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Abstract Increasing evidence has shown that nutrients
and consumers interact to control primary productivity in
natural systems, but how abiotic stress aVects this interac-
tion is unclear. Moreover, while herbivores can strongly
impact zonation patterns in a variety of systems, there are
few examples of this in salt marshes. We evaluated the
eVect of nutrients and herbivores on the productivity and
distribution of the cordgrass Spartina densiXora along an
intertidal stress gradient, in a Southwestern Atlantic salt
marsh. We characterized abiotic stresses (salinity, ammo-
nium concentration, and anoxia) and manipulated nutrients

and the presence of the herbivorous crab Neohelice (Chas-
magnathus) granulata, at diVerent tidal heights with a fac-
torial experiment. Abiotic stress increased at both ends of
the tidal gradient. Salinity and anoxia were highest at the
upper and lower edge of the intertidal, respectively. Nutri-
ents and herbivory interacted to control cordgrass biomass,
but their relative importance varied with environmental
context. Herbivory increased at lower tidal heights to the
point that cordgrass transplants onto bare mud substrate
were entirely consumed unless crabs were excluded, while
nutrients were most important where abiotic stress was
reduced. Our results show how the impact of herbivores
and nutrients on plant productivity can be dependent on
environmental conditions and that the lower intertidal lim-
its of marsh plants can be controlled by herbivory.

Keywords Herbivory · Neohelice granulata · Nutrients · 
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Introduction

Whether primary production in ecosystems is controlled by
bottom-up (nutrients or physical factors) or top-down
forces (herbivores and their predators; see Hunter and Price
1992; Power 1992) has been a long-standing debate in ecol-
ogy. Evidence has supported both theories (top-down: Ter-
borgh et al. 2001; Silliman et al. 2005; Halpern et al. 2006;
Myers et al. 2007; bottom-up: Valiela et al. 1976; Peterson
et al. 1993; Nixon and Buckley 2002; White 2007), but
until recently the relative roles of these factors were
debated rather than synthesized (Hunter and Price 1992).
Over the last decade, however, a growing number of studies
have revealed that control of ecosystem productivity is an
interaction of both forces, not the product of a single force
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(Moran and Scheidler 2002; Russell and Connell 2005;
Burkepile and Hay 2006).

Community organization models (Menge and Sutherland
1976, 1987) have hypothesized that the strength of biologi-
cal interactions, like herbivory and competition, diminish
with increasing physical stresses. Numerous studies have
shown that physical stress inXuences consumers (Gough
and Grace 1998; Harley 2003; Silliman et al. 2005), and
may also aVect nutrient uptake (Linthurst and Seneca 1981;
van Katwijk et al. 1999; Emery et al. 2001). For example,
the impact of consumers on salt marsh plants may depend
on the type of stress, herbivore and plants studied (Goran-
son et al. 2004). In general, however, little research has
examined how abiotic factors can interact with nutrient
availability and herbivores to aVect plant productivity
(Dudt and Shure 1994; Feller 1995) and zonation patterns
in communities (Louda 1989).

Understanding processes underlying zonation patterns
has long been a key focus in ecology. Darwin (1859)
pointed out that physical factors usually vary gradually
while species boundaries tend to be comparatively abrupt,
and he ascribed these patterns to the interaction of biotic
(predation and competition) and abiotic factors. Current
models of species zonation, in marine (Bertness and
Leonard 1997) and terrestrial systems (Callaway et al.
2002), postulate that negative biotic interactions increase
in importance towards the most benign extreme of the
environmental gradient, while positive biotic interactions
and physiological tolerance dominate towards the harsh
abiotic extreme. Intertidal systems usually show marked
abiotic stress gradients and, along this gradient, herbiv-
ory, nutrients and physical factors can strongly inXuence
plant distributions. In rocky shore systems, herbivory can
set the lower (Lubchenco 1980) and upper limit (Under-
wood 1980; Cubit 1984) of algal distribution. Physical
factors cause similar results, especially with upper limits
(Connell 1972), while nutrients can indirectly raise the
lower limit (Kautsky et al. 1986). Generalizations from
empirical studies on rocky shores postulate that the upper
limits of species distributions are mostly controlled by
abiotic stress and positive interactions while lower limits
are mostly controlled by competition and consumers (see
Bertness and Leonard 1997). While experimental studies
do not allow generalizations about the maintenance of
plant zonation in mangroves (Ellison and Farnsworth
2001), there is evidence of strong eVects of herbivores
(Smith 1987; Clarke and Kerrigan 2002), abiotic stress
(Clarke and Myerscough 1993; Castañeda-Moya et al.
2006) and nutrient availability (Feller et al. 2003). In salt
marshes, interspeciWc competition generally controls the
upper intertidal limits of plants (Bertness and Leonard
1997), abiotic stress generally controls the lower zonation
limits of plants (Bertness 1991b; Castillo et al. 2000, but

