty as to

whether observations represent true relationships between

species. In particular, species specialization might be

overestimated for some species if indices are based on

observed data. Further, indices derived from observed data

may indicate variation and different levels of specialization

across the range of examined species that lack verification.

Secondly, multi-level models offer a consistent framework

to incorporate covariates under which particular interac-

tions take place, providing the basis to understand how

possible variation in interactions is partitioned among

species-specific and environmental traits.

In its basic hierarchical structure, the model is similar to

increasingly used multi-species occupancy models in pop-

ulation and community ecology (MacKenzie et al. 2002;

Royle et al. 2005; Wikle 2003) in that it recognizes

observed data at the level of individual entities as a random

draw out of the true species’ occupancy probabilities. The

model thus benefits from considering a wide variety of

available information, including the lack of observed

interactions (‘zero counts’) during particular sampling

events and the relative frequencies of interactions.

Excluding such information while analysing network attri-

butes from solely assembling observed data into interaction

matrices comprises a considerable loss of information on

how intensively species are interacting. Moreover, model-

ling individual interactions to infer upper-level organization

such as interaction networks prevents the assumption that

entire communities are observed under constant conditions

and circumstances, an assumption that is hardly met in the

real world. Highlighting the benefits of our model, we

should also admit that an important feature of occupancy

models is not considered in our study, namely modelling the

state of true presence through a detection model that dis-

tinguishes unobserved from truly absent occupancies/

interactions through replicated count data (MacKenzie et al.

2002). Replicated examination of host individuals for

parasites was simply not feasible in our live-capture and

release study, but may be applicable to ecological network

studies adopted from monitoring schemes.

We cannot fully exclude that modelling interaction

networks from exhaustive sampling scenarios will include

some overestimation of interactions and host–parasite

associations. Whether such effects are likely to occur needs

further study, ideally also including data from host–parasite

networks with more species-specific parasites such as lice

and helminths.

The real-world network under particular environmental

conditions and in a particular time frame would be the state

of connectivity relevant for evaluating the meaning of the

network, for example in terms of the relative risk of disease

transmission in host–parasite networks. Technically, such

possible dynamics in networks can be captured if interac-

tion frequencies at the species level [U(i,j) in our study] are

estimated under different scenarios while accounting for

covariance with the environmental variables of interest (see

Eq. 2). It would then be possible to estimate site- or forest-

type specific interaction probabilities while further con-

sidering uncertainty in inferences made at higher levels of

organization. In our study, however, this was not feasible

as we were not able to trace the effects of environmental

covariates such as forest type, area, or season on the

infestation probability of different host species. The lack of

environmental effects in our study might be attributable to

the relatively small sample size of data collected under any

particular conditions. Given ongoing forest conversion and

destruction in Southeast Asia (Sodhi et al. 2010) and the

necessity to understand such massive anthropogenic impact

on wildlife, as well as the potential threat to companion

animal and human health, understanding the impact of the

environment on host–tick relationships in the tropics is

desirable despite the large sampling effort required. The

species diversity and prevalence of endoparasitic helminths

of mammals, for example, have been found to be affected

by forest management in Borneo (Wells et al. 2007b) and

elsewhere in the tropics (Gillespie and Chapman 2006).

Likewise, effects of deforestation and habitat modification

have been recorded for mosquito-borne haemosporidian

parasites in birds (Sehgal 2010), whereas such effects

remain largely unexplored for tropical host–tick associa-

tions and those of other ectoparasites (Cumming 2002;

Geevarghese and Mishra 2011).

In the light of our results of generally low host speci-

ficity, different infestation rates among host species and the

effect of local host abundance on infestation probabilities,

we expect overall host availability through species diver-

sity, abundance and space use to be an important predictor

of tick survival and reproduction. Within the environmental

setting of our study, we found a decline of small mammal

diversity in logged compared to old-growth forests, mostly
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due to the decline of relatively rare and more specialized

host species such as civets (Wells et al. 2007a). In contrast,

for common species, such as the ones found with the highest

tick infestation probabilities in this study, there was little

obvious effect on their occurrence and abundance in logged

versus old-growth forests. Importantly, if these species

provide the major source for all tick species considered in

this study, there is no evidence that logging at the examined

extent has any major effect on tick occurrence or tick

assemblage composition. Some caution, however, is nec-

essary here, as we do not know the entire host range of tick

species. Larger mammals such as the bearded pig, Sus

barbatus, or deer, Tragulus and Muntiacus, among others,

may serve as hosts for the same ticks (especially adult ticks)

and may thus play a substantial role in their overall popu-

lation dynamics (Hoogstraal 1964; Kohls 1957).

Viewing our results in a larger context, it is in our opinion

an interesting question to critically ask how uncertainty and

sampling bias might confound conclusions on the increasing

network data available such as those assembled in the

Interaction Web Database (http://www.nceas.ucsb.edu/

interactionweb/). Comparative studies and meta-analyses

are crucial for understanding the general mechanisms or

differences among types of ecological interactions, ecosys-

tems or functional and taxonomic groups in network for-

mation (Ings et al. 2009; Thébault and Fontaine 2010).

Scrutinizing comparability of network data collected with

different sampling protocols and intensity would benefit

from going a step backwards and considering the entire range

of disaggregated data collected instead of already aggregated

interaction matrices. Presumably, in most ecological net-

works, some portion of the non-interaction of species may be

due to the lack of opportunities of contact between species or

missed observations rather than due to deliberate species

preferences. Discriminating between these aspects can be

significant for accurate conclusions and may avoid potential

ecological fallacies in network analysis.
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