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Abstract Herbivorous insects flux considerable amounts

of nitrogen from the forest canopy to the soil in the form of

frass. The amount of nitrogen fluxed varies depending on

the characteristics of the herbivores, their food resources,

and their physical environment. We used concepts from

metabolic ecology and ecological stoichiometry to develop

a general model of individual nitrogen flux via frass fall for

moth and sawfly larvae from a temperate hardwood forest

in northern Wisconsin, USA. We found that individual

nitrogen flux (QN, mg N/day) was related to larval body

mass (MB, mg dry), short-term variation in environmental

temperature (T, K), and larval nitrogen concentration (NB,

proportion dry mass) as QN = e25.75MB
0.77 e–0.83/kTNB

–1.56,

where k is Boltzmann’s constant (8.62 · 10–5 eV/K). We

also found that larval nitrogen flux did not vary with the

nitrogen concentration of food, and suggest that this was

due to compensatory feeding by larvae living on low-

quality leaves. With further work, models of individual N

flux could be used to scale individual fluxes to population

and community levels, and thus link the characteristics of

insect herbivore communities with the flow of nitrogen

through forested ecosystems.

Keywords Body mass � Consumer-driven nutrient

cycling � Ecological stoichiometry � Environmental

temperature � Forest insects � Hymenoptera � Lepidoptera �
Metabolic theory of ecology

Introduction

Herbivores play important roles in nutrient cycling in both

aquatic and terrestrial ecosystems (Mattson and Addy

1975; Carpenter and Kitchell 1988; McNaughton et al.

1988; Belovsky and Slade 2000; Vanni 2002). In forested

biomes, in particular, larval insect herbivores are respon-

sible for transforming and translocating (sensu Vanni 2002)

considerable amounts of nitrogen (N) from the canopy to

the soil in the form of frass (Fogal and Slansky 1985;

Hollinger 1986; Reynolds and Hunter 2001; Lovett et al.

2002; Hunter et al. 2003). Frass-derived N typically falls at

the peak of the growing season and is in a highly labile

form (Lovett and Ruesink 1995). As a result, it is rapidly

transformed by microbes, absorbed by plants, or flushed

from the local system during precipitation events (Swank

et al. 1981; Webb et al. 1995; Eshleman et al. 1998; Frost

and Hunter 2007).

Nitrogen inputs from insect frass are typically quantified

by collecting frass in trays placed on the forest floor,

weighing and analyzing the N concentration of the frass,

and calculating the amount of N deposited per unit area and

time (Fogal and Slansky 1985; Hunter et al. 2003). A

complementary approach to estimating frass N inputs is to

scale individual N flux to the community level using gen-

eral models of individual flux and information about

community structure. This strategy has been used to study

N flux by a variety of aquatic (Peters and Rigler 1973;

Ejsmont-Karabin 1984; Grimm 1988; Wen and Peters

1994; Vanni et al. 2002) and mammalian herbivores (Clark

et al. 2005), but this approach has not been used with

herbivorous insects.

Our primary objective in the present study was to de-

velop a general model of individual N flux via frass pro-

duction for larval insect herbivores using concepts from
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ecological energetics and metabolic ecology (Grodzinski

et al. 1975; Peters 1983; Gillooly et al. 2001, 2005; Enquist

et al. 2003; Brown et al. 2004; Allen et al. 2005) and

nutritional ecology and ecological stoichiometry (Sterner

et al. 1992; Elser et al. 1996; Elser and Urabe 1999; Sterner

and Elser 2002). The scaling of individual fluxes to the

community level will be addressed elsewhere.

Model

The quantity of N fluxed via frassfall by an individual

insect herbivore per unit time (QN, mg N/day) should be

related to the individual frass production rate (MF, mg dry

frass/day) and the N concentration of frass (NF, proportion

of frass dry mass) as:

QN ¼ MFNF ð1Þ

From metabolic ecology, we expect individual frass

production to be proportional to the rate of ingestion,

which, in turn, should be proportional to whole organism

metabolic rate when animals are not using internal stores

of energy (Lavigne 1982; Peters 1983; Peters et al. 1996;

Brown et al. 2004). If frass production and metabolic rate

are approximately proportional to one another, then frass

production should be related to larval body mass (MB,

mg dry) as a power function (Kleiber 1932; Hemmingsen

1960; Peters 1983; Gillooly et al. 2001) and to short-term

variation in environmental temperature (from hours to

days, where minimal temperature acclimation occurs; T,

K) as an exponential function (Crozier 1924; Robinson

et al. 1983; Clarke and Johnston 1999; Gillooly et al.