see Bockelmann and Neuhaus 1999), while nutrients, by
aVecting competition, modify boundaries between species
(Levine et al. 1998; Daleo et al. 2008). Herbivores can
modify marsh species distributions (Bertness 1984;
Silliman et al. 2005), but there is little evidence that they
control zonation patterns (but see Furbish and Albano
1994).

Salt marshes are vegetated intertidal areas character-
ized by strong abiotic stress gradients (Bertness and Leon-
ard 1997; Pennings and Bertness 2001), including salinity
(Pennings and Callaway 1992) and anoxia (Howes et al.
1981). In general, salinity increases and anoxia decreases
with marsh height (Pennings and Bertness 2001). Nitro-
gen availability (Valiela et al. 1976; Dai and Wiegert
1996) and herbivory (Silliman and Bortolus 2003; JeVer-
ies et al. 2006) are also recognized as limiting factors for
marsh plants. Another way herbivores, nutrients and
physical factors can aVect plant productivity is by aVect-
ing plant distributional boundaries (Levine et al. 1998;
Silliman et al. 2005). Given the strong inXuence of both
physical and biological control on marsh plants, marshes
are good model systems with which to evaluate the rela-
tive importance of nutrients and consumers along abiotic
stress gradients.

In the Southwestern (SW) Atlantic, salt marshes asso-
ciated with freshwater inputs are dominated by the cord-
grass Spartina densiXora (Isacch et al. 2006). Spartina
spp. productivity is strongly limited by nutrients, since
fertilization increases their biomass by nearly 50% (Daleo
et al. 2008). In these marshes, the abundant burrowing,
herbivorous crab Neohelice (Chasmagnathus) granulata
(Iribarne et al. 2005) can diminish cordgrass biomass by
up to 87% (Bortolus and Iribarne 1999). These crabs (»3
to 4 cm in carapace width) play an important role in the
food web of these marshes, in terms of both biomass and
interactions, reaching densities of up to 60 crabs m¡2

(Iribarne et al. 1997), eating grass (Bortolus and Iribarne
1999; Alberti et al. 2007a) and other crabs (Daleo et al.
2003; Méndez Casariego et al. 2009), aVecting benthic
community structure (Escapa et al. 2004) and mediating
predator–prey interactions (Escapa et al. 2004; Martinetto
et al. 2005). Recent evidence suggests that the intensity of
crab grazing increases by as much as 60% at lower eleva-
tions (Alberti et al. 2007a). This high grazing rate may
contrast with current theoretical models of plant distribu-
tion limits suggesting that a biological factor (i.e., graz-
ing) could be a strong limiting factor at lower elevations.
Based on these observations, we tested the following
hypotheses: (1) nutrients and herbivory interact to deter-
mine marsh plant biomass, but their relative contribution
varies with abiotic stress along an intertidal gradient; and
(2) herbivory can maintain the lower distributional limits
of marsh plants.
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Materials and methods

