PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH

Effects of low atmospheric CO_2 and elevated temperature during growth on the gas exchange responses of C_3 , C_3-C_4 intermediate, and C_4 species from three evolutionary lineages of C_4 photosynthesis

Patrick J. Vogan · Rowan F. Sage

Received: 18 May 2011 / Accepted: 5 November 2011 / Published online: 3 December 2011 © Springer-Verlag 2011

Abstract This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C₃, C₃-C₄ intermediate, and C₄ species grown in the low CO₂ and hot conditions proposed to favo r the evolution of C₄ photosynthesis. Closely related C₃, C₃-C₄, and C₄ species in the genera Flaveria, Heliotropium, and Alter*nanthera* were grown near 380 and 180 μ mol CO₂ mol⁻¹ air and day/night temperatures of 37/29°C. Growth CO₂ had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO₂ on photosynthetic and stomatal responses to intercellular CO₂ concentration. These results demonstrate little ability to acclimate to low CO_2 growth conditions in closely related C_3 and C_3-C_4 species, indicating that, during past episodes of low CO₂, individual C₃ plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C3-C4 intermediacy. The C_3-C_4 species had approximately 50% greater rates of net CO₂ assimilation than the C₃ species

Communicated by Russell Monson.

Electronic supplementary material The online version of this article (doi:10.1007/s00442-011-2201-z) contains supplementary material, which is available to authorized users.

P. J. Vogan

Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

R. F. Sage (🖂)

Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada e-mail: r.sage@utoronto.ca when measured at the growth conditions of 180 μ mol mol⁻¹ and 37°C, demonstrating the superiority of the C₃-C₄ pathway in low atmospheric CO₂ and hot climates of recent geological time.

Keywords C_4 evolution \cdot Photosynthetic CO_2 acclimation \cdot Stomatal acclimation \cdot Temperature response

Introduction

The C₄ photosynthetic pathway has independently evolved more than 60 times, making it one of the most convergent of complex traits in the biosphere (Christin et al. 2011; Sage et al. 2011a). Phylogenetic analyses of known C_4 clades demonstrate that the C₄ pathway is relatively young in geological time, having repeatedly arisen in the past 30 million years (Christin et al. 2008, 2011; Vincentini et al. 2008). A leading hypothesis for the rise of C_4 photosynthesis is the carbon starvation hypothesis, which proposes that, in warm environments, low atmospheric CO₂ conditions promoted high rates of photorespiration and reduced carboxylation capacity of Rubisco in C₃ plants; in response, C₄ photosynthesis evolved to compensate for the inhibitory effects of photorespiration (Ehleringer et al. 1991, 1997; Monson 2003; Sage 2004). Over the past 200 million years, atmospheric CO_2 levels were well above current levels until the late-Oligocene epoch (30-25 million years ago, MYA). In the late Oligocene, atmospheric CO₂ declined to between 200 and 400 μ mol CO₂ mol⁻¹ air (Pagani et al. 1999; Pearson and Palmer 2000; Royer et al. 2001). During the last 0.8 MYA, they oscillated between 180 and 300 μ mol mol⁻¹ (Petit et al. 1999; Gerhart and Ward 2010). Consistent with the CO₂ starvation hypothesis, the decline in CO₂ in the late-Oligocene corresponds to the first wave of C₄ origins,

while a possible late-Miocene CO₂ decline to below $300 \ \mu\text{mol mol}^{-1}$ (Kurschner et al. 2008; Tripati et al. 2009) corresponds to an additional wave of C_4 evolution and the expansion of C₄ grasslands in low- to mid-latitudes (Christin et al. 2008, 2011; Vincentini et al. 2008; Arakaki et al. 2011). Climates were as warm or warmer during the Miocene and Pliocene than today (Zachos et al. 2008), such that leaf temperatures >35°C would have regularly occurred at low latitudes, as indicated by measurements in modern ecosystems (Monson and Jaeger 1991; Vogan 2010). The synchrony between low CO₂ in the Miocene and C₄ origins is also consistent with ecophysiological studies that show superior growth, carbon gain, quantum yield, and resourceuse efficiency in C₄ relative to C₃ plants at low to current CO₂ levels and temperatures over 30°C (Ehleringer and Pearcy 1983; Dippery et al. 1995; Tissue et al. 1995; Sage 1995; Ehleringer et al. 1997). For example, C_4 biomass dominates C_3 biomass in prairie sod grown at 200 µmol mol⁻¹; at 360 μ mol mol⁻¹, the C₄ to C₃ biomass ratio is similar (Johnson et al. 1993; Polley et al. 2002).

While the timing of C_4 origins and the ecophysiological data are consistent with the CO₂ starvation hypothesis, these results do not address how low CO2 would have actually led to the evolution of the C_4 pathway. For the CO_2 starvation hypothesis to be valid, the intervening stages between the C₃ and C₄ conditions would have to enhance fitness in a low CO2, high temperature environment. The intermediate stage during C4 evolution involves the formation of a photorespiratory CO₂ concentration mechanism in plants known as C3-C4 intermediates (Monson and Rawsthorne 2000). In C_3 - C_4 intermediates, the photorespiratory cycle is distributed between two tissue compartments, the bundle sheath and the mesophyll, rather than occurring in a single photosynthetic cell as in C_3 plants. This two-tissue metabolic cycle restricts photorespiratory CO₂ production to the bundle-sheath cells, thus facilitating its recapture by bundle-sheath chloroplasts, and boosting the efficiency of bundle-sheath Rubisco (von Caemmerer 1989). In combination, the changes leading to C₃-C₄ intermediacy compensate for high rates of photorespiration as evidenced by reduced CO₂ compensation points of photosynthesis (Γ) and elevated rates of net CO_2 assimilation in C_3 - C_4 relative to C₃ species at low atmospheric CO₂ concentration (Morgan and Brown 1979; Ku et al. 1983, 1991; Rajendrudu et al. 1986; Monson and Rawsthorne 2000; Vogan et al. 2007).