2001). The combined effects of body mass and

temperature on frass production can thus be modeled

using an equation similar to the metabolic rate equation of

Gillooly et al. (2001):

MF / Mb
Be�c=kT ð2Þ

Here, b is a mass-scaling exponent, c is a coefficient

describing the temperature dependence of frass production,

sometimes called the ‘‘critical thermal increment’’ or

‘‘apparent activation energy’’ for a complex biological

process (Withers 1992), and k is Boltzmann’s constant

(8.62 · 10–5 eV/K) (Gillooly et al. 2001). Given the pro-

portionality of metabolic rate and frass production, values

for b and c should fall within ranges generally observed for

metabolic rate, and thus 0.65 < b < 0.85 (Peters 1983;

Glazier 2005) and 0.25 < c < 0.80 eV (Vasseur and

McCann 2005; Meehan 2006). Metabolic scaling theory

predicts that values for b and c should be 0.75 and 0.65 eV,

specifically (West et al. 1997; Gillooly et al. 2001; Banavar

et al. 2002; Gillooly et al. 2006).

The N concentration of frass is influenced by a complex

suite of physiological factors (Nation 2002). It can be

approximated, however, using abstractions provided by

ecological stoichiometry (Sterner et al. 1992; Elser and

Urabe 1999; Sterner and Elser 2002). First, the N con-

centration of frass is expected to be a positive function of

the N concentration of food (NL, proportion of leaf dry

mass), simply because a large fraction of N in food is not

absorbed by larvae. Second, ecological stoichiometry pre-

dicts that consumers showing elemental homeostasis

should excrete absorbed N above their physiological de-

mands. Most insect herbivores studied have demonstrated

partial to complete N homeostasis (Fox and Macauley

1977; Slansky and Feeny 1977; Raubenheimer and Simp-

son 2004; Kagata and Ohgushi 2006). Thus, N excretion

should reinforce the positive relationship between frass and

leaf N concentration that is due to lack of absorption.

Third, according to ecological stoichiometry, the physio-

logical demands for N are proportional to the N concen-

tration of an organism’s body (NB, proportion of body dry

mass). Thus, frass N concentration should be inversely

related to body N concentration. These relationships can be

formalized simply as:

NF / N�d
B Ng

L ð3Þ

We approximate the relationships between the N con-

centration of frass, food, and larvae using power functions

because they are simple and flexible mathematical forms,

i.e., depending on the values of d and g, the functions can

fit relationships that are positive or negative, accelerating

or decelerating.

Substituting Eqs. 2, 3 into Eq. 1 gives:

QN ¼ a Mb
Be�c=kT N�d

B Ng
L ð4Þ

Here, a is a normalization constant with units of mg N ·
day–1 · mg dry body mass–b. Equation 4 is a general

model for individual N flux via frass fall by a larval insect

herbivore. The model is an intentional simplification of

many complex physiological processes that vary across

age, sex, and taxonomic groups. This simplification,

admittedly, reduces the precision of the model when pre-

dicting N flux for any particular group. However, by cre-

ating a general model, our intention is to trade precision for

applicability, and to provide a means to approximate frass-

derived N inputs across a diverse community of larval in-

sect herbivores. Equation 4 is based on principles from

metabolic ecology and ecological stoichiometry. In the

process of testing this model, we hoped to simultaneously:

(1) evaluate a new tool for studying insect-derived N in-

puts, and (2) assess the generality of several expectations

from ecological theory.
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Materials and methods

To evaluate the individual N flux model described above,

we assembled a dataset that included information on frass

production, frass N concentration, larval body mass, envi-

ronmental temperature, larval N concentration, and leaf N

concentration for a variety of larval insect herbivores

common to the hardwood forests of the Great Lakes region.

The dataset was compiled from two different studies of

individual N flux. One study was of moth and sawfly larvae

collected from the field (hereafter, ‘‘field animals’’) and a

second study was of moth larvae that were reared in the

laboratory (hereafter, ‘‘lab animals’’).

Field animals

Field animals included 87 larvae, from 22 species of moths,

butterflies, and sawflies (Table 1). Larvae were collected

opportunistically from the lower branches of eight domi-

nant tree species (Table 1) as they were encountered during

walks through forest stands in Onieda County, Wisconsin,

USA. We collected larvae, along with corresponding host

plant foliage, placed them into plastic bags, and stored

them in a cooler for 1–3 h until they were transported to the

laboratory.

At the lab, larvae were transferred, along with their food

and a moist piece of tissue paper, into 20-ml polyethylene

vials for 24-h feeding trials. In all, 60 feeding trials were

conducted using the 87 field animals. The number of ani-

mals was greater than the number of trials because, on ten

occasions, 2–7 similarly sized animals were placed into one

vial to increase the quantity of frass produced during the

trial. Before each trial, we weighed larvae and divided the

total mass by the number of larvae to estimate the average

pre-trial wet mass. During trials, animals were kept at room

temperature, 22 �C, under a natural light cycle of 15:9

light:dark hours. After the feeding trial, we collected frass

from the bottom of the vial for frass production and N

concentration estimates, reweighed larvae, calculated a

post-trial wet mass, calculated a midpoint wet mass as the

average of pre- and post-trial wet masses, and transferred

larvae and leaves to a new vial for an additional 24-h

period so that additional frass could be collected for

chemical analysis. Afterwards, we reweighed larvae and

promptly placed frass, larvae, and foliage into a freezer.