Study site

This study was carried out at the Mar Chiquita coastal
lagoon (37°46�S, Argentina), a brackish lagoon (salinity
0.5– 34‰) with low-amplitude tides (·1 m) that has been
intensively studied (see Iribarne 2001). Shoreline salt
marshes in the lagoon are dominated by Spartina densiXora
and Sarcocornia perennis (Isacch et al. 2006). The burrow-
ing crab N. granulata is distributed in the tidal Xats and
marshes and is one of the most important macro-inverte-
brates of SW Atlantic salt marshes (Iribarne et al. 1997).
We performed experiments in Wve areas covering most of
the intertidal and a wide range of abiotic conditions. Given
that each tidal height showed particular abiotic conditions
we will refer to these areas as environmental contexts.
Three of these environmental contexts were located in S.
densiXora vegetation: the low marsh-mudXat edge (lower
limit of marsh vegetation with an extension of more than
1,000 m parallel to the shore), the low marsh matrix (S.
densiXora monoculture), and the intertidal border of S. den-
siXora, on the edge of hypersaline bare patches (mid
marsh). The remaining two environmental contexts were
located in lower elevation mudXats, 14 and 28 cm (in tidal
elevation) below the lowest distribution of marsh vegeta-
tion. We chose the Wrst mudXat tidal height because prelim-
inary tests showed that transplants moved to that height
survived when herbivory was prevented, and chose the sec-
ond lower mudXat elevation to determine if they could tol-
erate a much lower elevation.

Environmental context

We obtained a snapshot of abiotic conditions at the study
site, by measuring sediment salinity, ammonium concentra-
tion and anoxia in the Wve environmental contexts, in the
summer (March 2008; when abiotic diVerences between
environmental contexts are expected to be greatest; Bert-
ness 1991a). Even though these single-date samples do not
let us know the abiotic conditions operating during the
whole experiment, they allow us to compare relative envi-
ronmental conditions. Sediment salinity (n = 5 per environ-
mental context) was obtained by collecting random
sediment samples (5 cm diameter, 8 cm deep), which were
weighed, dried to constant weight, mixed with a known
volume of distilled water, measured by refractometry after
48 h, and then corrected by the initial sample water volume,
to reXect the original concentration of salt. Ammonium
concentration (n = 5 per environmental context) was mea-
sured in pore water by the indophenol blue method
(Solórzano 1969). Sediment redox potential (n = 8 per
environmental context) was measured in situ, 5 cm deep in

each environmental context, with a combined platinum
electrode with silver/silver chloride internal reference. Val-
ues were corrected with respect to a reference hydrogen
electrode. The null hypotheses of no diVerences in salinity,
in pore water ammonium concentration and in sediment
redox potential (100 was summed to the raw data and then
it was square-root transformed) between the Wve environ-
mental contexts were evaluated with separate one-way
ANOVAs (Zar 1999). Another potential factor inXuencing
plant performance is herbivore density. Thus, we measured
burrow density (an estimator of crab density; Iribarne et al.
1997) by counting the number of burrows in eight ran-
domly distributed 1-m2 quadrats per environmental context,
and then compared burrow density between environmental
contexts using a Kruskal–Wallis test followed by a non-
parametric multiple comparison test (Conover 1980).

Do nutrients and herbivory eVects vary with the 
environmental context?

EVects on plant biomass

We performed an experiment to evaluate the direct and
interactive eVects of nutrients, herbivory and abiotic stress
on S. densiXora production. The experiment had a fully fac-
torial design (2 £ 2 £ 3): with and without herbivory (con-
trols and exclosures), with and without nutrient addition,
and in three marsh environmental contexts, spanning gradi-
ents in salinity and anoxic stress (low marsh-mudXat edge,
low marsh matrix, middle marsh-hypersaline patch edge).
The experiment ran from December 2005 to March 2008,
and each treatment combination (12), was replicated 8
times (75 £ 75 cm).

Crab-exclusion plots were surrounded by a 1-cm-plastic
mesh fence 40 cm high. Gastropods (Canepuccia et al.
2007), and all other invertebrates in the marsh easily passed
through the mesh (A. Canepuccia and O. Iribarne, unpub-
lished data). Field observations showed that other inverte-
brate herbivores produce leaf wounds diVerent than those
of crabs. Even though vertebrate herbivores could be
excluded by the cages, rodents forage at higher intertidal
levels (A. Canepuccia and J. Alberti, unpublished data) and
produce distinctive grazing marks, cutting stems a few cen-
timeters aboveground (see Vicari et al. 2002), marks that
were not observed in our experiment. Fish could also be
excluded, but there are no herbivorous Wsh in this system
(Cousseau et al. 2001). Nutrient addition treatments
received 60 g (»100 g m¡2) of the slow-release pelletized
fertilizer Ferticare (29% nitrogen, 5% phosphorus, 5%
potassium) monthly. Fertilizer was spread into six artiWcial
holes (5 cm deep, 1 cm diameter) evenly distributed in each
plot that were then Wlled with mud. Experimental units
located on edges between marsh and bare mudXat surfaces
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(low marsh-mudXat, marsh-hypersaline patches) were ini-
tially established to include 50% vegetation and 50% bare
surface (75 £ 37.5 cm of each) to quantify the eVect of
nutrients, herbivores and abiotic stress on the asexual colo-
nization of bare areas (see below).

