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Abstract Several studies have found genetic variation in
plant resistance to herbivory. One of the explanations
suggested for the observed intermediate levels of resis-
tance are the costs of resistance, i.e., negative genetic
correlations between resistance and other fitness compo-
nents that may constrain the evolution of resistance. We
studied the cost of herbivore resistance by investigating
the genetic correlations between resistance traits and
plant growth traits, and between resistance to insect and
mammalian herbivores in cloned saplings of silver birch,
Betula pendula. We used the performance of a geometrid
moth, Epirrita autumnata, as an indicator of insect resis-
tance. The numbers of resin droplets at the base and at
the tip of the saplings correlate with mammalian resis-
tance, and were thus used here as indicators of vole and
hare resistance, respectively. We have previously ob-
served genetic variation in these resistance traits. Fur-
ther, we examined the correlations between several
groups of secondary chemicals and plant growth traits.
Finally, to reveal the effect of environmental factors on
the trade-offs mentioned above, we investigated the cor-
relations in saplings that were grown at two nutrient lev-

els. We found significant negative correlations between
indices of constitutive insect resistance and relative
height growth in non-fertilized saplings, indicating cost
of constitutive insect resistance. The two groups of sec-
ondary chemicals that have been shown to correlate
strongly with constitutive insect resistance, i.e., con-
densed tannins and flavonol glycosides (especially my-
ricetin glycosides), had different genetic correlations
with plant traits; the concentration of condensed tannins
did not correlate negatively with any of the plant traits,
whereas the concentration of flavonol glycosides corre-
lated negatively with plant height. Insect and mammalian
resistance did not correlate negatively, indicating no eco-
logical trade-offs.

Keywords Resistance to herbivory · Genetic 
correlations · Secondary chemicals · Betula pendula ·
Epirrita autumnata

Introduction

Since herbivory is detrimental to plant fitness it is rea-
sonable to assume that selection has favored traits that
decrease the probability and amount of herbivory 
(Janzen 1979; Futuyma 1983; Marquis 1992). By decreas-
ing the damage caused by herbivores, resistance traits are
beneficial to plants and most likely correlate with plant
fitness. However, natural plant populations have genetic
variation in resistance, and intermediate levels of resis-
tance have been found in numerous studies (Hanover
1966; Berenbaum et al. 1986; Simms and Rausher 1989;
Han and Lincoln 1994; Sagers and Coley 1995; Zangerl
and Berenbaum 1997; Mutikainen et al. 2000; Under-
wood et al. 2000). One possible explanation for the vari-
ation observed in resistance lies in the genetic correla-
tion structure: negative genetic correlations between re-
sistance and other fitness components may constrain the
evolution of resistance and thus maintain intermediate
levels of resistance (Berenbaum et al. 1986; Simms and
Rausher 1989; Rausher 1996). Negative correlation be-
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tween resistance and plant fitness, i.e., the costs of resis-
tance, has been a central assumption in recent theories
on the evolution of plant resistance (Feeny 1976; 
Rhoades and Cates 1976; Rhoades 1979; Mooney and
Gulmon 1982; Coley et al. 1985). Previous studies on
costs of herbivore resistance have obtained variable re-
sults. For example, Simms and Rausher (1987, 1989) did
not detect any cost of resistance against insect herbivores
whereas other workers have found costs in terms of plant
fitness (e.g., Berenbaum et al. 1986; Han and Lincoln
1994; Sagers and Coley 1995; Zangerl and Berenbaum
1997; Baldwin 1998; Mauricio 1998).

Most plants are attacked by several herbivores simul-
taneously (e.g., Strong et al. 1984; Maddox and Root
1987, 1990; Senn et al. 1993; Roche and Fritz 1997).
Consequently, some resistance traits may involve eco-
logical trade-offs between resistance against multiple
herbivores (Futyuma 1983; Gould 1983; Simms and 
Rausher 1987, 1989; Rausher 1996). Ecological trade-
offs are expressed as negative correlations between traits
that indicate resistance against these different herbivores.
Again, results from previous studies are variable. In a
few studies, increasing resistance to one herbivore de-
creased resistance against another herbivore species (Da
Costa and Jones 1971; Maddox and Root 1990; Van
Dam and Hare 1998; Agrawal et al. 1999). In other stud-
ies, ecological trade-offs among resistance to several
herbivores were not observed (e.g., Fritz and Price 1988;
Simms and Rausher 1989; Maddox and Root 1990; Orians
and Fritz 1996).