We dried frass, larvae, and foliage in an oven (55 �C)

and weighed frass and larvae. We converted midpoint wet

mass for each trial to midpoint dry mass using the following

conversion equations: lepidopteran dry mass = 0.15 · wet

mass1.05 (R2 = 0.99); hymenopteran dry mass = 0.16 · wet

mass1.05 (R2 = 0.98). Midpoint dry mass was then con-

verted to a final larval mass per trial by multiplying mid-

point dry mass by a factor of 0.90 to account for the mass of

gut contents (Bowers et al. 1991). Per capita frass produc-

tion rate was calculated as the dry mass of frass produced

over the one-day trial divided by the number of animals in

the trial.

Frass, foliage, and larvae were then homogenized using

a mortar and pestle and 2–10 mg samples were packed into

tin capsules for N analysis on either a Carlo Erba (Milan,

Italy) NV 2100 or a Thermo Finnigan (San Jose, CA, USA)

Flash 1112 elemental analyzer. Larval N concentration was

corrected for that of gut contents using the equation: larval

concentration = (measured concentration – (0.10 · aver-

age concentration of leaf and frass))/0.90, after Fagan et al.

(2002). The coefficient, 0.10, represented the approximate

fraction of larval dry mass that is gut contents (Bowers

et al. 1991), and was multiplied by the average concen-

tration of the leaf and frass because that was our best

estimate of the N concentration of the total gut contents.

Larval N flux per feeding trial was calculated as the per

capita frass production rate multiplied by frass N concen-

tration.

On six occasions, larvae, frass, or leaf samples from a

given feeding trial were too small for N analysis. As a

result, materials from 2–3 feeding trials were pooled before

N analysis and the same larval, frass, and leaf N concen-

tration was used to represent the two or three trials included

in that pool (Table 1). This caused a minor lack of inde-

pendence in our N concentration data. The N flux data from

pooled trials were not entirely correlated, however, because

N flux was the product of both N concentration and frass

production, and all trials produced independent frass pro-

duction measurements. Our decision to use a common set

of N concentrations across 2–3 trials on six occasions had

no effect on the conclusions of this study.

Lab animals

Lab animals used in this study were whitemarked tussock

moth (Orygia leucostigma) larvae. Larvae were raised from

eggs purchased from the Canadian Forest Service (Sault St.

Marie, ON, Canada). Egg masses were divided into two

groups and put into two rearing dishes in a growth chamber

set to 22 �C and a 14:10 light:dark hour cycle. Eggs hat-

ched after two weeks of incubation and half of the larvae

were fed aspen leaves with a high nitrogen concentration,

while half were fed aspen leaves with a low nitrogen

concentration. Leaves came from ten potted trees propa-

gated from a single aspen clone; five of the ten trees were

given 4.5 g/L soil of slow release fertilizer (18:6:12, N:P:K

without micronutrients) in May 2004 and 2006 to increase

nitrogen content of foliage. At the time of this study, the

trees were in their fourth growing season.

As above, N flux was measured during 24-h feeding

trials in 20-ml vials. Trials were conducted at various
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Table 1 Data used in this analysis

Larva Leaf Frass Flux

Species n Mean body

mass (mg)

N Species N Per capita frass

production

(mg/day)

N Per capita

N flux

(mg/day)