To best evaluate the CO₂ starvation hypothesis, closely related C₃, C₃–C₄ intermediate, and C₄ species should be grown and measured in the hot, low CO₂ conditions proposed to favor the evolution of the C₄ pathway. Because plants can acclimate to variation in growth CO₂ and temperature, inferences based on plants grown away from the conditions where C₄ photosynthesis evolved could be misleading. The large majority of C₄ lineages have arisen in warm, sub-tropical to tropical locations, and most C_3-C_4 species grow in hot environments (Monson and Rawsthorne 2000; Edwards and Smith 2010; Sage et al. 2011a, b), hence, it is best to evaluate their performance at the elevated temperatures common in their habitat. Also, multiple evolutionary lineages should be simultaneously studied. To address evolutionary hypotheses where a genetic model is lacking, comparisons of numerous independent lineages are preferred, as each lineage is but one replicated observation (Felsenstein 1985). Previous studies addressing the carbon starvation hypothesis rarely met these criteria. No study has compared responses of multiple evolutionary lines of C₃, C_3 - C_4 , and C_4 species grown and measured at subambient CO₂. C₃-C₄ intermediates have elevated photosynthetic capacities relative to C₃ species at sub-ambient CO₂; however, this observation is based on measurements of plants grown at the atmospheric CO_2 levels at the time of the experiment $(330-375 \ \mu mol \ mol^{-1})$; Ku et al. 1983, 1991; Rajendrudu et al. 1986; Vogan et al. 2007). High temperatures aggravate photorespiration in C₃ plants and thus the selection pressures for C₄ evolution would be greatest in hot environments (Sage 2004), but few studies have examined performance of C3-C4 intermediates relative to C3 species growing in hot environments. Schuster and Monson (1990) and Monson and Jaeger (1991) did evaluate C_3-C_4 Flaveria species grown in warm to hot conditions, but the plants grew at atmospheric CO₂ levels of the recent past $(350-360 \ \mu mol \ mol^{-1}).$

One potential outcome of growth in low CO₂ and elevated temperature is leaf-level biochemical acclimation which might enhance carbon acquisition in C₃ species and reduce the relative benefit of the C_3-C_4 mechanism. In C_3 species, this can occur by increased investment in Rubisco content (Sage and Coleman 2001). C_3-C_4 species may also acclimate and thus retain their advantage; for example, they may enhance the efficiency of photorespiratory CO₂ re-fixation. A third acclimation response, increased stomatal conductance leading to higher intercellular CO₂ levels, has been observed in low CO2-grown plants of the C3 forb Solanum dimidiatum (Maherali et al. 2002). Increased stomatal conductance, however, would greatly enhance water loss in hot environments and could thus be of limited value. In hot environments with high vapor pressure differences between leaf and air, it is possible that C_3-C_4 intermediate plants have reduced stomatal conductance relative to C₃ species, since they may rely on the photorespiratory CO_2 pump to offset reduced intercellular CO₂ levels. This could lead to greater water-use efficiency in C_3 - C_4 relative to C_3 species growing in warm, low CO₂ conditions.

In this study, we evaluated photosynthetic and stomatal acclimation to low CO_2 in closely related C_3 , C_4 and C_3-C_4 plants from three separate evolutionary lineages of C_4

photosynthesis: Flaveria (Asteraceae), *Heliotropium* (Boraginaceae), and Alternanthera (Amaranthaceae). Each species studied occurs in hot environments where daytime temperatures during the growing season exceed 35°C (Supplemental Fig. S1; Monson and Jaeger 1991). The C_3-C_4 species Heliotropium convolvulaceum grows on sand dunes in the Mojave and Chihuahuan deserts of southwestern North America. Episodic monsoon rains support summer activity of H. convolvulaceum, when leaf temperatures exceed 35°C for much of the day (Fig. S1). Heliotropium calcicola (C_3), Flaveria robusta (C_3), and F. ramosissima (C_3-C_4) are common in semi-arid regions of central Mexico where they also exploit monsoon rains to remain active on hot summer days (Frohlich 1978; Powell 1978). Alternanthera sessilis (C3) and A. tenella (C3-C4) are herbaceous species native to moist (sub)tropical climates of the Caribbean basin, Central America, and South America (http://www.tropicos.org). Plants were grown at high temperatures (37/29°C) in low and current atmospheric CO₂ concentrations of 180 and 380 μ mol mol⁻¹. The response of net CO_2 assimilation rate (A) to intercellular CO_2 concentration (C_i) was measured at 30 and 40°C and the response of A to variation in leaf temperature (T) was assessed at the growth CO₂ concentrations. Stomatal acclimation to low CO₂ was evaluated using responses of stomatal conductance (g) to C_i (Santrucek and Sage 1996). Associated with these measurements, we measured leaf nitrogen (N), Rubisco, and chlorophyll contents to determine if N allocation to photosynthetic processes is altered by growth CO₂.

Materials and methods

Source material and growth conditions

Flaveria bidentis (C₄) seeds were obtained from offspring of seeds originally collected by Powell (1978). E. Sudderth provided collected seeds of F. ramosissima (C_3-C_4) from Tehuacan, Mexico (Sudderth et al. 2009). R.F. Sage collected seeds of F. robusta (C3; 20 km W of Colima, Mexico), Heliotropium convolvulaceum (C3-C4; 10 km NE of Overton, NV, USA), and H. texanum (C4; 6 km E of Zapata, TX, USA; Vogan et al. 2007). Heliotropium calcicola (C_3) seeds were collected by Michael Frohlich in northern Mexico (Vogan et al. 2007). Seeds of Alternanthera sessilis (C_3) and A. tenella (C_3-C_4) were from offspring of plants collected by A.S. Ragavendra (Hyderabad, India), while A. caracasana (C_4) seeds were collected by A.M. Powell in Alpine, TX, USA. Within their respective genera, these species are closely related (Frohlich 1978; McKown et al. 2005; Sanchez-del Pino et al. 2009). Vouchers specimens are stored at the Royal Ontario Museum, Toronto, ON.

Plants were grown from rooted cuttings in growth chambers (GC-20; BioChambers, Winnipeg, MB, Canada) set to deliver day/night temperatures of 37/29°C, a 14-h photoperiod, and a mean irradiance at plant height (±SE) of $561 \pm 11 \ \mu\text{mol photons m}^{-2} \ \text{s}^{-1}$. Plants grew in 4-L pots containing equal parts sand, Pro-Mix (Premier Horticulture, Quakertown, PA, USA) and sterilized topsoil. Plants were watered daily, fertilized three times weekly with a fullstrength Hoagland's solution, and trimmed monthly. Growth CO₂ levels (\pm SE) were 184 \pm 5 and 381 \pm 8 µmol mol⁻¹, and were maintained with a soda-lime scrubber controlled by a PP Systems WMA-2 gas analyzer (PP Systems International, Amesbury, MA, USA). To minimize growth chamber effects, plants were rotated weekly within a chamber, and the treatments were switched between chambers for the three replicated sets of measurements.

Photosynthetic gas exchange and leaf nitrogen analysis

Gas exchange of a youngest fully expanded leaf was measured using an LI-6400 photosynthesis system (Li-Cor, Lincoln, NE, USA) at a saturating light intensity of 1,500 µmol phot ons $m^{-2} s^{-1}$. The response of A and g to leaf temperature (T) was measured at 380 and 180 μ mol CO₂ mol⁻¹ air by first lowering leaf T from 25 to 15° C and then raising it in 5° C increments to 45°C. Photosynthetic responses to intercellular CO_2 (A/C_i responses) were logged at 30 and 40°C during the course of an A/T response measurement. Leaf-to-air vapor pressure difference during the A/T responses rose from 1.5 kPa at low temperature to 3.5 kPa at the warmer temperatures, but was maintained at 2–2.7 kPa for the A/C_i measurements. The photosynthetic thermal optimum was calculated by determining maximum A from a cubic regression of the A/T responses. CO_2 compensation points (Γ) of A were estimated by extrapolating the initial slope of the A/C_i plots to the x-intercept.