At the end of the experiment we collected a 20 £ 20-cm
sample of aboveground S. densiXora biomass from the cen-
ter of the vegetated area in each replicate. Live stems were
dried (50°C for 72 h), and weighed. The null hypothesis of
no diVerence in the dry weight of S. densiXora (log-trans-
formed), between environmental contexts, with and without
crabs and nutrient addition was evaluated with a three-way
ANOVA (environmental context, herbivory and nutrients
as Wxed factors), with Tukey tests for a posteriori contrasts.
To test for exclosure artifacts, we compared controls, cage
controls (three sided cages) and exclosures with one-way
ANOVA for each environmental context; no cage eVects
were found (results are given in S1).

EVects on asexual colonization of bare surfaces

Since herbivores, nutrients and abiotic factors can aVect
plant productivity by aVecting plant distributions (Levine
et al. 1998; Silliman et al. 2005), we also monitored the
asexual colonization of unvegetated mudXat surfaces in the
above experiment. We marked the vegetation/mudXat limit
in all low marsh-mudXat edge and marsh-hypersaline patch
edge replicates. In each replicate, we marked Wve Wxed
points on the edge with plastic Xags to detect edge move-
ment. We quantiWed the average distance between the new
position of the edge (i.e., after movement) and the Xags per
replicate and then compared edge movement, with and
without crabs, and nutrient addition using a two-way
ANOVA in each environmental context (herbivory and
nutrients as Wxed factors; marsh-mudXat edge data was
square-root transformed, we added 1 to the raw data to
avoid negative values). The two environmental contexts
were analyzed separately because it was impossible to meet
the assumption of homogeneity of variances in the three-
way design. To detect potential artifacts due to exclosures,
we compared controls, cage controls and exclosures using
one-way ANOVA for each environmental context; no cage
eVects were found (results are given in S1).

Nutrients and herbivory in transplants moved 
to the mudXat

Generally, the lower distributional limit of marsh plants is
thought to be controlled by physiological tolerances to abi-
otic stress (Bertness 1991b; Castillo et al. 2000; Bertness
and Leonard 1997); however, in SW Atlantic salt marshes,
crab herbivory also increases with decreasing marsh height
(Alberti et al. 2007a) and may set lower distribution limits.

To test this, we conducted a third experiment to evaluate
the role of nutrients and crab herbivory on the survival of S.
densiXora transplants moved to two heights in the mudXat.
This experiment had a 2 £ 2 £ 2 factorial design, and was
performed using cordgrass transplants (n = 8 per treatment)
moved into the mudXat 14 and 28 cm below the lowest
limit of marsh vegetation, with and without herbivory (con-
trols and exclosures), and with and without nutrient addi-
tion. Each transplant was extracted using a corer (10 cm
diameter, 35 cm deep, which includes »90% of S. densiX-
ora belowground biomass; Daleo and Iribarne 2009) con-
taining »12 live S. densiXora stems, taken independently
from the marsh-mudXat edge. Crab-exclusion cages were
made of a 1-cm plastic mesh (60 £ 60 £ 60 cm). Nutrient
addition treatments received 40 g (»100 g m¡2) of a slow-
release pelletized fertilizer (29% nitrogen, 5% phosphorus,
5% potassium) monthly. The fertilizer was spread into four
evenly distributed artiWcial holes (5 cm deep, 1 cm diame-
ter) that were then Wlled with mud. To detect potential arti-
facts due to transplanting, we compared the number of live
stems and the percent live between transplant controls
(extracted and then put back in) and unmanipulated con-
trols (n = 6 per group) using a t-test for unequal variances
(Welch approximation tc). The tc is equal to the t-value
when sample sizes are the same, but df decrease as the
diVerence between variances of the two groups increases
(Zar 1999).

