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Abstract Measurements of §'°N of consumers are usu-
ally higher than those of their diet. This general pattern is
widely used to make inferences about trophic relation-
ships in ecological studies, although the underlying
mechanisms causing the pattern are poorly understood.
However, there can be substantial variation in consumer-
diet 86'°N enrichment within this general pattern. We
conducted an extensive literature review, which yielded
134 estimates from controlled studies of consumer-diet
8N enrichment, to test the significance of several
potential sources of variation by means of meta-analyses.
We found patterns related to processes of nitrogen
assimilation and excretion. There was a significant effect
of the main biochemical form of nitrogenous waste:
ammonotelic organisms show lower §'°N enrichment than
ureotelic or uricotelic organisms. There were no signif-
icant differences between animals feeding on plant food,
animal food, or manufactured mixtures, but detritivores
yielded significantly lower estimates of enrichment. §'N
enrichment was found to increase significantly with the
C:N ratio of the diet, suggesting that a nitrogen-poor diet
can have an effect similar to that already documented for
fasting organisms. There were also differences among
taxonomic classes: molluscs and crustaceans generally
yielded lower 6'°N enrichment. The lower §"°N enrich-
ment might be related to the fact that molluscs and
crustaceans excrete mainly ammonia, or to the fact that
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many were detritivores. Organisms inhabiting marine
environments yielded significantly lower estimates of
8N enrichment than organisms inhabiting terrestrial or
freshwater environments, a pattern that was influenced by
the number of marine, ammonotelic, crustaceans and
molluscs. Overall, our analyses point to several important
sources of variation in §'°N enrichment and suggest that
the most important of them are the main biochemical
form of nitrogen excretion and nutritional status. The
variance of estimates of §'°N enrichment, as well as the
fact that enrichment may be different in certain groups of
organisms should be taken into account in statistical
approaches for studying diet and trophic relationships.

Keywords Stable isotopes - Fractionation -
Trophic level - Nitrogen - Nitrogen excretion

Introduction

DeNiro and Epstein (1981) launched an extremely fruitful
line of inquiry when they showed that trophic relation-
ships among organisms could be inferred from compar-
isons of the natural abundances of stable nitrogen
isotopes. Measurements of §'°N (the ratio of N/MN
relative to atmospheric nitrogen) of a consumer’s tissues
are usually higher than those of its diet, and the magnitude
of the difference is relatively consistent among organisms
(Gaebler et al. 1966; DeNiro and Epstein 1981; Mina-
gawa and Wada 1984; Owens 1987; Smit 2001). This
difference is generally referred to as enrichment, denoted
by the symbol A, where

A= 515Nconsumer - 515Ndiet. (1)

Ecologists have taken advantage of the relative
consistency (and so predictability) of A in several ways
(Robinson 2001). In one application, estimates of A are
used to calculate the trophic positions of organisms (e.g.
Hobson and Welch 1992; Hobson 1993; Post et al. 2000;
Vander Zanden et al. 2000; Post 2002). In this applica-
tion, the logic is that, if one knows the 8N of a ‘base’
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trophic level and the §'°N of a consumer, the number of
increments of size A that fit between them is a measure of
height in the food web (e.g. Hobson and Welch 1992).
The same logic can be applied in a hypothesis-testing
framework: for example, Ponsard and Arditi (2000) tested
whether differences in 6'N between detritivores and
predators matched the expected enrichment for one
trophic step, and whether the variability of §'N within
each of these groups was compatible with the hypothesis
that they were homogeneous trophic levels (Eggers and
Jones 2000; Ponsard and Arditi 2000; 2001). In another
application, estimates of /A are used to ‘correct’ source
(i.e. food) 8'°N values prior to incorporating them into
mixing-models aimed at estimating the relative contribu-
tion of several potential food sources (Ben-David et al.
1997; Szepanski et al. 1999; Phillips and Gregg 2001;
Phillips and Koch 2002).

In all these applications, conclusions rely on the
assumption that A\ values are transferable across a broad
range of organisms. However, while A values are
relatively consistent, there is nevertheless some variation,
and it remains unclear whether this variation is random or
is due to specific, predictable, influences (Gannes et al.
1997). This variation can hamper conclusions, particular-
ly from studies that have used average A values without
incorporating estimates of variability. Calculations have
often been based either on a single /A value derived from
an identical or taxonomically related consumer species
(e.g. Hobson 1993; Szepanski et al. 1999; Vander Zanden
et al. 2000), or on the unweighted mean and variance of A
values measured for a group of unrelated organisms,
usually from Minagawa and Wada’s (1984) review (e.g.
Ponsard and Arditi 2000; Post et al. 2000; Vander Zanden
and Rasmussen 2001; Post 2002).