The expression of costs of resistance may be sensitive
to environmental conditions (Coley et al. 1985; Bergelson
1994a, 1994b); usually allocation costs are predicted to
be higher at low resource availability (Rhoades 1979;
Zangerl and Bazzaz 1992; Bergelson and Purrington
1996). However, according to a recent meta-analysis by
Koricheva (2002), phenotypic correlations between de-
fence and fitness were negative only at high levels of nu-
trient availability. Studies on genetic correlations be-
tween herbivore resistance and plant fitness addressing
the effects of resource levels are scarce (but see Orians
and Fritz 1996). Such genotype-by-environment interac-
tions indicate that costs of resistance may constrain the
evolution of resistance in some environments but not in
others.

We investigated the genetic correlations (1) between
resistance traits and plant growth parameters, and (2) be-
tween insect and mammalian resistance in saplings of
cloned silver birch, Betula pendula. We used the perfor-
mance of an insect herbivore (a geometrid moth, Epirrita
autumnata), number of resin droplets, and concentrations
of secondary chemicals as indices of resistance. Slow
relative growth rate indicates poor performance of E. au-
tumnata (e.g., Haukioja et al. 1988; Ayres et al. 1987).
The numbers of resin droplets at the tip and at the base
of the stem of the sapling have previously been observed
to correlate with resistance against hares and voles, re-
spectively (Rousi et al. 1991, 1993). In previous studies,
we have found significant among-clone variation in the

above-mentioned resistance traits (Keinänen et al. 1999;
Mutikainen et al. 2000). Finally, to reveal the effect of
environmental factors on the trade-offs mentioned
above, we investigated the correlations in saplings that
were grown at two nutrient levels.

Materials and methods

Betula pendula

We used commercially available Betula pendula plantlets (Hortus-
Puutarha, Kaarina, Finland) that were cloned using a micropropa-
gation technique during the spring of 1992. We used 15 clones
originating from mother trees and crosses between trees growing
in southern and central Finland. A more detailed description of the
clones used is presented in Mutikainen et al. (2000). At the begin-
ning of June 1992, the plantlets were individually transplanted to
plastic trays into fertilized peat. For the first growing season, the
saplings were grown in a greenhouse. On 15 May 1993, after
overwintering at –4°C, the still leafless saplings were transplanted
to the experimental field in Suonenjoki Research Station. The data
for the present study were collected during the third growing sea-
son (1994).

Design of the experiment

The experimental field (54 m×140 m) was arranged according to a
randomized block design and divided into two separate sub-areas;
one sub-area was used for measurements of growth and biomass
accumulation, and the other for bioassays with Epirrita autumnata
and analyses of leaf secondary chemistry.

Both sub-areas were divided into ten blocks (9 m×24 m), each
block thus constitutes one replicate. We planted 240 saplings to
each block, i.e., 16 saplings from each of the 15 clones. The 16
saplings from each clone were randomly divided to four sub-
groups. Each of the sub-groups was planted together to a random-
ly selected location within the block, each sapling approximately
1 m apart from other saplings. Within each block, two of the four
sub-groups (consisting of the four saplings from the same clone)
were randomly assigned to either control treatment (no fertiliza-
tion) or fertilization treatment. The two remaining sub-groups
were used for other purposes. Within each sub-group of the four
saplings, one sapling was randomly assigned for the measure-
ments conducted in the third growing season (1994). There were
altogether 4,800 saplings in the experimental field.

