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Glial cell extracellular matrix: boundaries for axon growth
in development and regeneration
Michael T. Fitch, Jerry Silver

Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue,
Cleveland, Ohio 44106, USA

&misc:Received: 21 April 1997 / Accepted: 22 May 1997

&p.1:Abstract. Astrocytes and other glia in the central ner-
vous system are now thought to produce molecules that
negatively modulate axon growth, thereby influencing
axon pathfinding in both development and regeneration.
The relevant evidence for glial cell boundaries and the
inhibitory molecules present in these extracellular matrix
structures is discussed in this minireview.
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Introduction

In an effort to understand axon pathfinding during the
development and regeneration of the central nervous
system (CNS), numerous studies have examined the
abilities of various substrates to support the elongation
of neuronal processes. Glial cells of the CNS have long
been recognized as important contributors to the CNS as
a structural framework for neurons, and although struc-
tural considerations are certainly important for axon
growth, the cell-surface and extracellular matrix mole-
cules produced by glial cells have recently been demon-
strated to play critical roles in the abilities of these cells
to support neurons and their processes. Since the mid-
1980s, a number of molecules that are produced by as-
trocytes or their precursors and that encourage axon
growth have been discovered (Liesi and Silver 1988;
Tomaselli et al. 1988; Smith et al. 1990; Serafini et al.
1996). Even adult astrocytes can produce axon-support-
ive molecules such as laminin (Liesi et al. 1984; Bern-
stein et al. 1985; McKeon et al. 1991, 1995; Frisen et al.
1995). As discussed in this minireview, increasing evi-
dence suggests that another important role of astrocytes

and other glia in the CNS is the production of molecules
that negatively modulate axon growth, thereby enabling
glia to influence axon pathfinding in both development
and regeneration.

Glial cell boundaries in development

Glial cells of the astrocyte lineage play an integral role
during development of the nervous system as a substrate
for neuronal migration and axon elongation in vivo (Sil-
ver et al. 1993; Rakic 1995), and neonatal astrocytes
have been shown to be a supportive substrate for axon
growth in vitro (Fallon 1985; Rudge et al. 1989; Ard et
al. 1991; Bahr et al. 1995). Glial cells are recognized not
only for their axon supportive properties, but also for es-
tablishing functional boundaries important for guiding
developing neuronal connections. Within the developing
nervous system, such boundaries that are implicated in
glial guidance of axons are present in the diencephal-
ic/telencephalic junction (Silver 1984), the optic chiasm
(Navascues et al. 1987; Silver et al. 1987; Godement et
al. 1990; Sretavan 1990; Cole and McCabe 1991), the
optic tectum (Snow et al. 1990b; Jhaveri 1993), anterior
commissure (Cummings et al. 1997), somatosensory
barrel fields of the cortex (Cooper and Steindler 1986),
the midbrain (Garcia-Abreu et al. 1995), the roof plate
of the spinal cord and tectum (Wilkinson et al. 1987;
Joosten and Gribnau 1989; McMahon and Moon 1989),
the developing floor plate (Dodd and Jessell 1988;
Bovolenta and Dodd 1990; Kuwada et al. 1990; Placzek
et al. 1990; Serafini et al. 1996), and extracellular chan-
nels of the retina and optic nerve (Silver and Robb 1979;
Krayanek and Goldberg 1981; Silver 1984). These glial
structures are also found at the midline of the developing
forebrain, in the cerebral commissures, partitioning the
diencephalon, and bordering the corpus callosum, inter-
nal capsule, and anterior commissure (Silver et al. 1982,
1993). They seem to play an integral role in axon guid-
ance during embryogenesis by providing structural

Correspondence to:M. T. Fitch (Tel.: +1-216-368-5574; Fax:
+1-216-368-4650; E-mail: mtf@po.cwru.edu)&/fn-block:

Cell Tissue Res (1997) 290:379–384

© Springer-Verlag 1997



380

and/or molecular cues that repel growing axons or redi-
rect them toward other pathways.