There are two main avenues for improving the
robustness of conclusions. First, incorporate estimates of
variability into calculations. Second, choose estimates of
A most appropriate to the organisms being studied. A
number of mathematical methods incorporating variabil-
ity have already been developed to improve mixing
models (Phillips 2001; Phillips and Gregg 2001; Phillips
and Koch 2002), and estimates of trophic position
(Vander Zanden and Rasmussen 2001), but “the weakest
link in the application of mixing models to a dietary
reconstruction relates to the estimation of appropriate A
values” (Phillips and Koch 2002). The same statement
applies to calculations of trophic position (Vander Zanden
and Rasmussen 2001). Both estimation and choice of
appropriate /A values requires a better knowledge and
understanding of the sources of variation in §'°N enrich-
ment.

There are multiple potential sources of variation. For
example, A might vary with type of food (Webb et al.
1998; Vander Zanden and Rasmussen 2001), among
consumer species (Macko et al. 1982; Minagawa and
Wada 1984), among tissues and organs within an
organism (Yoneyama et al. 1983; Hobson and Clark
1992), and due to physiological stresses such as lack of
proteins (Hobson et al. 1993; Scrimgeour et al. 1995;

Webb et al. 1998; Ponsard and Averbuch 1999; Adams
and Sterner 2000; Dittel et al. 2000; Oelbermann and
Scheu 2002; but see Schmidt et al. 1999) and/or lack of
drinking water (Schoeninger and DeNiro 1984; Ambrose
and DeNiro 1986; 1987; Cormie and Schwartcz 1996;
Sealy et al. 1987). It has also been hypothesized that A
might vary among organisms with different forms of
nitrogen excretion, although this assertion has never been
tested with any significant amount of empirical data
(Minagawa and Wada 1984; Ponsard and Averbuch
1999).

Several authors have called for controlled laboratory
experiments to enable sources of variation in &N
enrichment to be identified (Owens 1987; Gannes et al.
1997). Our aim is to examine some potential sources of
variation through meta-analyses of such experiments.
Over the past 20 years, a substantial corpus of data has
been collected and now offers opportunities to do so
without a large risk of committing a B-type error (i.e. of
not detecting an existing effect). However, no compre-
hensive compilation has been published since Minagawa
and Wada (1984) compiled 27 estimates, of which 16
were from laboratory studies. Recently there have been
several partial compilations, but only for aquatic species
(Vander Zanden and Rasmussen 2001, based on 35
estimates, of which 24 were from laboratory studies; Post
2002, based on 56 estimates, of which the number of
laboratory studies was not stated).

Our review is based on 134 estimates of 8N
enrichment from the literature, focusing exclusively on
controlled studies. We tested the hypotheses that there
were consistent differences in estimates of A among:

1. Organisms that differ in the primary biochemical form
of nitrogen excretion

2. Organisms that feed on different types of diet

3. Organisms from different taxonomic classes

4. Organisms from different environments (terrestrial,
marine, freshwater), and

5. Different tissues or organs within organisms.

We further tested whether there were significant
relationships between estimates of A and

6. The % nitrogen content of the food source, and
7. The C:N ratio of the food source.

To test the significance of these potential sources of
variation, we used meta-analysis (Laird and Mosteller
1990; Gurevitch and Hedges 1993; 1999; Hedges et al.
1999). Meta-analysis was well-suited for our purpose, as
it provides a statistical framework for detecting trends and
synthesising overall estimates from a collection of studies
done using different methods, with different numbers of
replicates, and that yield very different estimates of
variability.



Materials and methods
Data selection

Because the aim of this study was to synthesise data from
experiments in which diets were known and controlled, rather than
inferred or assumed, we constrained the literature review to studies
of animals in captivity (in laboratories or zoos). We searched
widely, using web-based search engines and reference lists of
published articles. If data in a paper were only presented in graphs,
we first attempted to get the necessary information from the
author(s); when this was not possible, the graphs were scanned, and
we obtained the data using the free software DataThief (http://
www.nikhef.nl/~keeshu/datathief). We excluded studies in which
the numbers of replicates and/or variances were unavailable and
could not be calculated, because they are needed for the meta-
analyses (see Meta-analysis of variation among groups below).