After 2 months, we counted the number of live and dead
stems per replicate (transplant), and then compared the
number of live stems (square-root transformed) between
environmental contexts, with and without nutrient addition,
and crab exclosures with a three-way ANOVA (height,
nutrients and herbivory as Wxed factors). To test for exclo-
sure artifacts, we compared controls, cage controls and
exclosures with an ANOVA for each environmental con-
text, and no cage eVects were found (results are given in
S1). The same procedure was used after a year, excluding
the herbivory treatment since all cordgrass transplanted to
the mudXat without cages was entirely eaten by the fourth
month. Hence, we used a two-way ANOVA to compare
means of square-root transformed data between treatments
(height and nutrients as Wxed factors). One year after the
experiments began, transplants inside exclosures were more
than 2 times larger than when they were transplanted, and
the addition of nutrients only aVected transplants 14 cm
below the marsh-mudXat edge (see “Results”). Thus, we
decided to use this mudXat height to run a second experi-
ment (cages located in the low mudXat were removed, and
those transplants were abandoned). To determine if these
transplants were able to survive the herbivory found on the
mudXat, and how nutrients aVected their survival, we
removed all exclosures from these transplants (both fertil-
ized and unfertilized). Thus, these transplants grew for the
123
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Wrst year without grazing pressure (caged) and expanded in
size and distribution during that time. We counted the num-
ber of live stems per replicate, and the following year com-
pared the square-root transformed means of live stems per
transplant between treatments with and without nutrient
addition, before and 1 year after removing exclosures, with
repeated-measures ANOVA (note that we only used those
units originally assigned to crab-exclusion treatments, as all
original control treatments were already dead by the time
we started this second experiment). To quantify diVerences
before and after removing exclosures associated with her-
bivory, we scored the percent live leaves consumed per
stem as an estimate of herbivory pressure (Rand 2002). We
compared herbivory pressure with and without nutrients
before removing exclosures and after a month with repeated-
measures ANOVA on square-root transformed data.

Results

Environmental context

Soil salinity increased signiWcantly with increasing tidal
height. Salinity was lowest in the mudXat, the lowest eleva-
tion habitat, and twice as high on hypersaline patch edges,
the highest elevation habitat (F4,20 = 21.69, P < 0.001;
Fig. 1). Pore-water ammonium had the opposite pattern.
Ammonium concentration was highest in the low mudXat,
and lowest on hypersaline patch edges (F4,20 = 11.57,
P < 0,001; Fig. 1). Like soil salinity, soil redox potential
increased signiWcantly with increasing tidal height
(F4,35 = 62.19, P < 0.001; Fig. 1). Crab densities were high-
est at the low marsh-mudXat edge and at the low marsh
matrix, while almost no crabs were found at the low mud-
Xat (H(4,n = 40) = 34.60, P < 0.001; Fig. 1).

Do nutrients and herbivory eVects vary with the 
environmental context?

EVects on plant biomass

Treatments with increased nutrients had 4.5 times more
biomass than controls on the marsh-mudXat edge, 6.5 times
in the low marsh matrix, and there were no diVerences in
the middle marsh-hypersaline bare patch edge (S2; Fig. 2).
Across all habitats crab herbivory removed nearly 20% of
live Spartina densiXora biomass (S2; Fig. 2).

EVects on asexual colonization of bare surfaces

In the middle marsh (hypersaline patches), asexual coloni-
zation of bare areas was almost zero and was not aVected
by nutrients (F1,28 = 1.55, P > 0.22) or herbivory

(F1,28 = 1.14, P > 0.29; Fig. 3). However, on the marsh-
mudXat edge, excluding crabs and adding nutrients
increased asexual cordgrass movement into the mudXat by
130% (interaction: F1,28 = 7.4, P < 0.05; Fig. 3).