After each gas exchange response, two 2.6 cm² leaf discs were sampled from measured leaves. One was assayed for N content using a C:N analyzer (Costech Analytical Technologies, Valencia, CA, USA); the second was assayed for Rubisco content using the ¹⁴C-CABP binding method (Sage et al. 1993). Chlorophyll was spectrophotometrically assayed following extraction in acetone (Evans 1983). Nitrogen allocation to electron transport components was calculated from leaf chlorophyll content based on a value of 55 mol N allocated to electron transport for every mol of chlorophyll (Evans 1983). Rubisco N was estimated assuming a protein *N* content of 16% (Sage et al. 1987).

Results

Growth CO₂ concentration did not affect leaf N, relative N allocation to Rubisco and electron transport, leaf C:N

Fig. 1 The response of net CO₂ assimilation rate to intercellular CO₂ concentration for current ambient CO2-grown (380 μ mol CO₂ mol⁻¹; **a**, **b** low CO_2 -grown (180 µmol mol⁻¹; c, d Alternanthera species. Measurements were conducted at a photon flux density of 1,500 μ mol m⁻² s⁻¹, leaf-to-air vapor pressure difference of 2-2.7 kPa and leaf temperatures of 30°C (**a**, **c**) and 40°C (**b**, **d**). Each symbol is the mean \pm SE of three measurements from independent plants

ratios, or specific leaf mass (Supplemental Table S1). Leaf Rubisco content was 60% lower and C:N was roughly 25% higher in C₄ species than in the other functional types, but there was no apparent biochemical acclimation to low CO₂ in any species or photosynthetic type (Table S1).

Growth CO_2 had no effect on the A/C_i responses of a given species. The CO₂ compensation point and net CO₂ assimilation rate at the highest measurement CO_2 level (A_{800}) were the same between plants grown at 180 versus 380 µmol mol^{-1} (Figs. 1, 2 and 3; Table 1). Increasing the measurement temperature from 30 to 40°C increased Γ in C₃ species by an average of 25 μ mol mol⁻¹, while in C₃-C₄ intermediates, the increase was 16 µmol mol⁻¹. Flaveria ramosissima, a C₃-C₄ species with some C₄-cycle activity, exhibited lower Γ than Alternanthera tenella and Heliotropium convolvula*ceum* which lack significant C_4 -cycle activity (Table 1; Monson et al. 1986; Devi et al. 1995; Vogan et al. 2007). These species' gas exchange results did not otherwise differ. Net CO₂ assimilation rates at the respective growth CO₂ levels were lower in both C_3 and C_3 – C_4 species at 40°C compared to 30°C; the decline in A with increasing temperature was approximately 30% greater in C3 than in C3-C4 species (Table 1). At 380 μ mol mol⁻¹ and 40°C, A was slightly higher in the C_3 - C_4 species than C_3 plants, while at 180 μ mol mol⁻¹, A was 67% greater in the C₃-C₄ species. C₄ species exhibited the highest rates of A at all measurement temperatures and CO₂ levels.

The thermal optimum of $A(T_{OPT})$ at 380 µmol mol⁻¹ ranged from 30 to 32°C for the C₃ species, from 31 to 32°C

for the C_3-C_4 intermediates and from 34 to 42°C for the C_4 species (Table 2). When the measurement CO₂ concentration was lowered to 180 µmol mol⁻¹, T_{OPT} of the C_4 species was unaffected, while it decreased to 29°C in the C_3-C_4 species and 25°C in the C_3 species (Table 2; Fig. 4; Supplemental Table S2). At low measurement CO₂, *A* at T_{OPT} was highest in the C_4 species of each genus, and was 34% greater in the C_3-C_4 intermediates than the C_3 species. At the daytime growth temperature (37°C), *A* in the C_3-C_4 species was not different from C_3 species at the current ambient CO₂, but at low CO₂, *A* in C_3-C_4 species was 1.6–2 times higher.

The g versus C_i responses were not affected by growth CO₂ in any species, and were similar in all three photosynthetic types of Alternanthera and Flaveria (Figs. 5, 6 and 7). The C_i/C_a ratio increased with reduction in C_a below 300 μ mol mol⁻¹ in both the C₃ and C₃-C₄ species. There was no consistent evidence for stomatal acclimation within any species or photosynthetic type as the C_i/C_a versus C_i responses were similar between CO₂ treatments. At 180 μ mol mol⁻¹, the larger A values in the C₃-C₄ intermediates relative to the respective C3 species of Flaveria and Heliotropium resulted in significantly lower C_i/C_a in the C_3 - C_4 species than in C_3 plants; this difference was not apparent at current ambient CO₂ levels. Given the similarity in g between the two photosynthetic types at low CO_2 , the difference in C_i/C_a between C_3 and C_3-C_4 species at sub-ambient CO_2 was driven entirely by higher A in the C₃-C₄ species. Stomatal conductance also increased at low Fig. 2 The response of net CO_2 assimilation rate to intercellular CO_2 concentration for current ambient CO_2 -grown (380 µmol CO_2 mol⁻¹; (**a**, **b**) low CO_2 -grown (180 µmol mol⁻¹; **c**, **d**) *Flaveria* species measured at 30°C **a** and **c** and 40°C (**b**, **d**). Measurement conditions were as described for Fig. 1. Each *symbol* is the mean \pm SE of three measurements from independent plants

Fig. 3 The response of net CO_2 assimilation rate to intercellular CO_2 concentration for current ambient CO_2 -grown (380 µmol CO_2 mol⁻¹; **a**, **b**) low CO_2 -grown (180 µmol mol⁻¹) *Heliotropium* species measured at 30°C (**a**, **c**) and 40°C (**b**, **d**). Measurement conditions were as described for Fig. 1. Each *symbol* is the mean \pm SE of three measurements from independent plants 345

Intercellular CO₂ concentration (µmol mol⁻¹)

 CO_2 in all three C_4 species, but to a lesser extent than in the C_3 and C_3 – C_4 species, such that the C_i/C_a values declined or showed little change at the lowest measurement C_i .