Field animals

Hymenoptera

Arge pectoralis 7 0.18 0.106 Corylus cornuta 0.023 0.91 0.019 0.02

Arge pectoralis 3 1.33 0.100 Corylus cornuta 0.025 4.13 0.019 0.08

Arge pectoralis 3 1.65 0.105 Corylus cornuta 0.027 4.44 0.021 0.09

Arge pectoralis 3 1.78 0.093 Corylus cornuta 0.022 4.72 0.021 0.10

Cimbex americana 1 204.49 0.077 Betula papyrifera 0.020 219.39 0.017 3.79

Cimbex americana 1 268.52 0.075 Betula papyrifera 0.025 322.61 0.016 5.23

Cimbex americana 1 75.06 0.082 Tilia americana 0.026 43.30 0.020 0.86

Lepidoptera

Achatia distincta 1 53.84 0.089 Populus tremuloides 0.034 30.94 0.025 0.78

Acronicta leporine 1 76.77 0.082 Populus tremuloides 0.022 96.12 0.024 2.33

Archips cerasivorana 1 6.63 0.081 Quercus rubra 0.024 7.09 0.023 0.16

Bucculatrix ainseliella 3 0.65 0.096 Quercus rubra 0.029 1.10 0.028 0.03

Bucculatrix ainseliella 4 0.66 0.096 Quercus rubra 0.029 1.33 0.028 0.04

Bucculatrix ainseliella 1 1.17 0.096 Quercus rubra 0.029 4.80 0.028 0.13

Bucculatrix ainseliella 1 1.60 0.100 Quercus rubra 0.025 3.85 0.020 0.08

Bucculatrix ainseliella 2 1.09 0.102 Quercus rubra 0.027 2.70 0.024 0.06

Bucculatrix ainseliella 1 1.36 0.102 Quercus rubra 0.027 3.39 0.024 0.08

Bucculatrix ainseliella 3 1.43 0.102 Quercus rubra 0.027 3.67 0.024 0.09

Ellida caniplaga 1 14.39 0.106 Tilia americana 0.024 27.00 0.021 0.57

Erranis tiliaria 1 37.22 0.081 Acer rubrum 0.016 28.62 0.020 0.57

Erranis tiliaria 1 31.76 0.086 Betula papyrifera 0.024 25.98 0.020 0.52

Erranis tiliaria 1 20.90 0.088 Betula papyrifera 0.022 25.67 0.020 0.51

Erranis tiliaria 1 46.44 0.101 Quercus rubra 0.021 23.83 0.025 0.60

Erranis tiliaria 1 42.40 0.101 Populus tremuloides 0.024 34.32 0.020 0.70

Erranis tiliaria 1 43.52 0.103 Betula papyrifera 0.029 10.70 0.038 0.41

Erranis tiliaria 1 43.06 0.107 Betula papyrifera 0.026 22.49 0.025 0.55

Erranis tiliaria 1 53.26 0.107 Betula papyrifera 0.027 22.46 0.024 0.54

Erranis tiliaria 1 45.75 0.108 Betula papyrifera 0.028 27.35 0.019 0.51

Erranis tiliaria 1 12.33 0.112 Betula papyrifera 0.023 7.38 0.021 0.15

Erranis tiliaria 1 53.23 0.117 Betula papyrifera 0.028 28.31 0.028 0.80

Erranis tiliaria 1 42.44 0.130 Acer rubrum 0.020 12.72 0.029 0.36

Heterocampa guttivitta 1 113.16 0.091 Betula papyrifera 0.018 228.91 0.023 5.34

Hyphantria cunea 1 2.26 0.117 Prunus virginiana 0.025 2.96 0.013 0.04

Hyphantria cunea 1 1.81 0.128 Prunus virginiana 0.026 1.28 0.015 0.02

Hyphantria cunea 2 2.39 0.128 Prunus virginiana 0.026 1.40 0.015 0.02

Lambdina fiscellaria 1 4.22 0.095 Betula papyrifera 0.024 3.14 0.016 0.05

Nadata gibbosa 1 105.73 0.091 Betula papyrifera 0.024 130.93 0.017 2.25

Orgyia leucostigma 1 18.43 0.090 Corylus cornuta 0.024 33.40 0.018 0.59

Orgyia leucostigma 1 45.60 0.093 Betula papyrifera 0.019 65.34 0.020 1.30

Orgyia leucostigma 1 1.52 0.107 Acer rubrum 0.012 2.79 0.013 0.04

Orgyia leucostigma 1 1.18 0.111 Alnus incana 0.019 2.85 0.012 0.03

Orgyia leucostigma 2 0.76 0.116 Alnus incana 0.022 2.06 0.015 0.03

Orgyia leucostigma 1 0.96 0.121 Acer rubrum 0.016 1.15 0.016 0.02

Polyphemus sp. 1 23.11 0.103 Quercus rubra 0.025 15.04 0.020 0.30
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masses over the course of larval development. In total, 11

trials were conducted using 39 larvae. The number of

animals was greater than the number of trials because, in

five cases, 2–11 similarly sized animals were placed into

one vial for a feeding trial. For each trial, tussock moth

larvae were weighed, an average pre-trial wet mass was

calculated as described above, and larvae, fresh aspen fo-

liage, and a moist piece of tissue paper were placed into a

vial. During feeding trials, vials were placed into envi-

ronmental chambers at 15 or 30 �C. After 24 h, the vials

were removed from chambers and placed directly into a

freezer.

Samples were then freeze-dried and larvae and frass

were weighed. Post-trial dry mass per larva was calculated

for each trial as the total dry mass of all larvae divided by

the number of larvae in vial. A pre-trial dry mass was

estimated for each trial using pre-trial wet mass and the

function: larval dry mass = 0.17 · wet mass0.98

(R2 = 0.99). A midpoint dry mass was then calculated as

the average of pre- and post-trial dry masses. A final larval

mass for each trial was calculated by correcting midpoint

average dry mass for gut contents using the equation: gut-

content-free dry mass = 0.78 · midpoint dry mass1.01

(R2 > 0.99). The gut content correction function was pro-

Table 1 continued

Larva Leaf Frass Flux

Species n Mean body

mass (mg)

N Species N Per capita frass

production

(mg/day)

N Per capita

N flux

(mg/day)