Nutrients and herbivory in transplants 
moved to the mudXat

After 2 months, nutrient addition increased the number of
live stems per transplant by 35%, regardless of crab exclu-
sion and or location (i.e., 14 or 28 cm below the lower limit
of the marsh; S3; Fig. 4). The impact of crab herbivory
diminished with increasing height; the number of stems was

Fig. 1 Variation in environmental conditions across sites where
experiments were conducted: a salinity and ammonium, b redox poten-
tial, c crab density. Elevations above mean low tide (m): 0.42 (Lower
mudXat), 0.56 (Upper mudXat), 0.70 (Marsh-mudXat edge), 0.80
(Marsh matrix), 0.92 (Hypersaline patch). Letters indicate signiWcant
diVerences (P < 0.05) among environmental contexts, for a given abi-
otic factor. Bars are mean + SE
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reduced by 60% at the low mudXat, and 10% at the upper
mudXat (S3; Fig. 4). We found no artifacts due to transplant-
ing (number live stems, tc = 0.92, df = 6, P > 0.39; percent
live stems, tc = 1.77, df = 5, P > 0.13). All transplants with-
out crab exclosures were entirely consumed in 4 months,
and hence, were not further considered. For caged trans-
plants, after the Wrst year, there was no nutrient eVect at the
lowest height; these treatments showed the same number of
stems per transplant as fertilized treatments at the upper
height, which were 6 times larger than controls (interaction:
F1,28 = 15.11, P < 0.001; Fig. 5). At that time we removed
exclosures from the upper height, and by the next month,
herbivory (% of consumed leaves per stem) had more than
doubled (F1,14 = 18.17, P < 0.001), regardless of nutrients
(F1,14 = 2.98, P > 0.1). After a year, 97% of the newly
exposed transplants had been consumed (interaction:
F1,14 = 30.88, P < 0.001; Fig. 6; S4).

Fig. 2 Spartina densiXora live biomass in the experiment manipulat-
ing crab presence and nutrient availability in three diVerent marsh
heights: a marsh-mudXat edge, b marsh matrix, and c hypersaline
patch edge. Statistical results are given in S2
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Discussion

Our results show that nutrients and herbivores interact to
control Spartina densiXora primary production and asexual
colonization of unvegetated areas, but that their relative
importance is context dependent, varying across the inter-
tidal stress gradient. The maximum eVect of nutrient addi-
tion occurred at intermediate elevations. Nutrients did not
aVect primary production at low or high elevations, where
anoxia and high salinities, respectively were potentially
limiting. In contrast, the importance of herbivory increased
with decreasing elevation, to intensities capable of control-
ling colonization and survival on the low intertidal mudXat.
Thus, our results highlight that herbivory can be important
under stressful conditions, when herbivores and plants are
not limited by the same abiotic stresses, and that the lower
limit of marsh plants can be controlled by herbivory.

Environmental context mediates top-down 
and bottom-up control

There has been a long debate about whether natural com-
munities are controlled by top-down or bottom-up forces
(see Hunter and Price 1992; Power 1992). During the last
two decades, however, evidence has emerged showing that
top-down and bottom-up control are coupled (Moran and
Scheidler 2002; Russell and Connell 2005; Burkepile and
Hay 2006). In some cases, nutrient supply can trigger top-
down control, in systems where it is otherwise unimportant
(Bertness et al. 2008; Sala et al. 2008). In our edge move-
ment experiments, herbivory was only evident when plots
were fertilized. Potential causes of this pattern include
increased consumption of enriched marsh plants (Vince
et al. 1981; Silliman and Zieman 2001), or immigration of
herbivores into the fertilized plots (suggested by Hillebrand
2002). Maximum edge movement was <10 cm (in this sys-
tem, S. densiXora growth is very slow; see Alberti et al.
2008) but over time and without herbivory, plants should
be able to occupy much lower tidal heights.

