
Abstract Neuronal damage in the central nervous
system leads to primary cell death, induced directly by
the trauma, and delayed secondary death of neurons, the
latter depending on environmental changes, lack of met-
abolic and trophic supply, and altered gene transcription.
While primary death of neurons occurring within a short
time after trauma is not a realistic target for therapy, sec-
ondary cell death might be prevented by new neuropro-
tective strategies. Although there are increasing data
concerning cell rescue after ischemic and traumatic brain
injury through the last decade, the mechanisms that un-
derlie secondary death of neurons following lesion are
still incompletely understood and are now the subject of
a more detailed investigation. In this review, we want to
give an overview on what is known about the molecular
mechanisms of delayed ischemic and traumatic neuronal
death in vivo and about promising neuroprotective treat-
ment strategies that might be of future clinical relevance
or have already entered clinical trials.
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Animal models of ischemic
and traumatic brain injury

For investigating the cellular and subcellular events oc-
curring in ischemic or traumatic brain injury, a large
number of animal models have been developed. Howev-
er, their major aim, which is to approximate the clinical
conditions and neuropathological consequences found in
human ischemic and traumatic brain injury as closely as
possible, has been achieved with variable degrees of suc-
cess. Since discussing all the advantages and disadvan-
tages of the various models is beyond the scope of this

review (for reviews, see Biros 1991; Zwiener et al.
1991), we will focus on basic differences between the
available models for ischemia and trauma.

Among the models for ischemic brain injury, one can
distinguish between two major paradigms: global isch-
emia and focal ischemia. Global ischemia is supposed to
reflect the cardiac arrest situation, eventually leading to
hypo- or nonperfusion of the complete brain, whereas fo-
cal ischemia leads to circumscript brain infarction.
While in global ischemia models the lack of perfusion is
often permanent, focal ischemia models hold the advan-
tage of being either permanent or reversible, allowing
the investigation of secondary injury due to reperfusion.

Among the trauma models, one can also distinguish
between two groups. One is represented by deformation
injuries, either as head impact models, in which the skull
of the animal is primarily left intact and thus absorbes
some of the forces, or as brain deformation models, in
which the impact is delivered directly onto the exposed
dura producing rather diffuse injuries. The second group
of models consists of head acceleration/deceleration
models, having the general limitation of being confined
to primates, which have ananatomical head-to-neck rela-
tions and brain-to-skull mass ratios comparable with the
human anatomy.

Mechanisms underlying neuronal death in vivo

Morphologically, two different forms of cell death can be
distinguished: necrotic and apoptotic cell death. While
necrosis is accompanied by a breakdown of transmem-
branous ionic pumps caused by a lack of ATP, apoptosis
– also known as programmed cell death – requires active
protein synthesis. Despite its decisive role during neuro-
nal development, apoptotic cell death remained unno-
ticed for a long time in the context of trauma or isch-
emia. Based on many experimental data from the last de-
cade, it became more and more accepted that necrotic
and apoptotic cell death cannot be separated as two total-
ly different entities. Both types of cell death are believed
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to proceed in parallel in the lesioned tissue. There is
even increasing evidence that, depending on the cellular
environment and energy supply, a switch between the
two types of cell death within a single cell is possible.
Therefore, in the following, we will discuss the most im-
portant extra- and intracellular mechanisms contributing
directly to secondary neuronal death after ischemia or
neuronal trauma without a strict differentiation between
necrosis and apoptosis. Related changes in the cellular
environment enhancing the detrimental effects of neuro-
nal trauma such as immune response and inflammation
are reviewed elsewhere in greater detail (del Zoppo et al.
1997) and will not be a main topic of the following para-
graph. A summary of the various pathways contributing
to neuronal death as discussed below is given in Fig. 1.

Glutamate-mediated neurotoxicity
and calcium homeostasis

In 1957, Lucas and Newhouse showed for the first time
that sustained exposure to glutamate can destroy retinal
neurons (Lucas and Newhouse 1957). Olney and co-
workers discovered later that this neurotoxicity, which
they termed “excitotoxicity,” was not confined to gluta-
mate but could also be caused by other excitatory amino
acids (EAAs) acting on CNS neurons (Olney and Sharpe
1969; Olney et al. 1971). On the basis of these results,
they hypothesized that glutamate and related compounds
might be a cause of neuronal cell death in certain neuro-
logical diseases. Meanwhile, it has become evident that
excitotoxicity is involved both in acute and delayed neu-
ronal death in vascular, traumatic, and degenerative dis-
orders of the CNS (Choi 1988).

