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Abstract. Astrocytes and other glia in the central ner-and other glia in the CNS is the production of molecules
vous system are now thought to produce molecules thahat negatively modulate axon growth, thereby enabling
negatively modulate axon growth, thereby influencingglia to influence axon pathfinding in both development
axon pathfinding in both development and regeneratiorand regeneration.

The relevant evidence for glial cell boundaries and the

inhibitory molecules present in these extracellular matrix

structures is discussed in this minireview. Glial cell boundaries in development

Key words: Astrocyte — Glia — Proteoglycan — Injury — Glial cells of the astrocyte lineage play an integral role
Necrosis — Cavitation during development of the nervous system as a substrate
for neuronal migration and axon elongation in vivo (Sil-
ver et al. 1993; Rakic 1995), and neonatal astrocytes
have been shown to be a supportive substrate for axon
growth in vitro (Fallon 1985; Rudge et al. 1989; Ard et
Introduction al. 1991; Bahr et al. 1995). Glial cells are recognized not
only for their axon supportive properties, but also for es-
In an effort to understand axon pathfinding during thetablishing functional boundaries important for guiding
development and regeneration of the central nervoudeveloping neuronal connections. Within the developing
system (CNS), numerous studies have examined thaservous system, such boundaries that are implicated in
abilities of various substrates to support the elongatioglial guidance of axons are present in the diencephal-
of neuronal processes. Glial cells of the CNS have longg/telencephalic junction (Silver 1984), the optic chiasm
been recognized as important contributors to the CNS g®Navascues et al. 1987; Silver et al. 1987; Godement et
a structural framework for neurons, and although strucal. 1990; Sretavan 1990; Cole and McCabe 1991), the
tural considerations are certainly important for axonoptic tectum (Snow et al. 1990b; Jhaveri 1993), anterior
growth, the cell-surface and extracellular matrix mole-commissure (Cummings et al. 1997), somatosensory
cules produced by glial cells have recently been demorbarrel fields of the cortex (Cooper and Steindler 1986),
strated to play critical roles in the abilities of these cellghe midbrain (Garcia-Abreu et al. 1995), the roof plate
to support neurons and their processes. Since the midf the spinal cord and tectum (Wilkinson et al. 1987;
1980s, a number of molecules that are produced by ageosten and Gribnau 1989; McMahon and Moon 1989),
trocytes or their precursors and that encourage axotihe developing floor plate (Dodd and Jessell 1988;
growth have been discovered (Liesi and Silver 1988Bovolenta and Dodd 1990; Kuwada et al. 1990; Placzek
Tomaselli et al. 1988; Smith et al. 1990; Serafini et alet al. 1990; Serafini et al. 1996), and extracellular chan-
1996). Even adult astrocytes can produce axon-suppontels of the retina and optic nerve (Silver and Robb 1979;
ive molecules such as laminin (Liesi et al. 1984; BernKrayanek and Goldberg 1981; Silver 1984). These glial
stein et al. 1985; McKeon et al. 1991, 1995; Frisen et aktructures are also found at the midline of the developing
1995). As discussed in this minireview, increasing eviforebrain, in the cerebral commissures, partitioning the
dence suggests that another important role of astrocyteencephalon, and bordering the corpus callosum, inter-
nal capsule, and anterior commissure (Silver et al. 1982,
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and/or molecular cues theepel gowing axons or edi
rect them tward other ptghways.

Extr acellular matr ix molecules associad
with boundaries in deselopment

Various studies ha recenty been conducted tovastk
gate the molecular basis of the glial bouridariound in
the deelopment of the ngous system. Manstrategies
have examined molecules thare present in sut bound
ary regions hut tha are not pesent in other aas of the
developing embyo; these pproades hae implicaed
several molecules thaare locded in the peviously de
sciibed axon inhibitoy regions and thmay functionat
ly sewve as epulsos to gowing neupnal piocesses.
Tenascin is one shcmolecule thais associged with
glial cell boundaes in deelopment. It is dund assoei
ated with deeloping axons in the spinal abfPindola
et al. 1993), optic nge (Batsch et al. 1994), optic tec
tum (Rerez and Halfter 1993), attory bulb (Gonzalez
et al. 1993; Gonzalez and S#v1994), and beel fields

of the somtosensoy cortex (Cooper and Steindler 1989;

Mitrovic et al. 1994). ¥rious membes of the potealy-

can fimily have also been sknn to be associad with
similar glial bounddes in the deelopment of the aof

plate and midline daal tectum (Snw et al. 1990b;
Katoh-Semba et al. 1995)af plae and midline rhomb
encphalon and mesengkalon (Cole and McQe
1991; McCée and Cole 1992), dsal 0ot enty zone
and dosal columns in the spinal abr(Pindola et al.