Unknown Lepidoptera A 1 2.55 0.089 Tilia americana 0.027 6.40 0.019 0.12

Unknown Lepidoptera B 1 1.04 0.105 Tilia americana 0.030 2.70 0.018 0.05

Unknown Lepidoptera C 1 0.50 0.105 Tilia americana 0.030 0.76 0.018 0.01

Unknown Lepidoptera D 1 9.84 0.105 Populus tremuloides 0.028 9.80 0.012 0.11

Unknown Lepidoptera D 1 1.93 0.097 Populus tremuloides 0.026 2.09 0.010 0.02

Unknown Lepidoptera E 1 19.32 0.130 Betula papyrifera 0.028 9.06 0.018 0.16

Unknown Lepidoptera E 1 19.79 0.084 Betula papyrifera 0.023 8.70 0.030 0.26

Unknown Lepidoptera E 1 20.33 0.111 Betula papyrifera 0.027 8.41 0.030 0.25

Unknown Lepidoptera E 1 65.44 0.078 Betula papyrifera 0.019 52.70 0.021 1.08

Unknown Lepidoptera F 1 7.40 0.076 Acer rubrum 0.019 6.63 0.017 0.12

Unknown Lepidoptera F 1 8.94 0.078 Acer rubrum 0.020 9.00 0.015 0.13

Unknown Lepidoptera G 1 2.36 0.085 Betula papyrifera 0.034 2.58 0.031 0.08

Unknown Lepidoptera G 1 4.94 0.085 Betula papyrifera 0.034 6.78 0.031 0.21

Unknown Lepidoptera G 1 7.01 0.116 Betula papyrifera 0.026 6.30 0.014 0.09

Unknown Lepidoptera H 1 3.02 0.080 Quercus rubra 0.024 5.43 0.015 0.08

Unknown Lepidoptera H 1 3.52 0.100 Quercus rubra 0.025 5.22 0.020 0.10

Unknown Lepidoptera H 1 5.48 0.093 Quercus rubra 0.030 4.47 0.024 0.10

Lab animals

Lepidoptera

Orgyia leucostigmaa 11 0.47 0.116 Populus tremuloides 0.014 2.58 0.007 0.02

Orgyia leucostigmab 10 0.57 0.111 Populus tremuloides 0.011 1.37 0.006 0.01

Orgyia leucostigmaa 9 0.89 0.132 Populus tremuloides 0.027 4.10 0.021 0.08

Orgyia leucostigmaa 2 7.03 0.099 Populus tremuloides 0.014 29.79 0.006 0.18

Orgyia leucostigmaa 2 7.52 0.102 Populus tremuloides 0.013 33.39 0.007 0.24

Orgyia leucostigmab 1 7.58 0.097 Populus tremuloides 0.015 11.98 0.007 0.08

Orgyia leucostigmab 1 15.38 0.094 Populus tremuloides 0.013 21.61 0.009 0.19

Orgyia leucostigmaa 1 23.89 0.114 Populus tremuloides 0.028 59.84 0.025 1.50

Orgyia leucostigmaa 1 25.28 0.112 Populus tremuloides 0.025 74.45 0.021 1.57

Orgyia leucostigmaa 1 28.11 0.104 Populus tremuloides 0.029 71.23 0.025 1.79

Orgyia leucostigmab 1 41.48 0.094 Populus tremuloides 0.013 43.55 0.009 0.39

Each row is a replicate feeding trial. Masses are dry mass and N concentrations are proportion dry mass

Ambient temperature for trials was 22 �C except for those denoted by a(30 �C) and b(15 �C)

Bolded N concentrations indicate pooled samples
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duced for the tussock moths in our study following the

fasting method of Bowers et al. (1991). Per capita frass

production rate for each of these trials was calculated as

described previously for field animals. The N concentra-

tions of frass, foliage, and larvae were also quantified as

described previously. Larval N concentration was corrected

for gut contents using the equation given for field animals.

Here, however, we used a gut content proportion of 0.22,

which was calculated from our fasting tussock moth larvae.

Finally, larval N flux per feeding trial was calculated as

described previously.

Data analysis

We linearized the N flux model by taking the natural log-

arithm of both sides of Eq. 4 and fitted it to natural-log-

transformed data using multiple regression. The full linear

model used in our analysis was ln(QN) = b0 + b1

ln(MB) + b2 1/kT + b3 ln(NB) + b4 ln(NL), where the

regression coefficients b0, b1, b2, b3, and b4 corresponded

with ln(a), b, c, d, and g, respectively, in Eq. 4. We used

ANOVA to evaluate the contribution of each term, and

calculated 95% confidence intervals to assess the uncer-

tainty around estimated model coefficients.