For the saplings assigned to the fertilization treatment, we ap-
plied NPK (18:5:10) fertilizer twice during both growing seasons.
The fertilizer was distributed around each sapling; the diameter of
the fertilized area was 30 cm. The amount of fertilizer applied cor-
responds to 12 kg nitrogen/ha per year, 3.3 kg phosphorus/ha per
year, and 6.7 kg potassium/ha per year.

Plant height and biomass

The height of the saplings was measured in the beginning and at
the end of the 1994 growing season. The relative height growth
during the growing season was calculated as (X2–X1)/X1, where
X1= height at the beginning and X2= height at the end of growing
season. At the end of the growing season, all above and below-
ground biomass of the 600 saplings was collected. The plant parts
were oven-dried (80°C, 48 h) and weighed.

Bioassays, resin droplets, and leaf chemistry

For both control and fertilized saplings, we measured the resis-
tance levels of undamaged leaves in terms of the relative growth
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rate (RGR) of the fourth-instar larvae of the generalist geometrid
moth, E. autumnata. Prior to the experiment, the E. autumnata lar-
vae were reared solitarily in plastic containers (48 ml) on leaves of
mountain birch. The larvae were randomly assigned to the clones
and the two fertilization treatments. For the bioassays, we collect-
ed two undamaged short-shoot leaves from the top of each sapling
at the end of June. In the statistical analyses, the mean of these
two leaves was used. Each leaf was placed to a rearing container
with one weighed larva. An individual larva was used only once.
After 24 h at 13°C, the larvae were weighed again. We calculated
the RGR of the larva as weight gained (mg) / initial biomass (mg)
per day. The fresh mass of the larva was transformed to dry mass
using the equation: dry mass = exp [1.113×ln (fresh mass)–2.079].
We then continued rearing the larvae on the leaves of the same
saplings to which they were assigned until they stopped feeding
and began to pupate. Two days after pupation, the pupae were
weighed. Altogether, we used 600 E. autumnata larvae in the bio-
assay.

We calculated the number of resin droplets with a stereomicro-
scope using 2–4 fold magnifications from a 1-cm-wide band
around the stem between the third and fourth internode from the
plant apex, and between the third and fourth internode from the
base of the saplings. We collected two short-shoot leaves from the
top of the saplings at the end of June for the analysis of secondary
chemistry. Prior to the analysis, the leaves were air-dried. For the
analyses of leaf chemistry, we used ten clones from eight experi-
mental blocks and thus the clone means are based on eight repli-
cates. We examined the correlations of the concentration of con-
densed tannins, total non-tannin phenolics, flavonol glycosides,
flavone aglycones, and 3,4′-dihydroxypropiophenone 3-glucoside
(DHPPG) with plant growth and biomass accumulation. Con-
densed tannins, total non-tannin phenolics, and flavonol glyco-
sides were chosen because they are often considered to reduce
herbivore performance (e.g., Feeny 1976; Scriber and Slansky
1981; Coley 1986; Dudt and Shure 1994; Ayres et al. 1997; 
Mutikainen et al. 2000). Flavone aglycones and DHPPG were
chosen because their concentrations increased due to defoliation
treatment (Keinänen et al. 1999). Further, the concentration of
DHPPG correlated with the rapid induced resistance (RIR) measured
as RGR of E. autumnata (Mutikainen et al. 2000). The secondary
chemicals were extracted according to Keinänen and Julkunen-
Tiitto (1996), and the amounts of non-tannin phenolics and
DHPPG were analyzed by HPLC as in Keinänen and Julkunen-Tiitto

(1998). Condensed tannins were analyzed by a vanillin-HCl assay
(Julkunen-Tiitto et al. 1996).

Statistical analysis

The relationships between plant biomass and relative height
growth, and resistance against E. autumnata were analyzed with
Pearson correlation coefficients using clone means. All data were
normally distributed. The use of clone means allows us to draw
conclusions of the evolutionary implications of these correlations
(Simms 1992). We calculated the correlations separately for the
non-fertilized and fertilized saplings (n=15, and for correlations of
secondary chemicals n=10).