It is also known that herbivores and nutrients can pro-
duce variable results, depending on the abiotic stress [her-
bivory (Harley 2003; Silliman et al. 2005); nutrients
(Linthurst and Seneca 1981; van Katwijk et al. 1999)].
While there are studies considering interactions between
herbivores, nutrients and abiotic stress (Dudt and Shure
1994; Feller 1995), few have directly evaluated the context
dependency of the balance between nutrient and consumer
eVects (see Burkepile and Hay 2006). Here we found that
the balance between the positive eVect of nutrients and the
negative eVect of herbivory on cordgrass productivity var-
ies depending on abiotic conditions. In the high intertidal
where salinity was maximum and anoxia minimum, neither
herbivory nor nutrients played a role as important as in
other environmental contexts. At intermediate heights with
intermediate salinity and anoxia, nutrients produced major
changes in cordgrass biomass, while herbivores were of
greater importance at the lowest tidal heights with maxi-
mum anoxia and nutrient availability. The high impact of
crab herbivory in the low intertidal is expected, because
Neohelice granulata grazing increases when it is sub-
merged (Alberti et al. 2007b). It is not surprising that crab
densities were not related to the impact of crab herbivory as
it has been shown that within a given marsh, there is no cor-
relation between crab density and crab herbivory (Alberti
et al. 2007a), probably due to high crab mobility and the
fact that they prefer to graze while underwater (Alberti
et al. 2007b). Salinity and anoxia diminish the positive
eVects of nutrient enrichment on Spartina alterniXora
(Linthurst and Seneca 1981); hence, it is not surprising that
the greatest impact of nutrient addition was at intermediate
heights where neither of these variables was maximum.

Fig. 5 Number of live S. densiXora stems in transplants moved to the
upper (14 cm below the marsh-mudXat edge) and lower mudXat
(28 cm below the marsh-mudXat edge) after 1 year growing inside
exclosures, with and without nutrient addition. Letters indicate signiW-
cant diVerences (P < 0.05) among treatments

N
um

be
r 

of
 li

ve
 s

te
m

s

0

50

100

150

200

250

a

b

b b

Control Fertilized

Upper mudflat

Lower mudflat

Fig. 6 Number of live S. densiXora stems in transplants moved to the
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Underlying abiotic conditions can also explain diVer-
ences in the performance of caged transplants in the high
and low mudXat. The performance of unfertilized trans-
plants was best at the lowest height, consistent with maxi-
mum nutrient availability. Conversely, nutrient addition did
not have a signiWcant eVect at the lowest height, probably
due to other limiting factors (like low access to carbon
dioxide, light availability, or increased anoxia due to
increased submersion). Indeed, highest anoxia occurred at
that tidal height, and it can limit the eVect of increased
nutrients (Linthurst and Seneca 1981).

Biological interactions and stress factors

Environmental stress models predict that the importance of
negative biological interactions (competition, predation)
diminishes with increasing abiotic stress (Menge and Suth-
erland 1976, 1987) and that the importance of positive
interactions increases with abiotic stress (Bertness and
Hacker 1994; Bertness and Leonard 1997). These predic-
tions have received support from diVerent environments
(Bertness et al. 1999; Huckle et al. 2000; Pugnaire and
Luque 2001). Menge and Farrell (1989), however, found
only partial support for these predictions for negative bio-
logical interactions (competition, predation), concluding
that the model is probably restricted to habitats in which
variation in interaction web structure responds primarily to
environmental stress. Thus, there are habitats where a fac-
tor that is a stressor for a given trophic level is not a stressor
for other trophic levels.

An analogous situation occurs for positive interactions
and stress identity and intensity. For example, in dry envi-
ronments where soil moisture is a critical stressor, species
that reduce stress (increase soil moisture) can have strong
positive eVects on other species. But in more humid envi-
ronments, light availability becomes the limiting stressor
and thus, even though the species that increases soil mois-
ture is still present, its eVects on the other species are null
or negative because soil moisture is no longer the limiting
stressor (see Holmgren et al. 1997).

Many salt marshes have opposing abiotic stress gradi-
ents, with anoxia decreasing and salinity increasing with
marsh height (Pennings and Bertness 2001; Pennings and
Callaway 1992). Thus, one may be expected to Wnd
decreasing importance of negative biotic interactions at
both extremes of the tidal gradient. Our results only par-
tially support this prediction. At the upper extreme (maxi-
mum salinity), herbivory did not play an important role, but
in the lower extreme, where anoxia was maximum, the
impact of herbivory was also maximum. Long Xooding
periods promote soil anoxia, which is a stressor for marsh
plants (Linthurst and Seneca 1981; Bertness 1991b; Gough
and Grace 1998; Castillo et al. 2000), but Xooding also

promotes crab herbivory (Alberti et al. 2007b). Thus, there
is a decoupling of stress at diVerent trophic levels, violating
the underlying assumptions of environmental stress models
(Menge and Sutherland 1976, 1987). Our study highlights
the importance of taking into account the context depen-
dency of most stressors that typically vary among species
and environmental and biological contexts.