Compiling the meta-data

Meta-analysis requires an estimate of ‘effect size’ for each study:
typically this is a standardised metric (such as Hedge’s d), used to
convert the results of studies using different units of measurement
to a single unitless metric (Laird and Mosteller 1990). The effect
size metric we adopted was simply §'°N enrichment (A;). We
preferred this because all the results that we reviewed were
expressed using the same units (i.e. §'°N), and we wished to express
results using the same measure. For studies including one consumer
and one diet, /\;; was simply calculated following Eq. 1, while the
variance v(A\;) was calculated following Hedges and Olkin (1985)
as

nf_ sz nt — Scz
() o

where n' and n¢ are the sample sizes of the food and consumer,
respectively and (s")> and (s°)? are the variances for the food and
consumer, respectively.

For studies in which multiple analyses were performed on males
and females fed the same diet, we used pooling techniques to
calculate a common mean and variance, because the differences in
A between genders were negligible. Pooling followed the proce-
dure given by Zar (1996) for situations in which only means and
variances are provided. With the pooled data, the enrichment A\
and the variance v(4\;) were calculated as in Eqs. 1 and 2.

v(4y) =

Meta-analysis of variation among groups

The suite of means and variances compiled in this way formed the
meta-data. To test whether estimates of /\; varied consistently
according to different sources of variation, a mixed model meta-
analysis was used (Gurevitch and Hedges 1993; 1999). Here, the
effect of each of the pre-defined categories was considered fixed,
with observations (i.e., the A; values) within each category
considered random. Calculations were done in Excel spreadsheets
(available from M.V. on request), following methods outlined by
Gurevitch and Hedges (1993) and Hedges et al. (1999).

The focus of tests for differences between categories was the
estimate of between-group heterogeneity Qp (Hedges and Olkin
1985; Gurevitch and Hedges 1993). The Qp statistic has a xz
distribution with m—1 degrees of freedom, where m is the number
of categories (Gurevitch and Hedges 1993). If the Qp yielded by
comparing categories is greater than the critical value of the y?
distribution, we can thus conclude that the categories are signif-
icantly different. To identify which categories were different from
each other, 95% confidence intervals were compared: pairs of
categories were considered significantly different when 95%
confidence intervals around the means did not overlap. (This latter
approach results in a slightly increased possibility of type I errors,
but we elected not to adjust the confidence intervals).
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During the analyses, and during interpretation of results, we
faced two constraints. First, often several estimates of A; were
yielded by a single study. The estimates of A;; used in the analyses
may therefore not have been totally independent (Gurevitch and
Hedges 1999); for example, estimates for different tissues are often
made from the same individual organism. One way to remove this
potential bias would be to randomly select just one estimate per
study per analysis. However, the relatively small number of
available data made the cost of such a practice in terms of power of
the analysis too high compared with the small gain in rigor (Hedges
et al. 1999). Instead, as other authors have done (Gurevitch and
Hedges 1993; Curtis and Wang 1998; Downing et al. 1999; Hughes
et al. 2002), we elected to include all estimates that otherwise met
our criteria.

Second, there was the potential for uneven distribution of
estimates from different groups to confound some interpretations
about differences. For example, some tissue/organ categories were
represented in few taxonomic groups. For invertebrates, whole
bodies were always used. For vertebrates, whole body analyses
occurred only for some fish; more typically, individual tissues or
organs were used (these methods mirror those normally used in
field-based studies of trophic relationships). In order to generate
results for which interpretations were not confounded, we did a
series of comparisons of categories that were directly comparable.

To explore the possible influence of food quality, we conducted
regressions of estimates of A; against the % nitrogen content and
the C:N ratio of the food sources. These two variables have been
used as measures of food quality (and therefore indicators of
nutritional stress) by several authors (Hobson and Clark 1992;
Hobson et al. 1993; Adams and Sterner 2000), and can be used as
surrogates for protein content, a factor that has been suggested to
influence §'"°N enrichment.

Results

The literature review yielded 134 estimates of A;; from 32
publications (Table 1). Mammals (39 estimates, 9 publi-
cations), birds (25 estimates, 3 publications), crustaceans
(21 estimates, 7 publications), insects (19 estimates, 7
publications) and fishes (14 estimates, 7 publications)
were relatively well represented. Molluscs (9 estimates, 2
publications) and spiders (4 estimates, 1 publication) were
less well represented. The overall mean 6'°N enrichment
was 2.54%o (£0.11%0 SE). Other studies were found that
could not be used in the meta-analyses (these are also
listed in Table 1); the estimates yielded by these studies
were all within the range of estimates used in the meta-
analyses.