Extr acellular matr ix molecules associated
with boundaries in development

Various studies have recently been conducted to investi-
gate the molecular basis of the glial boundaries found in
the development of the nervous system. Many strategies
have examined molecules that are present in such bound-
ary regions but that are not present in other areas of the
developing embryo; these approaches have implicated
several molecules that are located in the previously de-
scribed axon inhibitory regions and that may functional-
ly serve as repulsors to growing neuronal processes.
Tenascin is one such molecule that is associated with
glial cell boundaries in development. It is found associ-
ated with developing axons in the spinal cord (Pindzola
et al. 1993), optic nerve (Bartsch et al. 1994), optic tec-
tum (Perez and Halfter 1993), olfactory bulb (Gonzalez
et al. 1993; Gonzalez and Silver 1994), and barrel fields
of the somatosensory cortex (Cooper and Steindler 1989;
Mitrovic et al. 1994). Various members of the proteogly-
can family have also been shown to be associated with
similar glial boundaries in the development of the roof
plate and midline dorsal tectum (Snow et al. 1990b;
Katoh-Semba et al. 1995), roof plate and midline rhomb-
encephalon and mesencephalon (Cole and McCabe
1991; McCabe and Cole 1992), dorsal root entry zone
and dorsal columns in the spinal cord (Pindzola et al.
1993), olfactory bulb (Gonzalez et al. 1993; Gonzalez
and Silver 1994), cortical barrels, thalamic nuclei, genic-
ulate nucleus, and cerebellum (Cooper and Steindler
1986; Steindler et al. 1988, 1990; Geisert and Bidanset
1993; Robson and Geisert 1994; Seo and Geisert 1995;
Watanabe et al. 1995), posterior sclerotome (Oakley and
Tosney 1991; Landolt et al. 1995), optic nerve (Perez
and Halfter 1993), and retina (Brittis et al. 1992; Brittis
and Silver 1994; Brittis et al. 1995). The spacial and
temporal expression of these molecules suggests a con-
tribution to the molecular environment of glial bound-
aries and may serve to direct the growth of axons to oth-
er regions during development.

Boundary molecules directly modulate axon growth

These families of boundary molecules have been directly
demonstrated as having the ability to modulate the
growth of axons as purif ied substrates or as part of the
extracellular matrix produced by CNS astrocytes. Exper-
iments in vitro have demonstrated that certain forms of
tenascin can be inhibitory for axon growth, whereas oth-
ers can also modulate neurite extension in a positive
manner (Grierson et al. 1990; Perez and Halfter 1993;
Taylor et al. 1993; Faissner et al. 1994; Chiquet-Ehris-
mann et al. 1995). Proteoglycan molecules of various
types also can inhibit neurite outgrowth as a result of
their glycosaminoglycan (GAG) sugar chains (Snow et
al. 1990a; Cole and McCabe 1991; Fichard et al. 1991;

Snow et al. 1991; Bovolenta et al. 1993; Canning et al.
1993, 1996; Katoh-Semba et al. 1995) and sometimes as
a function of their core proteins (Oohira et al. 1991; Gei-
sert and Bidanset 1993; Dou and Levine 1994). It has
also been suggested that, in certain situations, proteogly-
cans may positively influence neurons and/or axon
growth (Iijima et al. 1991; Maeda et al. 1995; Challa-
combe and Elam 1997; Kappler et al. 1997). In addition
to possible direct effects of the proteoglycan core mole-
cule or GAG chains, a recent report highlights the differ-
ences between the inhibition of thalamic neurons in the
developing cortical plate versus the stimulation of these
neurons in the subplate region and suggests that proteo-
glycans in vivo may modulate such positive or negative
axon growth via interactions with other molecules that
bind to the GAG epitopes (Emerling and Lander 1996).
Interactions such as those between proteoglycan mole-
cules and identified growth promoting substances have
been previously described and are discussed elsewhere
(Ruoslahti and Yamaguchi 1991; Grumet et al. 1993;
Friedlander et al. 1994; Milev et al. 1994; Burg et al.
1995).

Formation of cellular and molecular boundaries
following CNS injury

Unlike the robust regenerative response of the peripheral
nervous system (PNS) to injury (for a review, see Guth
1956), trauma to the adult mammalian CNS leads to per-
manent disability with little or no functional regenera-
tion of injured axons (Ramón y Cajal 1928). Classic de-
scriptions of injury to the CNS suggested for many years
that regenerative failure was attributable primaril y to a
structural barrier to axon growth, viz., a glial scar com-
posed of astrocytes and connective tissue (Windle and
Chambers 1950; Windle et al. 1952; Clemente and Win-
dle 1954). Recent studies indicate that the astrocytic scar
that often forms following injury does not prevent axon
growth simply by a mechanical mechanism (Reier et al.
1983; Guth et al. 1986; Davies et al. 1996); this has led
investigators to search for both cellular and molecular
explanations for the ways in which glial cells may con-
tribute to the lack of regeneration of axons injured in the
CNS (for a review, see Fitch and Silver 1997b).