Results

Cost of resistance in terms of plant growth and biomass

In these data, a positive genetic correlation between the
indices of constitutive insect resistance and plant growth
or biomass indicates cost of resistance, since the higher
the RGR or pupal mass of Epirrita autumnata, the lower
the resistance. Both relative growth rate and pupal mass
of E. autumnata correlated positively with the relative
height growth of Betula pendula in the non-fertilized
saplings, and pupal mass correlated positively with plant
height growth in fertilized saplings (Table 1, Fig. 1). 

There was no indication of costs of resistance against
mammalian herbivores; instead, in fertilized saplings,
both indicators of mammalian resistance (i.e., number of
resin droplets) correlated positively with plant height
(Table 1, Fig. 2). Further, the indicator of vole resistance,
i.e., the number of resin droplets at the base of the sap-
ling, correlated significantly positively with plant height
also in non-fertilized saplings (Table 1, Fig. 2).

Table 1 Pearson correlation coefficients among resistance traits
and relative height growth, height, and total biomass of Betula
pendula analysed separately for non-fertilized and fertilized sap-
lings. Number of resin droplets at the base and at the tip of the
saplings indicates vole and hare resistance, respectively. Correla-

tions are based on clonal means (n=15 for insect and hare resis-
tance and n=10 for secondary chemistry). Note that for constitu-
tive insect resistance, positive correlations indicate cost of resis-
tance, i.e., high relative growth rate (RGR) or pupal mass of Epir-
rita autumnata indicate low resistance

Non-fertilized Fertilized

Relative height Height Total biomass Relative height Height Total biomass
growth growth

Insect resistance
RGR 0.58* 0.18 0.09 0.06 0.15 –0.02
Pupal mass 0.55* 0.15 0.15 0.06 0.54* 0.21

Resin droplets
Vole resistance 0.40 0.52* 0.21 0.34 0.56* 0.15
Hare resistance 0.29 0.36 0.49 0.31 0.52* 0.13

Secondary chemistry
Condensed tannins –0.22 –0.03 –0.12 0.19 –0.14 –0.41
Total non-tannin phenolics 0.32 –0.07 0.42 –0.14 –0.32 0.10
Flavonol glycosides 0.05 –0.34 0.01 –0.17 –0.74* –0.50
Flavone aglycones 0.40 0.48 0.48 –0.36 0.06 0.15
DHPPG 0.22 0.45 0.62 –0.78 ** 0.16 0.56

*0.01<P<0.05, **0.001<P<0.01
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In fertilized saplings, the concentration of flavonol
glycosides correlated negatively with plant height (Ta-
ble 1, Fig. 3A), and the concentration of DHPPG corre-
lated negatively with relative height growth of B. pend-
ula (Table 1, Fig. 3B).

Ecological trade-offs

There were no significant negative genetic correlations
among the indicators of insect, hare, and vole resistance
(Table 2). The only significant correlation was found in

Fig. 1A,B Correlation between constitutive resistance against the
autumnal moth (Epirrita autumnata) and relative height growth of
15 Betula pendula clones. Constitutive resistance was measured as
the relative growth rate (RGR, A) and pupal mass (B) of E. au-
tumnata. The line depicts the best fit for the non-fertilized saplings

Fig. 2. Correlation between height of Betula pendula and number
of resin droplets at the tip (A) and at the base (B) of saplings. Each
dot represents one clone. The continuous line depicts the best fit
for the non-fertilized saplings and the dashed line for the fertilized
saplings

Non-fertilized Fertilized

Vole resistance Hare resistance Vole resistance Hare resistance

Insect resistance
RGR 0.14 –0.00 0.04 0.22
Pupal mass –0.03 0.08 0.37 0.17
Hare resistance 0.42 0.57*

Secondary chemistry
Condensed tannins 0.03 –0.02 0.37 0.29
Total non-tannin phenolics –0.02 –0.01 –0.32 –0.28
Flavonol glycosides –0.33 –0.60 –0.54 –0.66*
Flavone aglycones 0.59 0.19 –0.13 –0.25
DHPPG 0.71* 0.66* –0.35 0.11

Table 2 Pearson correlation
coefficients between indicators
of insect and mammalian resis-
tance

*0.01<P<0.05
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fertilized saplings: the concentration of flavonol glyco-
sides correlated negatively with hare resistance (i.e.,
number of resin droplets at the tip of the sapling; Ta-
ble 2, Fig. 4). Further, the two indicators of resistance

against mammalian herbivores correlated positively in
fertilized saplings (Table 2, Fig. 5). 