Excretion

We classified organisms according to the main biochem-
ical form in which they excrete nitrogenous wastes,
following Rieutord (1999). There were five categories:
organisms excreting mainly urea (ureotelic), organisms
excreting mainly uric acid (uricotelic), organisms excret-
ing mainly ammonia (ammonotelic), organisms excreting
mainly guanine (guanicotelic), and organisms excreting
mainly amino acids. There were significant differences in
enrichment among categories (Qp =38.35, df=4, P<0.001;
Fig. 1). Ureotelic organisms (3.11%c) and uricotelic
organisms (2.73%o) yielded significantly higher enrich-
ment than ammonotelic organisms (2.00%c), guanicotelic
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Fig. 1 Mean 6N enrichment (A+95% confidence intervals)
among organisms classified according to the primary form of
nitrogen excretion. Numbers within the bars indicate the sample
size n. Groups sharing the same superscript letter (a, b, ¢) are not
significantly different

organisms (1.09%¢) and organisms excreting mainly
amino acids (-0.93%c). If organisms excreting mainly
guanine (n=4, all spiders, all from one publication) or
amino acids (n=2, all aphids) were excluded, estimates for
ammonotelic organisms remained significantly lower than
ureotelic and uricotelic organisms (Qp =18.33, df=2,
P<0.001).

Diet

We classified organisms according to the diet they were
fed in the study, regardless of what their "natural’ diet is.
There were four categories: organisms fed on animal
matter (carnivorous), organisms fed on plant matter
(herbivorous), organisms fed on food that was manufac-
tured, either commercially or specifically for the study
from a mixture of food (mixed diet), and organisms fed on
detritus, soil, litter or seston (detritivorous). There were
significant differences among the estimates of A yielded
by each group (Qp =30.93, df=3, P<0.001; Fig. 2).
Organisms with carnivorous, herbivorous and mixed diets
yielded similar estimates of A (2.69%o, 2.98%0 and 2.56%0
respectively) while organisms consuming detritus yielded
significantly lower estimates of A (0.53%o).

There was no apparent relationship between estimates
of A and the % nitrogen of the food source (r2=0.008, Fy.
20=0.22, P>0.6; Fig. 3A). However, there was a signif-
icant positive relationship between estimates of A and the
C:N ratio of the food source (r2=0.222, F 3=9.13,
P<0.01; Fig. 3B).
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Fig.2 Mean 6N enrichment (A+95% confidence intervals)
among organisms classified according to diet used in the experi-
ments. Numbers within the bars indicate the sample size n. Groups
sharing the same superscript letter (a, b) are not significantly
different
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Fig. 3a, b Relationship between estimates of A and a the %
nitrogen and b the C:N ratios of the diets

Excretion x diet

There were sufficient data to perform comparisons on
nine of the possible excretion-diet combinations (detriti-
vores and organisms excreting mainly guanine and amino
acids were excluded). Whether on carnivorous or herbiv-
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Fig. 4 Mean S8“°N enrichment (A+95% confidence intervals)
among organisms classified according to all nine possible combi-
nations of the primary form of excretion (excluding guanine and
amino acids) and diet. Numbers within the bars indicate the sample

size n. Groups sharing the same superscript letter (a, b) are not
significantly different
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Fig. 5 Mean SN enrichment (A+95% confidence intervals)
among organisms classified according to taxonomic class. Numbers
within the bars indicate the sample size n. Groups sharing the same
superscript letter (a, b, c) are not significantly different

orous diets, ammonotelic organisms yielded lower esti-
mates of enrichment than ureotelic and uricotelic organ-
isms — the difference was significant for carnivores (Qp
=31.89, df=8, P<0.001; Fig. 4). For organisms on mixed
diets, ammonotelic organisms did not yield lower esti-
mates, but uricotelic organisms did.

Taxon

There were significant differences among taxonomic
classes (Qp =24.67, df=5, P<0.001; Fig. 5). This result
was heavily influenced by molluscs, which showed
significantly lower enrichment values than most other
groups. When molluscs were removed from the analyses,
differences remained significant (Qp =13.26, df=4,
P=0.02), with crustaceans yielding lower estimates of
enrichment than mammals.

Overall, invertebrates yielded lower estimates of
enrichment than vertebrates (Qp =8.93, df=1, P<0.01;
2.08%o for invertebrates, 2.88%o for vertebrates). Howev-
er, interpretation of the among-taxon comparisons is
somewhat confounded by the fact that data for crus-
taceans, insects and molluscs represent whole-body
analyses, while data for vertebrates mainly represent
analyses of different tissues or organs, as well as by the
fact that taxonomic classifications are partly confounded
with diet and form of excretion. To avoid the former
confounding effect, separate analyses were performed in
which only similar data were compared. Comparisons of
the four classes for which there was whole-body data (the
three classes of invertebrates and some fish) yielded no
significant differences (Qp =4.69, df=3, P>0.1). There
were very few data to enable valid comparisons of all
three vertebrate classes once restricted to a single tissue
type. The only tissue that was measured in each vertebrate
class was muscle: bird muscle yielded significantly lower
estimates of A than mammal and fish muscle (Qp =28.87,
df=2, P<0.01; 0.87%o for birds, 3.05%0 for mammals, and
2.96%o for fish), but the number of samples was low (n=3
for birds, n=2 for mammals, n=7 for fish). Taxonomic
classifications are partly confounded with diet and form
of nitrogen excretion, but these confounding effects
cannot be entirely disentangled. For our results, diet and
form of excretion should be seen as possible explanations
for differences between taxa rather than confounding
factors that need to be studied independently.