Photosynthetic water-use efficiencies (PWUE) in C_3 and C_3 - C_4 species of each genus at 40°C were similar at

380 µmol mol⁻¹. There was a trend for PWUE to be 85 and 186% greater in the intermediates *F. ramosissima* and *H. convolvulaceum*, respectively, than in the respective C_3 species *F. robusta* and *H. calcicola* at 180 µmol mol⁻¹ and 40°C (*P* = 0.07 and 0.08, respectively; Table 3). In

Species	Туре	Leaf T (°C)	$\Gamma \ (\mu mol \ mol^{-1})$	$A_{180} (\mu \text{mol CO}_2 \text{m}^{-2} \text{s}^{-1})$	$A_{380} (\mu \text{mol CO}_2 \text{m}^{-2} \text{s}^{-1})$	$A_{800} (\mu \text{mol CO}_2 \text{m}^{-2} \text{s}^{-1})$
F. robusta	C ₃	30	$50.9 \pm 1.1^{\mathrm{B}}$	$9.8\pm1.1^{\text{B}}$	$19.1 \pm 1.8^{\rm C}$	$28.3\pm1.8^{\rm A}$
		40	$77.1\pm4.0^{\rm A}$	$6.7\pm0.4^{ m A}$	$15.0 \pm 1.0^{\mathrm{B}}$	$30.1 \pm 2.7^{\mathrm{A}}$
A. sessilis	C ₃	30	$54.2\pm1.8^{\rm B}$	$6.9 \pm 2.1^{\mathrm{A}}$	$14.2 \pm 1.4^{\mathrm{B}}$	24.7 ± 1.6^{AB}
		40	$76.4\pm2.9^{\rm A}$	$4.9 \pm 3.1^{\mathrm{A}}$	$9.1 \pm 1.2^{\mathrm{A}}$	$22.9 \pm 1.8^{\rm AB}$
H. calcicola	C ₃	30	$52.2\pm2.0^{\rm B}$	$7.9\pm0.9^{\rm AB}$	$13.1 \pm 1.2^{\text{B}}$	$21.7\pm1.5^{\rm B}$
		40	$77.4\pm0.8^{\rm A}$	$4.9 \pm 1.0^{\mathrm{A}}$	$10.0 \pm 0.9^{\text{A}}$	$20.1\pm1.1^{\rm B}$
All C ₃		30	$52.4\pm1.4^{\text{B}}$	$8.2\pm1.6^{\rm AB}$	$15.5 \pm 1.5^{\mathrm{BC}}$	$24.9 \pm 1.6^{\rm AB}$
		40	$77.0\pm2.6^{\rm A}$	$5.5 \pm 1.8^{\mathrm{A}}$	$11.4 \pm 1.1^{\mathrm{AB}}$	24.4 ± 2.0^{AB}
F. ramosissima	$C_3 - C_4$	30	$11.6\pm1.6^{\rm E}$	13.7 ± 2.2^{C}	$19.4 \pm 1.6^{\circ}$	25.9 ± 2.2^{AB}
		40	$21.4\pm2.5^{\rm C}$	$11.4 \pm 1.6^{\rm BC}$	$15.8\pm2.7^{\rm B}$	24.7 ± 2.1^{AB}
A. tenella	$C_{3}-C_{4}$	30	$18.1 \pm 1.2^{\mathrm{D}}$	$9.8\pm2.2^{\rm B}$	$16.9 \pm 2.3^{\mathrm{BC}}$	$29.0\pm0.3^{\rm A}$
		40	$32.5\pm2.8^{\rm C}$	$5.2\pm0.9^{\mathrm{A}}$	12.8 ± 1.6^{AB}	$24.3 \pm 1.4^{\text{AB}}$
H. convolvulaceum	$C_3 - C_4$	30	$22.4\pm2.1^{\rm D}$	$10.9\pm1.7^{\rm B}$	$22.0 \pm 1.8^{\rm C}$	$33.7\pm4.1^{\rm A}$
		40	$45.8\pm6.8\ ^{\mathrm{BC}}$	$11.1 \pm 1.6^{\rm BC}$	$24.1\pm2.7^{\rm CD}$	$32.8\pm3.8^{\rm A}$
All C ₃ –C ₄		30	$17.4 \pm 1.5^{\mathrm{D}}$	$11.5\pm2.0^{\rm BC}$	$19.4 \pm 1.9^{\circ}$	$29.5\pm2.1^{\rm A}$
		40	$33.2\pm3.4^{\rm C}$	$9.2\pm1.2^{\rm B}$	$17.6\pm2.4^{\rm BC}$	27.3 ± 2.6^{AB}
F. bidentis	C_4	30	$2.8\pm1.2^{\text{F}}$	$24.0\pm3.6^{\rm D}$	$27.8\pm2.5^{\rm D}$	$32.5\pm4.1^{\rm A}$
		40	$3.0 \pm 1.1^{\mathrm{F}}$	$22.8\pm2.1^{\rm D}$	$25.2\pm2.6^{\rm D}$	$29.1\pm3.6^{\rm A}$
A. caracasana	C_4	30	$2.8\pm0.6^{\rm F}$	$22.3\pm1.8^{\rm D}$	$28.7\pm3.9^{\rm D}$	28.8 ± 3.4^{AB}
		40	$3.3\pm0.9^{\text{F}}$	$25.0\pm4.4^{\rm D}$	$29.2\pm4.1^{\rm D}$	$30.1 \pm 3.3^{\mathrm{A}}$
H. texanum	C_4	30	$3.4\pm1.3^{\rm F}$	$29.7\pm3.0^{\rm D}$	$30.7\pm3.2^{\rm D}$	$31.0\pm4.4^{\rm A}$
		40	$5.3\pm1.7^{\rm F}$	$31.6 \pm 3.1^{\text{D}}$	$32.1\pm4.6^{\rm D}$	$32.5\pm5.1^{\rm A}$
All C ₄		30	$3.0\pm0.9^{\rm F}$	$25.3\pm2.7^{\rm D}$	$29.1\pm3.3^{\rm D}$	30.8 ± 4.2^{AB}
		40	$3.9\pm1.0^{\rm F}$	$26.5\pm3.6^{\text{D}}$	$28.8\pm3.6^{\rm D}$	30.6 ± 3.7^{AB}

Table 1 CO₂ compensation points (Γ) and net CO₂ assimilation rates at growth CO₂ concentrations and near CO₂ saturation for *Flaveria*, *Alternanthera*, and *Heliotropium*

Low-CO₂ and current ambient-CO₂ grown plants were pooled for each value because A/C_i responses were not different between the two treatments All species values are mean \pm SE of three individuals

Different letters indicate significant differences at P < 0.05 between measurements within a column

Table 2 The photosynthetic thermal optimum (T_{OPT}) of net CO₂ assimilation rate (A) and net CO₂ assimilation rate at T_{OPT} and at 37°C for C₃, C₄ and C₃-C₄ intermediate photosynthetic types

Species	Measurement CO_2 concentration (µmol mol ⁻¹)	$T_{\rm OPT}$ (°C)	A at T_{OPT} (µmol CO ₂ m ⁻² s ⁻¹)	A at 37°C (μ mol CO ₂ m ⁻² s ⁻¹)
All C ₃	180	$24.8\pm0.7^{\rm A}$	$9.4\pm0.8^{ m A}$	$6.9 \pm 1.2^{\mathrm{A}}$
	380	$31.3\pm0.4^{\rm B}$	$16.6 \pm 1.4^{\rm C}$	15.8 ± 1.1^{BC}
All C ₃ –C ₄	180	$29.1\pm0.5^{\rm B}$	$12.6 \pm 0.6^{\mathrm{B}}$	$10.5\pm1.0^{\rm B}$
	380	$31.7\pm0.3^{\rm B}$	$20.3\pm2.2^{\rm CD}$	$18.9\pm1.6^{\rm C}$
All C ₄	180	$36.2 \pm 0.5^{\circ}$	$25.7\pm2.8^{\mathrm{D}}$	$24.9 \pm 2.1^{\mathrm{D}}$
	380	$38.7 \pm 1.2^{\text{C}}$	$32.6 \pm 3.0^{\mathrm{D}}$	$31.4 \pm 2.8^{\text{D}}$