Biotic and abiotic interactions aVecting zonation 
in intertidal communities

Many processes inXuence species zonation including: (1)
varying physiological tolerance to abiotic stress, (2) diVer-
ential dispersal, (3) interspeciWc competition, and (4) pre-
dation pressure (see Louda 1989). The relative importance
and interactions of these processes are environmentally
dependent. In mangroves, for example, predation (Smith
1987; Clarke and Kerrigan 2002), dispersal (Sousa et al.
2007), interspeciWc competition and abiotic stress (Clarke
and Myerscough 1993) can set zonation patterns, but most
evidence suggest that species distribution limits are set by
interactions among these factors, that vary among species
and sites (Duke et al. 1998; Ellison and Farnsworth 2001).

There are some general processes that operate to set
zonation patterns in other intertidal systems. The paradigm
emerging from studies in salt marshes and rocky shores is
that competitively dominant species monopolize physically
benign habitats and displace competitive subordinates to
physically harsh habitats, where abiotic conditions preclude
competitive dominance (Bertness and Leonard 1997). In
these systems, species distributions are controlled by physi-
ological tolerances to potentially limiting abiotic stresses
[rocky shores (Connell 1972); marshes (Pennings and
Callaway 1992)], but positive interactions generally expand
these boundaries by ameliorating stress intensity (Bertness
and Leonard 1997). Thus, physical factors and positive
interactions control lower distributional limits in salt
marshes (Bertness 1991b; Bertness and Leonard 1997;
Castillo et al. 2000), and the upper boundaries in rocky
shores (Connell 1972; Bertness and Leonard 1997).

These generalizations, however, are context depen-
dent. Underwood and Denley (1984) suggested that
recruitment limitation may often overshadow these gen-
eralizations. Underwood (1980) and Cubit (1984) found
that herbivores could be more important than physical
factors setting the upper distribution limits of algae on
rocky shores. Our results show a similar situation in a salt
marsh. Crab herbivory became so intense at low tidal
heights that only transplants protected from crab herbiv-
ory could survive, revealing that S. densiXora tolerates
more extreme abiotic conditions than its natural distribu-
tion shows and that herbivory can set the lower distribu-
tion limit of marsh plants.
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While our generalizations must be made carefully since
we did not replicate these experiments in other marshes, we
believe that similar results can be expected for other SW
Atlantic salt marshes, as crab herbivory on Spartina spp. is
extremely common and crab herbivory is typically most
intense in the low marsh on the edge of mudXats (Alberti
et al. 2007a). It is also important to mention that using
transplants can lead to the overestimation of the importance
of herbivory, as it was shown that the impact of crab graz-
ing increases as S. densiXora patch size decreases (Alberti
et al. 2008). Nonetheless, we believe that our results are not
artifacts. In another experiment, 1-m2 S. densiXora trans-
plants (more than 100 times larger than ours) moved to the
mudXat grew vigorously for more than 2 years inside exclo-
sures, but when the exclosures were removed all died in
less than 2 years (E. Fanjul, unpublished data).

In conclusion, our results highlight the importance of
nutrients for marsh plants’ productivity (Valiela et al. 1976;
Dai and Wiegert 1996), and contribute to growing evidence
that herbivores can play a major role in controlling the
abundance, distribution and productivity of marsh plants
(Silliman et al. 2005; JeVeries et al. 2006). Most impor-
tantly, our results show that the relative importance of these
two mechanisms of control are dependent on environmental
context and suggest that herbivores can control the low
intertidal distribution and extent of cordgrass on SW Atlan-
tic marshes (plants were able to survive when growing at
least 28 cm lower than in their natural distribution, but only
in the absence of crab herbivory). Since vegetated marshes
provide important ecosystem services including nursery
grounds for estuarine nekton (Rozas and Minello 1998),
biochemical Wltering that diminishes nutrients and pollu-
tants (Bertness et al. 2004), and shoreline buVers to erosion
and storm damage (Pennings and Bertness 2001), limiting
the abundance and distribution of cordgrass crabs could
aVect coastal ecosystem functioning.
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