Excretion x taxon

We separated studies into the possible combinations of
main form of nitrogen excretion and taxon (vertebrates vs
invertebrates). Because urea as the major nitrogen
excretion product is restricted to vertebrates and guanine
and amino acid excretion are restricted to some inverte-
brates, only ammonotelic and uricotelic organisms were
included in analyses. Ammonotelic invertebrates yielded
significantly lower, and more variable, estimates of §'°N
enrichment (Qp =99.17, df=3, P<0.001; Fig. 6). The same
trend could be found in vertebrates, with fish (ammono-
telic) tending to have lower values than birds (uricotelic),
although the difference was not significant.

Diet x taxon

We separated studies into the contributions of diet and
taxon (again, at the level of vertebrate vs. invertebrate).
Only carnivores and herbivores had representatives in
both taxa, and so analyses did not include organisms with
mixed diets or detritivores. Invertebrates yielded lower
estimates for both carnivores and herbivores, but the
difference was significant only for carnivores (Qp =16.33,
df=3, P<0.001; Fig. 7).
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Fig. 6 Mean 8N enrichment (A+95% confidence intervals)
among organisms classified according to the primary mode of
excretion and taxon (not including animals excreting urea, which
were all mammals). Numbers within the bars indicate the sample
size n. Groups sharing the same superscript letter (a, b) are not
significantly different
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Fig. 7 Mean 8N enrichment (A+95% confidence intervals)
among organisms classified according to taxonomic class and diet.
Numbers within the bars indicate the sample size n. Groups sharing
the same superscript letter (a, b) are not significantly different

Environment

We separated estimates into three categories according to
the environment that the organisms inhabit (i.e. terrestrial,
marine, freshwater). Seals and seabirds were classified as
‘terrestrial’ because they breed, and spend a large
proportion of resting time, on land. There were significant
differences between environments (Qp =19.07, df=2,
P<0.001; Fig. 8); organisms inhabiting marine environ-
ments yielded significantly lower estimates of &'°N
enrichment (1.48%o), than organisms inhabiting terrestrial
(2.82%0) or freshwater (2.98%0) environments.

Tissue

Comparisons of tissues were conducted separately for
birds and mammals, because different tissues were used
in studies of these classes. For example, feathers were
only present for birds and fur for mammals (rather
obviously!), while some tissues were only recorded for
mammals (brain, blood cells, plasma, kidney).
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Fig. 8 Mean 8N enrichment (A+95% confidence intervals)
among organisms classified according to the environment within
which they live. Numbers within the bars indicate the sample size
n. Groups sharing the same superscript letter (a, b) are not
significantly different
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Fig.9 Mean 8N enrichment (A+95% confidence intervals)
among different tissues and organs (mammals only). Numbers
within the bars indicate the sample size n. Groups sharing the same
superscript letter (a, b) are not significantly different

5
ab
s 4 ®
2 " |
|
7 3
)
E
g 2 d
o
o
=
1
3 3 3 13
0 _. : ;
Muscle Liver Blood Feather

Fig. 10 Mean "N enrichment (A+95% confidence intervals)
among different tissues and organs (birds only). Numbers within
the bars indicate the sample size n. Groups sharing the same
superscript letter (a, b) are not significantly different
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For mammals, variation among tissues was significant
(Qp =16.78, df=5, P=<0.01; Fig. 9). Brain tissue yielded
the highest estimates of enrichment (4.78%0), while
kidney tissue yielded the lowest (1.28%o). For birds,
variation among tissues was significant (Qp =17.77, df=3,
P<0.01; Fig. 10). Muscle yielded the lowest estimates of
enrichment (0.87%o). Estimates from similar tissues did
not tend to rank in the same order for birds and mammals.
For example, for birds, feathers and blood tended to yield
higher estimates than liver and muscle, while for mam-
mals liver tended to yield high estimates.