Plants were measured near their growth CO_2 concentration (180 or 380 µmol mol⁻¹)

Species values are means \pm SE of three individuals

Different letters indicate significant differences at P < 0.05 among measurements within a column

See Supplemental Table S2 for the complete species dataset

Alternanthera, there was no significant difference in PWUE between the C_3 - C_4 species and the C_3 species. C_4 species exhibited significantly greater PNUE than C_3 and C_3 - C_4

species at low and current CO_2 concentrations. There were no significant PNUE differences between C_3 and C_3-C_4 species at the current atmospheric CO_2 level. At low Fig. 4 The response of net CO_2 assimilation rate to leaf temperature for C_3 , C_3-C_4 and C_4 species of *Alternanthera*, *Flaveria*, and *Heliotropium*. Plants were measured near their growth CO_2 concentration: 180 µmol mol⁻¹ (**a**, **c**, **e**) and 380 µmol mol⁻¹ (**b**, **d**, **f**). Results from *Alternanthera* species are presented in (**a**, **b**), *Flaveria* species in (**c**, **d**), and *Heliotropium* species (**e**, **f**)

growth CO₂, C₃–C₄ PNUE was 63% greater than C₃ PNUE. Because leaf N, chlorophyll and Rubisco N content were not different between these two functional types, the difference in PNUE resulted from greater A in the C₃–C₄ than C₃ species at 180 µmol mol⁻¹.

Discussion

Acclimation responses to low CO₂

Hypothesized acclimation responses to low CO_2 in C_3 plants include increased Rubisco content and reduced investment in electron transport capacity (Sage and Reid 1992; Sage and Coleman 2001). Such responses have been observed sporadically in C_3 plants; for example, *Abutilon theophrasti* and *Solanum dimidiatum* increase Rubisco content relative to electron transport capacity in low growth CO_2 (Tissue et al. 1995; Anderson et al. 2001). None of the

species in this study, however, showed significant photosynthetic acclimation to low CO₂. There was no increase in Rubisco content or apparent change in electron transport investment in any species grown at 180 μ mol mol⁻¹ CO₂ relative to $380 \,\mu\text{mol mol}^{-1}$. We hypothesized that, if changes in leaf N allocation did occur, they might be attenuated in C₃-C₄ relative to C₃ species. This hypothesis was not supported as there was no significant change in N allocation in any species of any functional type when grown at low CO₂. This lack of plasticity could have constrained the ability of C₃ plants to adjust to periods of low atmospheric CO_2 in order to ameliorate carbon starvation. As a result, evolutionary selection for CO₂ scavenging mechanisms may have been enhanced. For example, refixation of photorespired CO₂ within the bundle-sheath may have improved carbon balance of some C3 species sufficiently to initiate the evolution of C3-C4 intermediacy and, subsequently, C₄ photosynthesis (Monson and Rawsthorne 2000; Muhaidat et al. 2011).

Fig. 5 The responses of stomatal conductance (*open symbols*) and C/C_a ratio (*filled symbols*) to variation in intercellular CO₂ concentration at 30°C (**a**, **c**) or 40°C (**b**, **d**) for three *Alternanthera* species grown near current CO₂ conditions

(380 μ mol mol⁻¹ (**a**, **b**) or low CO₂ conditions

(180 μ mol mol⁻¹ (**c**, **d**). Measurement conditions were the same as indicated in Fig. 1. Each *symbol* represents the mean \pm SE of three measurements from separate plants

Fig. 6 The responses of stomatal conductance (*open symbols*) and $C_{\ell}C_a$ ratio (*filled symbols*) to variation in intercellular CO₂ concentration at 30°C (**a**, **c**) or 40°C (**b**, **d**) for three *Flaveria* species grown near current CO₂ conditions (380 µmol mol⁻¹ (**a**, **b**) or low CO₂ conditions (180 µmol mol⁻¹ (**c**, **d**). Measurement conditions were the same as indicated in Fig. 1. Each *symbol* represents the mean \pm SE of three measurements from separate plants

Our results also demonstrate a low ability of stomata to compensate for CO_2 deficiency. The responses of g versus C_i and C_i/C_a versus C_i were measured as an index of stomatal acclimation to low CO_2 . A common acclimation response to high growth CO_2 is a reduction in g at high measurement CO_2 and reduced sensitivity of stomata to variation in C_i (Santrucek and Sage 1996; Tognetti et al. 2000; Lodge et al. 2001; Herrick et al. 2004). Stomata can acclimate to low CO_2 by increasing g and the sensitivity to CO_2 variation, as has been shown for *Solanum dimidiatum* (Maherali et al. 2002). This increases C_i and thus partially compensates for low CO_2 . Such a response was not observed in any species in this experiment, as the g versus C_i responses generally overlapped between the plants grown at low- and present-day levels of CO_2 . Correspondingly, the response of C_i/C_a

Fig. 7 The responses of stomatal conductance (open symbols) and C/C_a ratio (filled symbols) to variation in intercellular CO_2 concentration at 30°C **a**, **c**) or 40°C (**b**, **d**) for three *Heliotropi*um species grown near current CO₂ conditions

1.2

1.0

Stomatal conductance (mol H₂O m⁻² s⁻¹)

0.2

0.0

0

100 200 300

 $(380 \ \mu mol \ mol^{-1} \ (a, b) \ or \ low$ CO2 conditions

 $(180 \ \mu mol \ mol^{-1} \ (c, d))$. Measurement conditions were the same as indicated in Fig. 1. Each symbol represents the mean \pm SE of three measurements from separate plants

Table 3 Photosynthetic wateruse and nitrogen-use efficiencies (PWUE and PNUE, respectively) of Flaveria, Alternanthera and Heliotropium species at cuvette CO2 concentrations ([CO₂]) of 180 and $380 \ \mu mol \ mol^{-1}$