Both tenascin and certain proteoglycans are upregu-
lated following injury to the CNS. Tenascin levels in-
crease following trauma to the brain (Laywell and Stein-
dler 1991; McKeon et al. 1991, 1995; Laywell et al.
1992; Brodkey et al. 1995; Lips et al. 1995) and the spi-
nal cord (Pindzola et al. 1993; Zhang et al. 1995). Simi-
larly, chondroitin sulfate proteoglycans persist in the ex-
tracellular matrix of the CNS following injury, e.g., in
the spinal cord following dorsal root injury (Pindzola et
al. 1993), in the brain following stab wounds (Levine
1994; Fitch and Silver 1997a), in the fornix following
transection (Lips et al. 1995), and in the spinal cord fol-
lowing penetrating crush injury (Fitch and Silver 1997a).
Post-injury responses thus include the production of the
same types of boundary molecules that have been de-
scribed as having axon inhibitory functions during the



development of the nervous system. Extracellular matrix
molecules produced in response to injury on an implant-
ed piece of nitrocellulose in vivo provide a substrate that
is inhibitory to axon regeneration in vitro, demonstrating
that these kinds of molecules produced after injury may
indeed functionally inhibit regeneration (McKeon et al.
1991, 1995). In addition, the spacial and temporal ap-
pearance of these putative inhibitory molecules impli-
cates them in the failure of adult axons to regenerate
successfully after trauma. Adult reactive astrocytes in
the vicinity of CNS lesions are poorly supportive sub-
strates for axon growth (Rudge et al. 1989; Smith et al.
1990; Geisert and Stewart 1991; Bahr et al. 1995; Le
Roux and Reh 1996) and this seems to be due, at least in
part, to these types of boundary molecules that are pro-
duced by astrocytes and are triggered to become reactive
in specific ways (Grierson et al. 1990; McKeon et al.
1991, 1995; Ard et al. 1993; Canning et al. 1993, 1996;
Dou and Levine 1994; Hoke et al. 1994; Smith-Thomas
et al. 1994; Chiquet-Ehrismann et al. 1995).

What tr iggers the upregulation
of boundary molecules after CNS injury?

Questions remain concerning the molecular triggers that
are responsible for the production of inhibitory extracel-
lular matrix molecules. One series of studies has demon-
strated that β-amyloid protein is a trigger for the in-
creased production of inhibitory proteoglycans by astro-
cytes (Canning et al. 1993, 1996; Hoke et al. 1994); this
may explain the presence of these molecules around the
plaques found in Alzheimer’s disease (DeWitt et al.
1993). Our recent experiments in vivo demonstrate that
increases in chondroitin sulfate proteoglycans after CNS
injury are associated with the breakdown of the blood
brain barrier and infiltrating macrophages at the lesion
site, suggesting that serum factors or inflammatory cyto-
kines play a role in the molecular cascade leading to ex-
tracellular matrix production in the immediate vicinity
of the developing glial scar (Fitch and Silver 1997a). As
a number of therapeutic strategies designed to modify
the immune response have shown promise (Bracken et
al. 1990; Guth et al. 1994a, b; Zhang et al. 1997), it is
possible that such benefits may result from limiting in-
flammation-induced increases in putative inhibitory mol-
ecules after trauma. In addition, strategies designed to
prevent widespread breakdown of the blood brain barrier
after injury could lead to clinically promising therapies
by similarly reducing a potential trigger for the produc-
tion of molecules that may inhibit regeneration.

What are the functions of boundary molecules
following tr auma?

Proteoglycans may influence the normal environment of
the adult CNS to favor the inhibition of axon growth in
an attempt to maintain normal synaptic connections
(Kalb and Hockfield 1990). Therefore, the upregulation
of inhibitory molecules after injury may be one mecha-

nism that the adult nervous system uses to prevent aber-
rant growth of axons and the formation of inappropriate
connections. The previously described interactions of
proteoglycans with growth factors (Ruoslahti and Ya-
maguchi 1991; Grumet et al. 1993; Burg et al. 1995;
Emerling and Lander 1996) may serve to hinder long
distance axon growth by binding and functionally re-
moving important growth signals from the injury site, or
they may act as a “trophic oasis” past which axons are
unwilling to regenerate.

Chondroitin sulfate proteoglycans have been de-
scribed at the interface between developing cavities and
the surrounding CNS parenchyma and produce what is
effectively a molecular boundary between the destruc-
tion of tissue via progressive necrosis and the surround-
ing viable tissue (Fitch and Silver 1997a). This response
of the mature CNS to injury may represent a “walling
off” of injured CNS tissue as a protective response for
the healthy tissue surrounding the wound epicenter.
Since proteoglycans have been demonstrated to inhibit
the phagocytosis and destruction of β-amyloid protein
by macrophages (Shaffer et al. 1995), an attractive hy-
pothesis is that proteoglycans have a protective function
to prevent secondary damage within the CNS after trau-
ma, thus limiting the devastating process of progressive
necrosis. The inhibitory properties of these molecules on
axonal growth may simply be an unfortunate side-effect
of a normal wound-healing response of CNS tissue.
Strategies to modulate the production of these molecules
may be one way of approaching the enhancement of the
regenerative response by adult neurons in future interdis-
ciplinary approaches to the therapy of CNS injury.
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