Discussion

The overall mean of the 134 estimates of A compiled in
the present study was 2.54%0 (+0.11 SE) which is lower
than the previous mean enrichment estimates reported in
Minagawa and Wada (1984; 3.4+0.27%c¢ SE, n=16),
Vander Zanden and Rasmussen (2001; 2.9+0.30%¢ SE,
n=35) and Post (2002; 3.4+0.13%0 SE, n=56). Our
average A estimate was significantly lower than the
estimates of Minagawa and Wada (1984) and Post (2002)
(Welch’s t-test, both P<0.01), but not the estimate of
Vander Zanden and Rasmussen (2001; P>0.15). The
weighting process that we used greatly reduced the
variability around the estimate: however, variance ratio
tests using unweighted data indicated that the variability
in our dataset was significantly higher than those of
Minagawa and Wada (1984) and Post (2002) (F-test,
P<0.05), but not Vander Zanden and Rasmussen (2001;
P>0.25). However, more importantly, we identified
several sources of variation that yield important differ-
ences in 8"°N fractionation between a consumer and its
diet.

Excretion

Our results show that there are large and consistent
differences in enrichment according to the main bio-
chemical form of nitrogen excretion—the first published
quantitative evidence for this pattern. Comparisons of
groups of organisms that excrete nitrogen in different
forms yielded some of the largest differences in enrich-
ment of any of the sources of variation that we tested;
means ranged from —0.93%o for aphids excreting amino
acids and 1.09%o for spiders excreting guanine to 3.11%o
for organisms excreting urea. These differences were
generally preserved in orthogonal comparisons with
trophic position (i.e. carnivores vs herbivores vs omni-
vores) and taxon (i.e. vertebrates vs invertebrates).
These differences might be due to the number of
‘steps’ involved in synthesis of different biochemical
forms of nitrogenous waste products. When proteins are
catabolized, ammonia (NH4") is produced, but cannot be
stored in the body because it is highly toxic (Rieutord
1999). Most aquatic animals continuously excrete ammo-
nia as it is produced. Most terrestrial animals have

developed a series of additional biochemical reactions
that bind the —NHj3 group into either uric acid (a poorly
soluble molecule that precipitates very easily) or urea
(which is more soluble). Animals that, when embryos,
eliminate nitrogenous waste via the maternal body
(mammals) excrete mainly urea. Animals that develop
in a closed egg (birds, insects) excrete mainly uric acid.
The additional reactions to transform ammonia into urea
or uric acid might involve further nitrogen fractionation.
If there are differential rates of reactions for >N and '*N
at each step, the result should be that urea and uric acid
have proportionally more '*N than ammonia. All other
things being equal we would then expect organisms
excreting urea and uric acid to yield greater consumer-
diet 8N enrichment (Ponsard and Averbuch 1999). Data
with which this can be verified are scarce. Mammals
excrete nitrogen mainly as urea, but a small amount of
ammonia is produced as well, and in humans it is
commonly observed that ammonia is isotopically ‘heav-
ier’ than urea (Tom Preston, personal communication).

High nitrogen use efficiency (i.e. low nitrogen excre-
tion compared with the amount ingested) may also
contribute to low fractionation. High nitrogen use
efficiency may be a genuine adaptation to feeding on
extremely low-nitrogen foods (such as for aphids feeding
on sap) or dead vegetation (the food of certain detriti-
vores). Apparent nitrogen use efficiency may occur in
organisms that store unexcreted nitrogen in special
organs, as for example with spiders which store excreted
nitrogen in the opistosoma. In both cases §'°N enrichment
is expected to be closer to zero than for species with lower
nitrogen use efficiency, which is consistent with our
observations. However, more data are needed to clarify
the respective influence of nitrogen use efficiency and
main form of nitrogenous waste in setting the value of >N
fractionation, especially for species excreting guanine or
amino acids which are poorly represented in the data we
compiled.

Diet

We explored the possible influence of diet on the
consumer-diet fractionation in several ways. First, we
compared organisms that were fed on different diets.
Classifications were made according to the diet that they
were fed in the study, not according to their diet in natural
conditions. We found no difference between organisms
fed on animal matter, plant matter or manufactured
mixtures. This result contrasts with that of Vander Zanden
and Rasmussen (2001), who found 8§'°N enrichment to be
lower (and more variable) for herbivores, but is consistent
with the result of Post (2002), who found no differences
between carnivores and herbivores. We did however find
that organisms consuming detritus yielded significantly
lower estimates of A. It is difficult to think of any reason
why consuming detritus should lead to lower enrichment.
A higher nitrogen use efficiency might explain a low
value of A for detritivores feeding on decaying plant