Species	Туре	[CO ₂]	PWUE (μ mol CO ₂ mol ⁻¹ H ₂ O)	PNUE (μmol CO ₂ mmol ⁻¹ N s ⁻¹)
F. robusta	C ₃	180	$102 \pm 20^{\text{A}}$	$0.030\pm0.007^{\rm A}$
		380	264 ± 87^{AB}	$0.088 \pm 0.010^{\rm C}$
A. sessilis	C ₃	180	$101 \pm 37^{\text{A}}$	$0.038\pm0.006^{\rm A}$
		380	$199 \pm 42^{\mathrm{B}}$	$0.091 \pm 0.014^{\rm C}$
H. calcicola	C ₃	180	$70 \pm 34^{\mathrm{A}}$	$0.036\pm0.008^{\rm A}$
		380	142 ± 36^{AB}	$0.102 \pm 0.003^{\rm C}$
All C ₃		180	$91\pm28^{\rm A}$	$0.035\pm0.007^{\rm A}$
		380	202 ± 51^{B}	$\textbf{0.094} \pm \textbf{0.009}^{C}$
F. ramosissima	C ₃ -C ₄	180	$189\pm73^{\mathrm{A}}$	$0.065 \pm 0.009^{\rm B}$
		380	$244\pm46^{\rm AB}$	$0.105 \pm 0.019^{\rm C}$
A. tenella	C ₃ -C ₄	180	116 ± 23^{A}	$0.055\pm0.012^{\mathrm{B}}$
		380	235 ± 12^{B}	$0.081 \pm 0.009^{\rm C}$
H. convolvulaceum	$C_3 - C_4$	180	$200\pm50^{\rm AB}$	$0.050 \pm 0.009^{\rm B}$
		380	$253\pm33^{\mathrm{B}}$	$0.157 \pm 0.034^{\rm CD}$
All C ₃ –C ₄		180	168 ± 48^{AB}	0.057 ± 0.010^{B}
		380	$244 \pm \mathbf{32^B}$	$\textbf{0.114} \pm \textbf{0.021}^{C}$
F. bidentis	C_4	180	$470 \pm 145^{\text{C}}$	$0.182\pm0.018^{\rm D}$
		380	$517 \pm 110^{\text{C}}$	$0.174 \pm 0.016^{\mathrm{D}}$
A. caracasana	C_4	180	$393 \pm 54^{\mathrm{C}}$	$0.167\pm0.018^{\rm D}$
		380	$451 \pm 66^{\circ}$	$0.198 \pm 0.007^{\mathrm{D}}$
H. texanum	C_4	180	$418 \pm 50^{\circ}$	$0.234\pm0.073^{\rm E}$
		380	$552 \pm 115^{\rm C}$	$0.240\pm0.022^{\rm E}$
All C ₄		180	$427 \pm \mathbf{78^C}$	$0.194\pm0.039^{\text{DE}}$
		380	$507 \pm 98^{\mathrm{C}}$	0.204 ± 0.015^{DE}

Ŷ Ю

500 600

400

ю

700

0 100 200

Intercellular CO₂ concentration (µmol mol⁻¹)

300 400 500 600 700 800

All values are taken at a leaf temperature of 40°C and are means \pm SE of three individuals per species

PWUE was calculated as the ratio of (A/g_{c}) · VPD at a VPD of 2-2.7 kPa

PNUE was calculated as the ratio of A to leaf N content

Different letters indicate significant differences at P < 0.05among measurements within a column

0.2

0.0

ratio to C_i did not differ between plants grown at 180 or 380 μ mol mol⁻¹. The responses of C_i/C_a to intercellular CO_2 concentrations were similar between C_3 and C_3-C_4 species above 300 μ mol mol⁻¹, but at sub-ambient CO₂ concentrations, C_i/C_a was significantly lower in the C₃-C₄ species. The absence of differences between the two photosynthetic types in the g versus C_i responses indicate that the lower C_i/C_a values of the C_3-C_4 species are driven by inherently greater A at low CO₂ rather than differences in stomatal acclimation. In C_4 species, the greater A at low CO_2 enabled by the C_4 cycle prevented any rise in C_i/C_a at low measurement CO₂. This difference in the C_i/C_a response between C_4 , C_3 and C_3-C_4 plants demonstrates the assimilatory strength of the C₄ metabolic cycle in CO₂-depleted atmospheres (Huxman and Monson 2003; Vogan and Sage 2011).

Carbon balance of photosynthetic types under low CO₂ and high temperature

While the A/C_i responses of all nine species were unaffected by growth at low relative to current CO₂ levels, there are substantial differences between the A/C_i responses of the three photosynthetic types that impact carbon balance. The primary differences were lower Γ and 40% (at 30°C) and 67% (at 40°C) greater A at 180 μ mol mol⁻¹ in the C₃-C₄ species compared to the C3 species. There was also a trend towards greater PWUE in the C_3 - C_4 species F. ramosissima and H. convolvulaceum, and greater PNUE in the C₃- C_4 intermediates, relative to their respective C_3 relatives at low but not current levels of atmospheric CO₂. These differences are likely due to the enhanced capacity of the C_3-C_4 species to recapture photorespired CO_2 (Ku et al. 1983, 1991; Rajendrudu et al. 1986; Vogan et al. 2007). The A/Tresponses of the different photosynthetic types further illustrate the benefits of the C3-C4 pathway to photosynthetic performance at low CO_2 and high temperature. While T_{OPT} and A at T_{OPT} are not significantly different between C_3 and C_3 – C_4 species at ambient CO_2 , the reduction of CO_2 to 180 µmol mol⁻¹ resulted in a significantly greater decline in T_{OPT} in C₃ species (6.5°C) than in C₃-C₄ species $(2.6^{\circ}C)$. Greater ability to recapture photorespired CO₂ moderates the effects of lowering CO_2 on T_{OPT} , A at T_{OPT} , and A at the growth temperature of 37° C in the C₃-C₄ species.

The enhanced photosynthetic performance of C_3-C_4 intermediates under conditions of low CO_2 and high temperature are important given the contribution of *A* to growth and fitness. Reductions in *A* at sub-ambient CO_2 resulted in equivalent reductions in biomass yield in *Abutilon theophrasti, Avena sativa, Brassica kaber, Nicotiana tabacum, Phaseolus vulgaris,* and *Prosopis glandulosa* (Polley et al. 1992; Johnson et al. 1993; Dippery et al. 1995; Cowling and Sage 1998; Ward et al. 1999; Campbell et al. 2005). The amount of vegetative biomass has a large influence on fruit number and seed set, and reductions in plant growth often result in substantially lower plant fitness (Solbrig 1981; Farris and Lechowicz 1990). Consistently, reproductive output is substantially reduced by low CO₂ (Sage 1995; Campbell et al. 2005). Several studies have also evaluated fitness of plants with mutations that reduce photosynthetic rate. For example, a 25-30% reduction in A in single-gene mutants of Amaranthus hybridus lowers seed number, seed size and seedling survival at light levels above 400 μ mol photons m⁻² s⁻¹ (Arntz et al. 2000a, b). Arabidopsis thaliana mutants with reduced chlorophyll content and 15% lower A have a 15% lower growth rate and 25% lower seed weight than wild-type plants (Janacek et al. 2009).