Results

Larval body masses of field animals ranged from 0.18 to

268.52 and averaged 28.16 mg dry, while larval N con-

centration ranged from 7.5 to 13 and averaged 9.9%, leaf

N concentration ranged from 1.2 to 3.4 and averaged

2.5%, and N fluxes ranged from 0.01 to 5.34 and aver-

aged 0.56 mg N/day (Table 1). Larval body mass of lab

animals ranged from 0.47 to 41.48 and averaged

14.38 mg dry, while larval N concentration ranged from

9.4 to 13.2 and averaged 10.7%, leaf N concentration

ranged from 1.1 to 2.9 and averaged 1.8%, and N fluxes

ranged from 0.008 to 1.79 and averaged 0.55 mg N/day

(Table 1).

When we combined information from studies of field

and lab animals, we had data for 71 feeding trials. When

we fit these data to the linear version of Eq. 4, we found

that body mass, temperature, and body N concentration

terms were related to N flux as:

ln QNð Þ ¼ 25:75þ 0:77 ln MBð Þ � 0:83

kT
� 1:56 ln NBð Þ

ð5Þ

The model fit the N flux data well, with a whole model

R2 of 0.89. The coefficients for the intercept, body mass

(F(1,67) = 424.23; P < 0.001), temperature (F(1,67) = 28.00;

P < 0.001), and body N concentration (F(1,67) = 10.83;

P = 0.002) terms had 95% confidence intervals of 13.74–

37.77, 0.69–0.84, –1.14 to –0.52, and –2.50 to –0.61,

respectively. Contrary to our expectations, ANOVA indi-

cated that the leaf N term (F(1,66) = 1.85; P = 0.18) was not

a significant predictor of N flux.

Figure 1 depicts the relationships described in Eq. 5.

For each panel in Fig. 1, we standardized N flux rates for

two of the independent variables in order to demonstrate

the partial relationship between N flux and the third

independent variable. In panel a, N flux was standardized

for a temperature of 293 K (20 �C) and a larval N con-

centration of 0.10 using the equation: standardized

QN = QN (e0.83/kT NB
1.56) (e–0.83/k293 0.10–1.56). In panel b,

N flux was standardized for a larval mass of 20 mg and

an N concentration of 0.10 using the equation: standard-

ized QN = QN(MB
–0.77 NB

1.56) (200.77 0.10–1.56). In panel c,

N flux was standardized for a larval mass of 20 mg and a

temperature of 293 K using the equation: standardized

QN = QN (MB
–0.77 e0.83/kT) (200.77 e–0.83/k293). Several pat-

terns are evident in Fig. 1. First, body mass accounted for

more variation (partial R2 = 0.86) in individual N flux

than did environmental temperature (partial R2 = 0.29) or

body N concentration (partial R2 = 0.14). Second, the

relationships between N flux and body mass and N flux

and body N concentration were reasonably represented by

power functions, i.e., straight lines could be fitted to the

data on log–log axes. Third, the relationship between N

flux and temperature was reasonably represented by an

exponential function, i.e., a straight line could be fit to the

data on log-linear axes.

Discussion

Our primary objective in this study was to construct a

general model of individual N flux for a novel group of

herbivores using concepts from metabolic ecology and

ecological stoichiometry. We found that a model that

included larval mass, environmental temperature, and

larval N concentration explained nearly 90% of the var-

iation in the flux of egested and excreted N. We evaluated

the model using data from a wide variety of insect (22)

and tree (8) species, and over a broad range in body mass

(0.18–268.52 mg dry), temperature (15–30 �C), larval N

concentration (7.5–13.2%), and leaf N concentration (1.1–

3.4%). The model should yield reasonable N flux pre-

dictions for moth and sawfly larvae from hardwood for-

ests of the upper Great Lakes region. However, the model

should be considered a quantitative hypothesis to be tes-

ted before it is used in systems where species composi-

tion, body mass range, temperature, or leaf N

concentration differs markedly.
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Larval body mass

Our analysis showed that the relationship between larval N

flux and larval mass was well fit by a power function with a

mass-scaling exponent of 0.77 (Fig. 1a). Thus, for a given

environmental temperature and larval N concentration, a

100-fold increase in body mass corresponded with a 35-

fold increase in N flux. Figure 1a illustrates how this pat-

tern appeared to hold across multiple field-collected spe-

cies and within lab-reared whitemarked tussock moths. We

are aware of only one previous report on the mass depen-

dence of total N flux across terrestrial animals of varying

species and sizes. Brody (1945) showed that the flux of

excreted and egested N by domesticated mammals and

birds scaled with body mass raised to the 0.74 power.

Studies conducted on aquatic organisms have shown that N

excretion, on its own, scales with body mass raised to the

powers of 0.85 (Brett and Groves 1979), 0.78 (Schaus et al.

1997), and approximately 0.79 (from Fig. 2 in Vanni et al.

2002) for fish, and 0.79 for zooplankton (Wen and Peters

1994).