parts. However, detritivores feeding mainly on dead
animals are unlikely to show a higher nitrogen-use
efficiency than, say, predators. It is possible that A was
less accurately estimated in studies where the food
consisted of detritus in which microorganisms were
active during the experiment. Indeed, the activity of
microorganisms may lead to a progressive shift in the
isotopic composition of the bulk detritus. For instance,
Ponsard and Amlou (1999) observed that the §'°N of
rotten Drosophila was significantly different from that of
fresh Drosophila. Therefore, if the detritus 6N reported
in the studies analysed here was measured before the food
was offered to the consumer, or after the feeding had
taken place, while microorganisms were continuously
active, the measured value might not reflect accurately
the 6N value of the food at the time when it was
ingested, thus leading to inaccurate A estimates. However,
as there is hardly any knowledge on >N fractionation by
micro-organisms, interpreting the §'N enrichment pat-
terns of detritivores and other animals whose diet consists
of a large proportion of microorganisms remains difficult.
The second way we explored the influence of diet was
through examining relationships between A and the %N
or C:N of the diet. We found a weak positive relationship
between §'°N enrichment and the nutritional quality of
the food as measured by the C:N ratio of the diet (but not
as measured by the %N of the diet). Several authors have
suggested that nutritional stress, influenced by the quality
of the diet or by starvation, might affect §'"’N enrichment
(Hobson et al. 1993; Fantle et al. 1999; Adams and
Sterner 2000). However, the mechanisms causing these
patterns, and even the direction of change, remain
unclear. Some studies have found that enrichment may
be greater under conditions of nutritional stress—that is,
when growth rates are higher, §'"’N enrichment may be
lower (Hobson and Clark 1992; Hobson et al. 1993;
Adams and Sterner 2000). Others have found the
opposite—lower §'°N enrichment for organisms experi-
encing nutritional stress (Oelbermann and Scheu 2002), or
no effect at all (Schmidt et al. 1999). The consequences of
nitrogen stress on nitrogen metabolism and, more specif-
ically, on nitrogen fractionation, may vary with the
intrinsic nitrogen use efficiency of the species. Our results
for C:N, but not those for %N, support the idea that better
quality food (i.e. with lower C:N) tends to be related with
lower 6'°N enrichment. It must be kept in mind that most
of our data come from laboratory studies in which
animals are a priori fed according to their needs and
severe nutritional stresses were probably avoided. Nutri-
tional stresses were (in most cases) probably mild, so
thathere the risk of not detecting an effect is high.

Taxon

Taxonomically-similar organisms usually have similar
physiological processes: we might therefore expect some
patterns in §'°N enrichment related to taxonomic identity.
Indeed, we found some differences related to taxonomic
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identity, although conclusions are partly confounded by
the use of different body components for invertebrates
and vertebrates. Other researchers have noted that §'N
enrichment may vary among species (e.g. DeNiro and
Epstein 1981; Minagawa and Wada 1984; Hobson and
Clark 1992), but this is the first quantitative evidence that
differences may vary consistently among taxonomic
classes. Differences may be partly due to the excretion
mode of each class, because the two classes yielding the
lowest enrichment (crustaceans and molluscs) both
excrete ammonia. One consequence of this pattern is
that, when using literature-derived estimates of A in
ecological studies, those estimates should represent values
of physiologically related and/or taxonomically related
organisms.

Environment

A consequence of the pattern we found for lower
estimates of /A in ammonotelic organisms is that organ-
isms from aquatic environments should tend to show
slightly smaller 6'N enrichment than terrestrial organ-
isms, because most fully-aquatic organisms excrete
mainly ammonia. Our analyses supported this prediction
for organisms inhabiting marine environments, but not for
organisms from freshwater environments. Schoeninger
and DeNiro (1984) reported a slight difference between
marine and terrestrial food chains, but in the other
direction (enrichment tended to be higher in marine food
chains). Our results might have been biased by the
presence of detritivorous crustaceans and molluscs in the
marine category, because they yielded low estimates of
A. If they were excluded from the analysis, estimates of
/A by marine organisms remained lower than estimates
from terrestrial or freshwater organisms, but the differ-
ences were only marginally significant (P<0.1). Conse-
quently, we have little confidence that our results reflect
true differences between freshwater and marine food
chains.

Tissue

The results also revealed consistent differences in §'°N
enrichment among tissues within both birds and mam-
mals. Several researchers have found significant variation
among tissues of vertebrates (e.g. DeNiro and Epstein
1981; Hobson and Clark 1992; Yoneyama et al. 1983;
Hobson et al. 1996; Hilderbrand et al. 1996), albeit with
contrasting results. Hobson et al. (1996) found that the
blood of seals was less enriched than other tissues, while
Hildebrand et al. (1996) found that only fat was signif-
icantly different from a range of other mammal tissues. In
birds, Hobson and Clark (1992) found only muscle tissue
significantly different from blood, liver, collagen and
feathers.