1993), olactoy bulb (Gonzalez et al. 1993; Gonzalez

and Siher 1994), cdical barels, thalamic ndei, genic

ulate rudeus, and cebellum (Cooper and Steindler

1986; Steindler et al. 1988, 1990; Geisand Bidanset
1993; Robson and Gei$et994; Seo and Geiget995;

Watanade et al. 1995), posier sderotome (Oaklg and

Tosng 1991; Landolt et al. 1995), optic wer (Rerez

and Halfter 1993), ancktina (Bittis et al. 1992; Bitis

and Siher 1994; Bittis et al. 1995). Tie spacial and
temporl expression of these molecules gegts a con

tribution to the molecular @ironment of glial bound

anes and my sewre to diect the gowth of axons to oth

er regions duing deselopment.

Boundary molecules diectly modulate axon gowth

These &milies of boundarmolecules hee been diectly
demonstated as haing the dility to modulde the
growth of axons as pified substates or as parof the
extracellular méix produced lp CNS astocytes. Exper
iments in vito havte demonsated tha cettain forms of
tenascin can be inhibitpifor axon gowth, whereas oth
ers can also moduila neuite extension in a posite
manner (Gierson et al. 1990; étez and Halfter 1993;
Taylor et al. 1993; Bissner et al. 1994; Chiquet-Ehar
mann et al. 1995). Btealycan molecules of arious
types also can inhibit nete outgowth as a esult of
their glycosaminglycan (GAG) su@r dains (Snw et
al. 1990a; Cole and Mc®a 1991; kchard et al. 1991,

Snav et al. 1991; Bwolenta et al. 1993; Canning et al.
1993, 1996; Koh-Semba et al. 1995) and sometimes as
a function of their car pioteins (Oohia et al. 1991; Gei
set and Bidanset 1993; Dou andJiee 1994). It has
also been sugpsted thg in cetain situdions, potealy-
cans mg positvely influence newns and/or axon
growth (lijima et al. 1991; Maeda et al. 1995; Challa
combe and Elam 1997; igpler et al. 1997). In alition

to possilie direct efects of the mtegylycan coe mole
cule or GAG chains, aecent eport highlights the difer-
ences beteen the inhibition of thalamic neams in the
developing cotical plae \ersus the stimlation of these
neuwons in the subpta region and sugests thaprotec
glycans in wo may modulde sut positve or ngative
axon gowth via inteactions with other molecules tha
bind to the GA& epitopes (Emding and Lander 1996).
Interactions sule as those betgen potealycan mole
cules and identiéd gowth promoting substances V&
been peviously descibed and ag discussed eladere
(Ruoslahti and &mayuchi 1991; Gumet et al. 1993;
Friedlander et al. 1994; Mieet al. 1994; Buy et al.
1995).

Formation of cellular and molecular boundaiies
following CNS injury

Unlike the phust regenegtive response of the pipherl
newvous system (PNS) to injr(for a eview, see Guth
1956), tauma to the adult mammalian CNS leads te per
manent diskility with little or no functional egenee-
tion of injured axons (Ramén y Cajal 1928). Classie de
sciiptions of injuly to the CNS sugested ér mary yeais
tha regenestive failure was dtributable primaily to a
structural barier to axon gowth, viz., a glial scar com
posed of asticytes and conneete tissue (Whdle and
Chambes 1950; Wihdle et al. 1952; Clemente andrw/
dle 1954). Recent studies indieahd the astocytic scar
tha often forms following injury does not mvent axon
growth simply by a medanical mebanism (Reier et al.
1983; Guth et al. 1986; Dees et al. 1996); this has led
investicptors to seath for both cellular and molecular
explandions for the ways in which glial cells mg con
tribute to the lak of regenegtion of axons injued in the
CNS (for a eview, see kch and Siler 1997b).

Both tenascin and dain piote@lycans ae upegu-
lated following injury to the CNS Tenascin leels in
crease 6llowing trauma to the fain (Laywell and Stein
dler 1991; Mckeon et al. 1991, 1995; eell et al.
1992; Bodkey et al. 1995; Lips et al. 1995) and the-spi
nal cod (Pindola et al. 1993; Zhang et al. 1995). Simi
larly, chondoitin sulfate potealycans pesist in the -
tracellular mé&ix of the CNS éllowing injury, eg., in
the spinal catt following dorsal oot injuty (Pindola et
al. 1993), in the lain following std wounds (Le&ine
1994; Rtch and Siher 1997a), in thedmix following
transection (Lips et al. 1995), and in the spinatidoi-
lowing penetating crush injuy (Fitch and Siher 1997a).
Post-injuly responses thus ihme the poduction of the
same types of boundamolecules thahave been de
sclibed as heing axon inhibitoy functions duing the