In developing the individual N flux model, we reasoned

that N flux would be proportional to egestion rate, which,

in turn, would be proportional to metabolic rate. Accord-

ingly, the mass-scaling exponent of 0.77 was similar to

scaling exponents for egestion rates from other animal

studies, which have ranged from 0.59 for crabs (Cammen

et al. 1980), to 0.63 for mammals (Blueweiss et al. 1978),

0.68 for insects (Peters et al. 1996), 0.79 for birds and

mammals (Peters et al. 1996), 0.91 and 0.81 for benthic

invertebrates (McDiffett 1970; Hargrave 1972), 0.93 for

lepidopteran larvae (Smith 1972), and 1.18 for reptiles and

amphibians (Peters et al. 1996). The mass-scaling exponent

of 0.77 was also centered within the range of 0.65–0.85

generally observed for metabolic allometries (Peters 1983;

Glazier 2005), was identical to the mass-scaling exponent

of 0.77 observed for larval lepidopteran metabolic rate

(Smith 1972), and was very close to and not significantly

different from the value of 0.75 predicted by metabolic

scaling theory (West et al. 1997; Banavar et al. 2002; West

and Brown 2005).

Environmental temperature

We found that short-term variation in environmental tem-

perature was significantly related to variation in individual

N flux. The relationship between temperature and N flux

was reasonably represented by the Boltzmann–Arrhenius

equation with a critical thermal increment of 0.83 eV

(Fig. 1b). Given this functional form and temperature

coefficient, an increase in environmental temperature from

20 to 25 �C would result in a 75% increase in individual N

flux. Relatively little has been published on the effects of

temperature on herbivore nutrient fluxes, and all of the

information available relates to the temperature depen-

dence of N excretion by aquatic organisms. Wen and Peters

(1994) assessed N excretion by zooplankton using data

compiled from the literature. They found that Q10 values

(the factorial increase in a rate with a temperature increase

of 10 �C) for N excretion averaged 2.0, and reported that

Fig. 1a–c Relationship between standardized larval nitrogen flux

(excreted and egested nitrogen, mg N day–1) and a larval body mass

(mg dry), b environmental temperature (1/kT, where temperature, T,

is in K and k is 8.62 · 10–5 eV/K), and c larval N concentration

(proportion of dry mass) for field-collected (open triangles) and lab-

reared (filled circles) larvae. All axes are on a logarithmic scale

except for temperature. Standard larval masses, temperatures, and

larval N concentrations are given per panel. See text for further details

Oecologia (2007) 153:833–843 839

123



other reviews (Ejsmont-Karabin 1984) have given Q10

values as high as 2.8. The critical thermal increment from

our study can be converted to a Q10 value using the

equation Q10 ¼ ec=0:1kT2
0 ; where T0 is the median of the

range over which Q10 was measured (Gillooly et al. 2001;

Vasseur and McCann 2005). Using this equation, the ob-

served thermal increment of 0.83 gives a Q10 of 3.07,

which is slightly higher than the value observed in other

studies. However, given that the 95% confidence interval

for the thermal increment extended to 0.52 (Q10 = 2.02),

the temperature dependence observed here was not sig-

nificantly different from that seen in studies of other

organisms.

Regarding the proportionality of N flux, egestion rate,

and metabolic rate, the temperature sensitivity observed

here was similar to that noted for sawfly frass production,

where Q10 values range from 2.43 to 2.93 and average 2.64

(Green and deFreitas 1955; Simandl 1993). The tempera-

ture sensitivity of N flux was also comparable to that of

metabolic rate, where empirical Q10 values typically range

from 2 to 3 (Withers 1992; Hill et al. 2004) and critical

thermal increments typically range from 0.25 to 0.80 eV

(Vasseur and McCann 2005; Meehan 2006). Concerning

ecological theory, the critical thermal increment of 0.83 was

not significantly different from the value of 0.65 predicted

by metabolic scaling theory (Gillooly et al. 2001, 2006).

There are two additional aspects of the temperature

component of this study that are worth noting. First, the

temperature coefficient in Eq. 5 was estimated mainly from

the data on whitemarked tussock moth larvae. We recog-

nize the shortcomings of this approach, and are conducting

additional studies on other species to assess the generality

of the temperature effect. Second, larvae were not accli-

mated to experimental temperatures before onset of the

feeding trials. This method was consistent with our inten-

tion to assess larval responses to temperature changes that

occur at diurnal time scales. Temperature variations over

larger time scales (e.g., months to years) could lead to

temperature acclimation that might alter the apparent

relationship between temperature and N flux.

Larval N concentration

We found that larval N flux scaled with larval N concen-

tration as NB
–1.56 (Fig. 1c). In quantitative terms, this indi-

cated that a larva that was 8% N fluxed N at twice the rate

of a larva that was 12% N. The dependence of nutrient

release on body composition was expected from ecological

stoichiometry, and has been previously observed for

aquatic herbivores (Elser and Urabe 1999; Vanni et al.

2002; Evans-White and Lamberti 2006). To our knowl-

edge, however, it has not been documented for terrestrial

herbivores.