Because certain metabolic properties characterizing
various organs and tissues within the body are similar
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across taxa (e.g. relative turnover rates, types of bio-
chemical reactions, biochemical composition), we might
expect some consistent differences in '°N enrichment.
No such consistency could be seen in our data set:
however, the data available for comparisons of tissues
were limited, so we remain cautious about drawing
conclusions.

Other sources of variation

Other sources of variation might have influenced the
estimates of enrichment. One potential source of error is
the time-lag before the §'°N of a consumer’s tissues have
equilibrated following introduction to a new diet. Gener-
ally, on introduction to a new diet, the Aconsumer-diet Will
change asymptotically until a new equilibrium value is
reached. Potentially, the estimates of §'°N enrichment for
some studies may be overestimates or underestimates—a
longer time period may have yielded a different A.

Another potential source of variation is the degree of
success in controlling the animal’s diets. We selected only
studies of animals in captivity so that the diet would be
known and controlled; however in some instances animals
might have supplemented the diet provided from other
sources (e.g. birds in zoological gardens might forage for
arthropods in addition to their given diet), or microor-
ganism activity might have changed the isotopic compo-
sition of detritus used as food (see above). This behaviour
could lead to incorrect estimates of A.

A further, related source of variation is the possibility
for selective feeding by animals from the diet they have
been presented. This is possible, for example, for
organisms feeding on detritus, carnivores feeding on
parts of a carcass, or herbivores feeding only on parts of a
plant. Because the §'°N of the diet is a ‘bulk’ measure
(that is, averaged over all nitrogen-containing molecules),
it might not be a good measure of the specific components
of the diet targeted by these ’fussy’ eaters.

Uses of meta-data

The results of syntheses such as ours could be used to
explore uncertainty in the outcomes of mixing-models
and estimates of trophic positions. When possible, it will
be better to use estimates of enrichment that are known to
apply to the consumer-diet combination in question,
because the outcomes of calculations can be very
sensitive to changes in fractionation factors (Phillips
and Koch 2002). Nevertheless, there are likely to be many
situations in which the real enrichment is unknown or
poorly known—the results given here may help re-
searchers to explore outcomes and to allow calculation of
estimates of variability. However, we emphasise that
because the mechanisms leading to "N enrichment are
poorly known, and because food web studies often
include a large variety of species, it is not wise practice
to apply estimates yielded by syntheses such as ours

without also incorporating estimates of uncertainty.
Methods for doing so have been developed for mixing
models (Phillips and Gregg 2001; Phillips and Koch
2002), calculations of trophic position (Vander Zanden
and Rasmussen 2001) and tests of hypotheses about food
webs (Ponsard and Arditi 2000; 2001).

When it is not possible or not appropriate to use
empirically derived, species-specific, estimates, the most
relevant set of estimates should be determined by the
characteristics of the study. Sometimes, hypotheses are
relevant to one species or a group of taxonomically
related species. Other studies will involve a broad range
of taxonomically dissimilar species. In the former case,
we suggest that the main criteria for compiling estimates
be the biochemical form of nitrogenous waste excretion,
taxonomic class (providing species within the class
excrete nitrogenous wastes in the same form, which will
usually, but not always, be true), and estimates relevant to
the parts of the body used. Our results suggest that
environment and diet (except possibly detritivory) are
comparatively minor influences. In the latter case, a more
complete set of estimates incorporating all the relevant
taxa should be compiled.

Fruitful avenues for future research

The variability surrounding estimates of /A will consist of
systematic variation due to physiological processes, and
of more stochastic variation due to, for example,
measurement errors. We have attempted to identify some
of the systematic sources of variation. However, the
results presented here should be considered exploratory:
meta-analyses cannot replace well-designed factorial
experiments or larger amounts of data, but can help
identify where they are most needed. We suggest more
data is needed for highly variable groups (e.g. crus-
taceans, molluscs) to help identify whether there are
important sources of variation within those groups.
Further, more data is needed for taxa with ‘rare’
biochemical forms of nitrogen excretion (e.g. spiders
excreting guanine, aphids excreting amino acids, elasmo-
branchs excreting allantoin) in order to more completely
determine the effect of different modes of nitrogen
excretion on 8'°N enrichment. Experiments are also
needed to help clarify the impact of fasting, water stress
and nitrogen use efficiency on 8N fractionation. Further
sources of variation may be identified as more data
become available, but the process could be further
accelerated by developing and testing hypotheses about
why some groups appear to differ from others.
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