Discussion

The explanation of costs as a factor constraining the evo-
lution of herbivore resistance is based on the premise
that resistance is beneficial and ameliorates the negative
fitness effects of herbivory. This assumption seems to be
true in birch species. In Betula pubescens and B. pendula
herbivore-induced resistance has been shown to decrease
the leaf area consumed by herbivores (Hartley and Lawton
1987; Silkstone 1987; for a review see Karban and 
Baldwin 1997). Further, B. pendula saplings that have
high levels of resin droplets on their stems are less palat-
able to voles and hares (Rousi et al. 1991, 1993).

Costs of insect resistance and secondary chemicals

Our results indicate costs of constitutive resistance
against an insect herbivore, but only if costs were mea-
sured in terms of plant height growth. These results sug-
gest that relative height growth and total biomass may
not be correlated, which is the case here (r=0.30,
P=0.281 for non-fertilized and r=–0.20, P=0.478 for fer-
tilized saplings, n=15 clones for both). The lack of a
negative genetic correlation between plant biomass accu-
mulation and resistance traits might be explained by the
age of the saplings. The saplings used in this experiment
were only on their third growing season, and thus the
negative effects of higher resistance level on relative
height growth might not yet have been reflected in bio-
mass accumulation since the absolute differences are ex-
pected to be minor. It is likely that juvenile saplings that
have high resistance also end up accumulating less bio-
mass later during their lifespan due to their slower
growth rate (Bryant and Julkunen-Tiitto 1995).

Fig. 3 A Correlation between height of Betula pendula and con-
centration of flavonol glycosides. B Correlation between relative
height growth of B. pendula and concentration of DHPPG. Each
dot represents one clone. The dashed line depicts the best fit for
the fertilized saplings

Fig. 4 Correlation between concentration of flavonol glycosides
and the number of resin droplets at the tip of B. pendula saplings.
Each dot represents one clone. The dashed line depicts the best fit
for the fertilized saplings

Fig. 5 Correlation between the number of resin droplets at the tip
and at the base of B. pendula saplings. Each dot represents one
clone. The dashed line depicts the best fit for the fertilized saplings



Of the several secondary chemicals analyzed, only the
production of flavonol glycosides and DHPPG seem to
incur costs in terms of plant height or relative height
growth, respectively. Interestingly, the concentration of
DHPPG was positively correlated with the induced in-
sect resistance in our previous study (Mutikainen et al.
2000) and here it correlated negatively with height
growth. Thus, these results also suggest that induced in-
sect resistance may be costly in terms of plant growth. In
this case, the induced response is mainly determined by
the constitutive level of the particular secondary chemi-
cal that causes the induced resistance (Mutikainen et al.
2000). Thus, our results suggest that even the mainte-
nance and construction of the mechanisms of induced re-
sistance against herbivores may be costly. At the mecha-
nistic level, the synthesis, storage, transport, and mainte-
nance of a high constitutive level of the inducible chemi-
cal form part of the costs (Gershenson 1994).

The indices based on herbivore performance indicate
costs of constitutive insect resistance. Interestingly, the
two groups of secondary chemicals that correlated
strongly with constitutive insect resistance, i.e., con-
densed tannins and flavonol glycosides (especially my-
ricetin glycosides; Mutikainen et al. 2000), show differ-
ent genetic correlations with plant traits; the concentra-
tion of flavonol glycosides, contrary to that of condensed
tannins, correlated negatively with plant height. Thus the
role of any single group of secondary chemicals as an
explanation for constitutive resistance is not straightfor-
ward. Furthermore, the fact that the negative correlation
between insect performance and plant growth traits is not
explained by a corresponding correlation between the
secondary chemicals and plant growth traits may also in-
dicate that other plant traits than those measured here
may play a significant role in determining insect resis-
tance. For example, leaf toughness and plant nutrient
concentrations are important determinants of resistance
(e.g., Hartley and Jones 1997).