Leaf N and compensatory feeding

Ecological stoichiometry predicted a positive relationship

between larval N flux and leaf N concentration (Sterner

et al. 1992; Elser and Urabe 1999). A similar pattern has

been found for N excretion by aquatic herbivores (Sterner

and Elser 2002) and for total N flux by locusts (Rauben-

heimer and Simpson 2004). Given the theoretical predic-

tion and previous findings, we were surprised that leaf N

was not included in the final model of individual N flux.

This result was likely due to a combination of factors re-

lated to the relationships between leaf N concentration,

frass N concentration, and frass production rate.

For example, when we looked at the relationship be-

tween leaf N and frass N concentration, we found that, as

expected, the two were positively related (NF � NL
1.10).

However, increases in leaf N concentration were also

accompanied by decreases in frass production (MF �
MB

0.76 e–0.69/kT NL
–0.79). The inverse relationship between

leaf N concentration and frass production was (1) observed

Fig. 2a–b a Distribution of values for the normalization constant, a,

from Eq. 6. The mean of this distribution was e26.16. b Relationship

between observed larval nitrogen flux (mg N day–1) and that

predicted by Eq. 6 with a = e26.16 for field-collected (open triangles)

and lab-reared (filled circles) larvae. The dashed line is the line of

equality and axes are on a logarithmic scale
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across multiple field-collected species and within labora-

tory-reared whitemarked tussock moths, and (2) indirect

evidence for compensatory feeding, which has been dem-

onstrated for terrestrial (Slansky and Feeny 1977; Rau-

benheimer 1992; Kingsolver and Woods 1998; Lavoie and

Oberhauser 2004) and aquatic (Cruz-Rivera and Hay 2000;

Fink and Von Elert 2006) herbivores. Given these rela-

tionships, an increase in leaf N concentration from 1.3 to

2.5% resulted in an approximate doubling of frass N con-

centration and an approximate halving of frass production.

This finding suggests that compensatory feeding should

have a role in the development of future stoichiometric

theory.

Other theoretical considerations

In developing the N flux model, we borrowed functional

forms from metabolic ecology for the mass and tempera-

ture terms and used flexible power function forms to rep-

resent qualitative relationships suggested by ecological

stoichiometry. The coefficients associated with the func-

tional forms were left as free parameters that were esti-

mated using standard regression techniques. As noted

previously, we found that estimated coefficients for the

mass, temperature, and stoichiometric terms were similar

to those quantitatively or qualitatively predicted by theory.

A different way to assess the value of these theories would

be to test the explanatory power of a model where coeffi-

cients were forced to hold theoretical values. We attempted

this using the model:

QN ¼ a M
3=4
B e�0:65=kT N�1

B NL: ð6Þ

Here, the mass-scaling exponent was fixed at a theoretical

value of 0.75 (West et al. 1997; Gillooly et al. 2001; West

and Brown 2005), the temperature coefficient was fixed at

0.65 eV (Gillooly et al. 2001, 2006), and stoichiometric

terms were linear functions, which might be expected for

organisms that are not nutrient-stressed, have constant

assimilation efficiencies, and are strictly homeostatic. The

only free parameter in this model was the normalization

constant, a. We calculated values for a using our data by

rearranging the equation such that a = QN/(MB
3/4 e–0.65/

kT NB
–1 NL). When this was done, we obtained the distri-

bution shown in Fig. 2a. The mean of this distribution

was e26.16; the exponent, 26.16, was close to and not

significantly different from the value of 25.75 from Eq. 5.

When e26.16 was placed into Eq. 6 and N flux was pre-

dicted for the larvae in our study, we found that the

regression of observed ln(QN) against predicted ln(QN)

had a slope not significantly different from 1, an intercept

not different from 0, and an R2 of 0.87 (Fig. 2b). Thus,

with the addition of an empirical normalization constant,

a theoretical model predicted larval N flux nearly as well

as our empirical model. Future work could involve use of

the framework proposed by Gillooly et al. (2005) to de-

rive normalization constants for N flux models from first

principles.

Future work

The next step in this research will be to explore the scaling

of larval N flux models from the individual level to pop-

ulation and community levels. This exercise will have its

own set of challenges, such as developing valid, spatially

and temporally-integrated estimates of herbivore body

mass, temperature, stoichiometry, and abundance. The re-

ward for this effort will be a new set of tools for exploring

the contribution of insect larvae to N cycling in forested

ecosystems. These tools may also be useful for forecasting

the role of insects in N cycling under different scenarios of

environmental change. For example, human introduction of

invasive species (Lovett et al. 2006) and alteration of forest

structure (Cunningham and Murray 2007) can affect the

abundances, body mass distributions, and elemental pro-

files of canopy herbivore communities. Additionally, in-

creases in atmospheric carbon dioxide concentrations are

expected to alter environmental temperatures (IPCC 2001)

and the elemental ratios of foliage (Throop and Lerdau

2004). Nutrient flux models that incorporate these key

variables may provide a means to predict the impact of

anthropogenic changes on the role of herbivorous insects in

future ecosystem function.
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