development of the nepus system. Exacellular mérix
molecules poduced in esponse to injyron an implant
ed piece of niwcellulose in wio provide a substte tha
is inhibitory to axon egeneation in vitro, demonsating
tha these kinds of moleculesqatuced after injyr may
indeed functionajl inhibit regeneetion (McKeon et al.
1991, 1995). In adition, the spacial and temirgo-
peaance of these puige inhibitory molecules imph
caes them in thedilure of adult axons toegenegte
successfuil after tauma. Adult eactve astocytes in
the vicinity of CNS lesions arpooty suppotive sub
strates br axon gowth (Rudg et al. 1989; Smith et al.
1990; Geisdrand Stwart 1991; Bahr et al. 1995; Le
Roux and Reh 1996) and this seems to be dueast in
pat, to these types of boungamolecules thiaare pio-
duced ly astocytes and a tiggered to becomeeactve
in specifc ways (Giierson et al. 1990; Mc&on et al.
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nism tha the adult nerous system uses toguent der

rant gowth of axons and theofmation of ingopropriate

connections. fie peviously descibed inteactions of
protegglycans with gowth factos (Ruoslahti and &

maguchi 1991; Gumet et al. 1993; Baret al. 1995;
Emelting and Lander 1996) nyasewve to hinder long
distance axon rgwth by binding and functionajl re-

moving impotant gowth signals fom the injuy site or

they may act as a “phic oasis” past hich axons a&

unwilling to regeneete.

Chondpitin sulfate pioteagylycans hse been de
sciibed d the interce betwen deeloping caities and
the surounding CNS pandyma and poduce vihd is
effectively a molecular boundgrbetween the destic-
tion of tissue via pgressve necosis and the suwund
ing viable tissue (Kch and Siher 1997a). is response
of the maure CNS to injuy may represent a “wlling

1991, 1995; Ad et al. 1993; Canning et al. 1993, 1996;off” of injured CNS tissue as agiectve response dr

Dou and Le&ine 1994; Hok et al. 1994; Smithfflomas
et al. 1994; Chiquet-Elsmann et al. 1995).

What triggers the upregulation
of boundary molecules after CNS injuy?

Questions émain concaring the molecular iggers tha
are responsike for the poduction of inhibitoy extracel
lular marix molecules. One siers of studies has demon
strated tha B-amyloid protein is a tigger for the in
creased pyduction of inhibitoy proteqgylycans ly asto-
cytes (Canning et al. 1993, 1996; Ho&t al. 1994); this
may explain the pesence of these moleculesand the
plagues dund in Alzheimers disease (DeWf et al.
1993). Our ecent &peliments in wwo demonsgte tha
increases in ltondoitin sulfate piotealycans after CNS
injury are associted with the beakdavn of the tood
brain barier and iniitrating macophajes & the lesion
site, sugyesting thaseum factos or infammaory cyto-
kines pla a role in the molecular cascade leading xe e
tracellular m&ix production in the immedta vicinity
of the deeloping glial scar (fch and Siler 1997a). As
a rumber of thespeutic stategies designed to modify
the imnmune esponse ha shovn promise (Badken et

al. 1990; Guth et al. 1994a, b; Zhang et al. 1997), it is

possille tha sut beneits may result fiom limiting in-
flammadion-induced inceases in puteve inhibitory mol-
ecules after auma. In adition, stitegies designed to
prevent widespead beakdavn of the thood brain barier
after injury could lead to linically promising theapies
by similally reducing a potential igger for the poduc
tion of molecules thamay inhibit regeneation.

What are the functions of bounday molecules
following trauma?

Proteglycans ma influence the nanal ewvironment of
the adult CNS todvor the inhibition of axon ipwth in
an dtempt to maintain naonal syn@tic connections
(Kalb and Hog&field 1990). herefore, the upeguldion
of inhibitory molecules after injyr may be one meua

the healtly tissue suounding the wund @icenter
Since potegylycans hae been demonsgtied to inhibit
the phgocytosis and destiction of B-amyloid protein
by macophaes (Shdker et al. 1995), antimactve hy-
pothesis is thaprotealycans hge a potective function
to prevent secondgrdamae within the CNS after au
ma, thus limiting the destding process of prgressve
neciosis. The inhibitoy propeties of these molecules on
axonal gowth may simply be an undrtunae side-effect
of a nomal wound-healing esponse of CNS tissue
Strategies to modulte the poduction of these molecules
may be one way of goproacting the enhancement of the
regenegtive response padult neuons in futue intedis-
ciplinary approades to the thapy of CNS injuy.
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