Reduced fitness in C₃ species during the low CO₂ conditions of the past 25 million years likely created opportunities for novel mechanisms of carbon scavenging. At the atmospheric CO₂ concentrations of the late-Pleistocene $(180-280 \,\mu\text{mol mol}^{-1})$, for example, photorespiration in hot climates would have reduced A by over 50% (Ehleringer et al. 1991). While initially inhibitory, high rates of photorespiration create an opportunity to improve Rubisco efficiency and A if the release of photorespired CO_2 occurs within an inner compartment where Rubisco is present (Monson and Rawsthorne 2000). In C_3 - C_4 species, photorespired CO_2 is produced in the inner region of the bundle sheath cells, resulting in observed 67% enhancements of A relative to C_3 species. In hot environments during low CO_2 intervals, as would have been present on subtropical sand dunes where H. convolvulaceum grows, the ability to recapture photorespired CO_2 using the C_3-C_4 mechanism could have maintained fitness in habitats too extreme for C_3 species. Such extreme settings may have thus enabled natural experiments in CO₂ scavenging, such as C₃-C₄ intermediacy, to proceed without interference from C₃ competitors (Sage 2004).

Conclusion

The results of this study show that improved carbon economy is the primary benefit of C_3-C_4 intermediacy under low CO_2 and high temperature. There was no acclimation to low CO_2 via shifts in leaf *N* allocation or stomatal behavior in any photosynthetic type. The inherently greater *A* at high temperature and low CO_2 of the C_3-C_4 intermediates compared to their C_3 relatives stands out as the major difference between these two photosynthetic types. The greater carbon assimilation capacity of C_3-C_4 intermediates under these conditions and their somewhat greater PWUE and PNUE likely provided advantages in growth and reproduction, and sustained these species in the hot, low latitude environments of recent geological time. In contrast, C_3 species appear to be severely limited in their ability to alleviate CO_2 starvation through photosynthetic or stomatal acclimation. In the past century, CO_2 levels have risen to values not seen for millions of years (Pagani et al. 2005), and, given the similarity in photosynthetic performance between C_3 and C_3 – C_4 species at current atmospheric CO_2 concentrations, the critical environmental stress selecting for C_3 – C_4 photosynthesis appears to have already disappeared. As a consequence, the potential for C_4 evolution in the future may have been eliminated.

Acknowledgments This research was supported by Discovery grants from the Natural Science and Engineering Research Council of Canada to R.F. Sage. We thank Professor P. Westhoff and Dr. U. Gowik for providing *Alternanthera sessilis* and *A. tenella* seeds, and Professor G. Edwards for the gift of *Flaveria bidentis* seeds.

References

- Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO₂ in a C3–C4 grassland. Glob Change Biol 7:693–707
- Arakaki M, Christin PA, Nyffeler R et al (2011) Contemporaneous and recent radiations of the world's major succulent plant lineages. Proc Natl Acad Sci USA 108:8379–8384
- Arntz AM, DeLucia EH, Jordan N (2000a) Fitness effects of a photosynthetic mutation across contrasting environments. J Evolut Biol 13:792–803
- Arntz AM, DeLucia EH, Jordan N (2000b) From fluorescence to fitness: variation in photosynthetic rate affects fecundity and survivorship. Ecology 81:2567–2576
- Campbell CD, Sage RF, Kocacinar F, Way DA (2005) Estimation of the whole-plant CO₂ compensation point of tobacco (*Nicotiana tabacum* L.). Glob Change Biol 11:1956–1967
- Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO_2 decline promoted C_4 photosynthesis in grasses. Curr Biol 18:37–43
- Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ (2011) C_4 eudicots are not younger than C_4 monocots. J Exp Bot 62:3171–3181
- Cowling SA, Sage RF (1998) Interactive effects of low atmospheric CO₂ and elevated temperature on growth, photosynthesis and respiration in *Phaseolus vulgaris*. Plant Cell Environ 21:427–435
- Devi MT, Rajagopalan AV, Raghavendra AS (1995) Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle sheath cells of Alternanthera tenella, a C3– C4 intermediate species. Plant Cell Environ 18:589–594
- Dippery JK, Tissue DT, Thomas RB, Strain BR (1995) Effects of low and elevated CO_2 on C_3 and C_4 annuals I. Growth and biomass allocation. Oecologia 101:13–20
- Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C₄ grasses. Proc Natl Acad Sci USA 107:2532–2537
- Ehleringer JR, Pearcy RW (1983) Variation in quantum yield for CO₂ uptake among C₃ and C₄ plants. Plant Physiol 73:555–559
- Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW (1991) Climate change and the evolution of C_4 photosynthesis. Trends Ecol Evol 6:95–99

- Ehleringer JR, Cerling TE, Helliker BR (1997) C₄ photosynthesis, atmospheric CO₂, and climate. Oecologia 112:285–299
- Evans JR (1983) Photosynthesis and nitrogen partitioning in leaves of *Triticum aestivum* and related species. PhD dissertation, Australian National University, Canberra
- Farris MA, Lechowicz MJ (1990) Functional interactions among traits that determine reproductive success in a native annual plant. Ecology 71:548–557
- Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15
- Frohlich MW (1978) Systematics of *Heliotropium* section *Orthostachys* in Mexico. PhD dissertation, Harvard University
- Gerhart LM, Ward JK (2010) Plant responses to low [CO₂] of the past. New Phytol 188:674–695
- Herrick JD, Maherali H, Thomas RB (2004) Reduced stomatal conductance in sweetgum (*Liquidambar styraciflua*) sustained over long-term CO₂ enrichment. New Phytol 162:387–396
- Huxman TE, Monson RK (2003) Stomatal responses of C3, C3–C4 and C4 Flaveria species to light and intercellular CO₂ concentration: implications for the evolution of stomatal behaviour. Plant Cell Environ 26:313–322
- Janacek SH, Trenkamp S, Palmer B et al (2009) Photosynthesis in cells around veins of the C₃ plant *Arabidopsis thaliana* is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Plant J 59:329–343
- Johnson HB, Polley HW, Mayeux HS (1993) Increasing CO_2 and plant-plant interactions: effects on natural vegetation. Vegetatio 104(105):157-170
- Ku MSB, Monson RK, Littlejohn RO, Nakamoto H, Fisher DB, Edwards GE (1983) Photosynthetic characteristics of C_3-C_4 intermediate Flaveria species I. Leaf anatomy, photosynthetic responses to O_2 and CO_2 and activities of key enzymes in the C_3 and C_4 pathways. Plant Physiol 71:944–948
- Ku MSB, Wu J, Dai Z, Scott RA, Chu C, Edwards GE (1991) Photosynthetic and photorespiratory characteristics of *Flaveria* species. Plant Physiol 96:518–528
- Kurschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105:449–453
- Lodge RJ, Dijkstra P, Drake BG, Morison JIL (2001) Stomatal acclimation to increased CO₂ concentration in a Florida scrub oak species *Quercus myrtifolia* Wild. Plant Cell Environ 24:77–88
- Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a sub-ambient to elevated CO_2 gradient in a C_3/C_4 grassland. Plant Cell Environ 25:557–566
- McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of *Flave*ria (Asteraceae) and inference of C₄ photosynthesis evolution. Am J Bot 92:1911–1928
- Monson RK (2003) Gene duplication, neofunctionalization and the evolution of C4 photosynthesis. Int J Plant Sci 164:S43–S54
- Monson RK, Jaeger CH (1991) Photosynthetic characteristics of C_3 - C_4 intermediate Flaveria floridana (Asteraceae) in natural habitats: evidence of advantages to C_3 - C_4 photosynthesis at high leaf temperatures. Am J Bot 78:795–800
- Monson RK, Rawsthorne S (2000) CO2 assimilation in C_3-C_4 intermediate plants. In: Leegood RC, Sharkey TD, Von Caemmerer S (eds) Photosynthesis: physiology, metabolism. Kluwer, The Netherlands, pp 533–550
- Monson RK, Moore BD, Ku MSB, Edwards GE (1986) Co-function of C₃- and C₄-photosynthetic pathways in C₃, C₄ and C₃-C₄ intermediate *Flaveria* species. Planta 168:493–502
- Morgan JA, Brown RH (1979) Photosynthesis in grass species differing in carbon dioxide fixation pathways. Plant Physiol 64:257– 262

- Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF (2011) Characterization of C_3-C_4 intermediate species in the genus *Heliotropium L*. (Boraginaceae): anatomy, ultrastructure and enzyme activity. Plant Cell Environ 34:1723–1736
- Pagani M, Freeman KH, Arthur MA (1999) Late Miocene atmospheric CO₂ concentrations and the expansion of C₄ grasses. Science 285:876–879
- Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603
- Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699
- Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399:429–436
- Polley HW, Johnson HB, Mayeux HS (1992) Growth and gas exchange of oats (*Avena sativa*) and wild mustard (*Brassica kaber*) at subambient CO₂ concentrations. Int J Plant Sci 153:453–461
- Polley HW, Johnson HB, Derner J (2002) Soil- and plant-water dynamics in a C_3/C_4 grassland exposed to a sub-ambient to superambient CO₂ gradient. Glob Change Biol 8:1118–1129
- Powell AM (1978) Systematics of *Flaveria* (Flaveriinae-Asteraceae). Ann Mo Bot Gard 65:590–636
- Rajendrudu G, Prasad JSR, Das VSR (1986) C_3-C_4 intermediate species in Alternanthera (Amaranthaceae): leaf anatomy, CO_2 compensation point, net CO_2 exchange and activities of photosynthetic enzymes. Plant Physiol 80:409–414
- Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001) Paleobotanical evidence for near present-day levels of atmospheric CO₂ during part of the tertiary. Science 292:2310–2313
- Sage RF (1995) Was low atmospheric CO_2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Change Biol 1:93–106
- Sage RF (2004) The evolution of C_4 photosynthesis. New Phytol 161:341–370
- Sage RF, Coleman JR (2001) Effects of low atmospheric CO_2 on plants: more than a thing of the past. Trends Plant Sci 6:19–24
- Sage RF, Reid CD (1992) Photosynthetic acclimation to sub-ambient CO_2 (20 Pa) in the C_3 annual *Phaseolus vulgaris* L. Photosynthetica 27:605–617
- Sage RF, Pearcy RW, Seemann JR (1987) The nitrogen use efficiency of C_3 and C_4 plants III. Leaf nitrogen effects on the activity of carboxylating enzymes in *Chenopodium album* (L.) and *Amaranthus retroflexus* (L.). Plant Physiol 85:355–359
- Sage RF, Reid CD, Moore BD, Seemann JR (1993) Long-term kinetics of the light-dependent regulation of ribulose-1, 5-bisphosphate carboxylase oxygenase activity in plants with and without 2-carboxyarabitinol 1-phosphate. Planta 191:222–230
- Sage RF, Christin PA, Edwards EA (2011a) The lineages of C_4 photosynthesis on planet Earth. J Exp Bot (in press)

- Sage TL, Sage RF, Vogan PJ, Rahman B, Johnson DC, Oakley JC, Heckel MA (2011b) The occurrence of C₂ photosynthesis in *Euphorbia* subgenus *Chamaesyce* (Euphorbiaceae). J Exp Bot 62:3183–3195
- Sanchez-del Pino I, Borsch T, Motley TJ (2009) *trnL-F* and *rpl16* sequence data and dense taxon sampling reveal monophyly of unilocular anthered *Gomphrenoideae* (Amaranthaceae) and an improved picture of their internal relationships. Syst Bot 34:57–67
- Santrucek J, Sage RF (1996) Acclimation of stomatal conductance to a CO₂-enriched atmosphere and elevated temperature in *Chenopodium album*. Aust J Plant Physiol 23:467–478
- Schuster WS, Monson RK (1990) An examination of the advantages of C_3-C_4 intermediate photosynthesis in warm environments. Plant Cell Environ 13:903–912
- Solbrig OT (1981) Studies on the population ecology of the genus *Vi*ola II. The effect of plant size on fitness in *Viola sororia*. Evolution 35:1080–1093
- Sudderth EA, Espinosa-Garcia FJ, Holbrook NM (2009) Geographical distributions and physiological characteristics of co-existing *Flaveria* species in south-central Mexico. Flora 204:89–98
- Tissue DT, Griffin KL, Thomas RB, Strain BR (1995) Effects of low and elevated CO_2 on C_3 and C_4 annuals II. Photosynthesis and biochemistry. Oecologia 101:21–28
- Tognetti R, Minnocci A, Penuelas J, Raschi A, Jones MB (2000) Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO₂ vent. J Exp Bot 51:1135–1146
- Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO₂ and ice sheet stability over major climate transitions of the last 20 million years. Science 326:1394–1397
- Vincentini A, Barber JC, Aliscioni SA, Giussani LM, Kellogg EA (2008) The age of grasses and clusters of origins of C₄ photosynthesis. Glob Change Biol 14:2963–2977
- Vogan PJ (2010) The physiological ecology of C₃-C₄ intermediate eudicots in warm environments. PhD dissertation, University of Toronto, Toronto
- Vogan PJ, Sage RF (2011) The water-use and nitrogen-use efficiencies of C_3-C_4 intermediate species of *Flaveria Juss* (Asteraceae). Plant Cell Environ 34:1415–1430
- Vogan PJ, Frohlich MW, Sage RF (2007) The functional significance of C₃-C₄ intermediate traits in *Heliotropium L*. (Boraginaceae): gas exchange perspectives. Plant Cell Environ 30:1337–1345
- von Caemmerer S (1989) A model of photosynthetic CO_2 assimilation and carbon-isotope discrimination in leaves of certain C_3 - C_4 intermediates. Planta 178:463–474
- Ward JK, Tissue DT, Thomas RB, Strain RB (1999) Comparative responses of C_3 and C_4 plants to drought in low and elevated CO₂. Glob Change Biol 5:857–867
- Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283