In a recent meta-analysis on fitness costs of herbivore
resistance, Koricheva (2002) found that both phenotypic
and genetic correlations showed higher costs of resis-
tance when resistance was measured as the inverse of
herbivore density or damage than when it was measured
in terms of specific secondary chemicals. This seems to
be the case in the present study, but only in non-fertilized
saplings. In fertilized saplings, the correlations of flavo-
nol glycosides and DHPPG with plant growth traits were
stronger than those with herbivore performance. When
using insect performance as a measure of resistance we
have assumed that this measure correlates negatively
with the level of damage the plant experiences. This as-
sumption would not be fulfilled if the insects compensat-
ed for low-quality leaves by consuming higher quantities
of leaves or by moving to better-quality leaves. Unfortu-
nately, we did not measure food consumption of the 
E. autumnata larvae in this experiment, and thus our 
results need to be interpreted with some caution.

Mammalian resistance and ecological trade-offs

Contrary to insect resistance, the resistance to the two
mammalian herbivores does not seem to incur costs in
terms of plant growth or biomass accumulation; actually
plants that had a high number of resin droplets also grew
taller at the end of the growing season. These results are
in accordance with previous results of Rousi et al. (1991,
1993) who found that height at the end the growing sea-
son correlated positively with vole resistance in B. pend-
ula.

The concentration of flavonol glycosides correlated
negatively with resistance to hares. Apart from this cor-
relation, we did not observe any other negative correla-
tions among the indices of resistance to insect and mam-
malian herbivores. This result is in accordance with the
results of a previous study on B. pendula, where the pal-
atability of seedlings to voles, hares, and weevils (Phyl-
lobius argentatus and P. oblongus) did not have signifi-
cant correlations (Rousi et al. 1997). In other systems,
positive genetic correlations among resistance to several
herbivore species are more often observed than negative
correlations (for a review, Fritz 1992). In addition, there
are several cases where non-significant correlations have
been found (Fritz and Price 1988; Simms and Rausher
1989; Maddox and Root 1990). In general, non-signifi-
cant correlations among resistances to several herbivores
suggest that joint selection for increased resistance by
several herbivore species is not likely. Thus, the resis-
tance to different herbivores can evolve independently
(Fritz 1992).

The independence of insect and mammalian resis-
tance in B. pendula is not surprising in the present case,
since the mechanisms of resistance are clearly different.
The resistance to insect herbivores is mainly determined
by factors that affect leaf quality, whereas the vole and
hare resistance is mainly based on shoot quality of the
saplings, mainly papyriferic acids in resin glands 
(Reichart et al. 1984) and platyphylloside in shoot tissue
(Palo 1987). Correspondingly, it is not surprising that
vole and hare resistances correlate positively, since the
mechanism is similar. In the case of positive correlations
between resistances to two herbivores, resistance should
evolve more rapidly since at least some resistance genes
confer resistance to both herbivores (Fritz 1992). In
these saplings, genotype explained a higher proportion of
variation in number of resin droplets at the top of the
stem than in the indices of insect resistance (32% vs
9–13%, Mutikainen et al. 2000). This suggests that the
broad-sense heritability of vole and hare resistance is
higher than that of insect resistance.

Costs of resistance and the maintenance 
of genetic variation in resistance

In this study, the costs of resistance were highly depen-
dent on the fertilization level of the saplings. Similarly,
in Salix sericea, the costs of resistance against leaf min-
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ers (assessed as genetic correlations) were higher at high
nutrient levels (Orians and Fritz 1996). Studies using
phenotypic correlations show a similar pattern, i.e., neg-
ative correlations are more likely to be detected at high
levels of nutrient availability (Koricheva 2002). Taken
together, these results thus suggest that plant-environ-
ment interactions may be significant both for the exis-
tence and assessment of costs of herbivore resistance in
plants.
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