In vitro experiments showed that glutamate neurotox-
icity involves two components (Choi 1988). The first

component is characterized by an influx of sodium,
membrane depolarization, and subsequent influx of wa-
ter leading to neuronal cell swelling. The second compo-
nent, marked by delayed neuronal degeneration, depends
on extracellular calcium and is produced by the toxic ef-
fects of excessive calcium influx.

Injured CNS neurons release glutamate (or other
EAAs) in great amounts owing to depolarization after
cell damage or energy failure, which are common events
in cerebral ischemia and trauma. Furthermore, glutamate
can leak through the damaged cell membranes. At the
same time, energy failure stops reuptake mechanims for
glutamate. All these events lead to excessive glutamate
concentrations in the extracellular space, which can then
damage other, still healthy cells in the proximity of the
lesion. A vicious circle can evolve, since extracellular
glutamate triggers its own release by depolarization of
responsive cells.

The cellular effects of glutamate are mediated by two
different classes of receptors: ionotropic and metabotrop-
ic glutamate receptors (iGluRs and mGluRs, respective-
ly). Whereas iGluRs are directly coupled to ion channels,
activation of mGluRs involves activation of guanosine
triphosphate (GTP)-binding proteins (G-proteins) lead-
ing to subsequent activation or inhibition of second mes-
senger cascades. The pharmacological classification of
the iGluRs is based on three selective agonists: N-meth-
yl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-
4-isoxazol-propionic acid (AMPA), and kainate. Activa-
tion of NMDA receptors is particularly important for the
above-described sodium and calcium influxes in excito-
toxic events. Nevertheless, depending on the subunit ar-
rangement of the non-NMDA receptors and thus on the
neuronal cell type, intracellular rise in calcium can also
be caused by activation of AMPA and kainate receptors.
Among the mGluRs, at least eight types of receptor can
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Fig. 1 Schematic illustration
of the different pathways con-
tributing to cell death after
ischemia or traumatic brain in-
jury. According to the text, the
participants in neuronal death
can be divided into three major
groups: (1) proteases, (2) im-
mediate early genes and tran-
scription factors, (3) glutamate-
mediated toxicity. Cross talk
and intersections between these
different groups have been de-
scribed or are currently under
investigation (ATF activating
transcription factor, AP-1 acti-
vator protein-1, NF-κB nuclear
factor-κB)



be distinguished. Their pharmacological properties and
their subcellular localization differ greatly, which might
account for their respective pro- and antiexcitotoxic ef-
fects.

The massive calcium influx elicited by glutamate trig-
gers further calcium release from intracellular stores and
thereby dramatically elevates cytosolic free calcium. The
consequence is an overstimulation of physiological pro-
cesses at the cell membrane, in the cytoplasm, and in the
nucleus, which may result in neurotoxicity. Increased in-
tracellular calcium can induce a great number of various
enzymes, among them protein kinase C, phospholipases,
proteases, endonucleases, phosphatases, and nitric oxide
synthase, which when excessively activated can act as
mediators of the detrimental effects of glutamate.

The results of several studies, in both animals and hu-
mans, support glutamate-induced neurotoxicity in isch-
emic and mechanic injury of the CNS. Powerful evi-
dence for its role in focal ischemia, for instance, derives
from various neuroprotection studies using NMDA and
non-NMDA antagonists (McIntosh et al. 1990; Meldrum
1990; Bullock and Fujisawa 1992; Kuroda et al. 1994).
Intracerebral microdialysis studies have demonstrated a
sixfold increase in glutamate levels in the extracellular
fluid (ECF) following fluid percussion trauma in the rat
(Faden et al. 1989; Katayama et al. 1990; Hayes et al.
1992). In humans, microdialysis studies suggest that the
pattern of EAA release is determined mainly by the mag-
nitude of the initial injury. Particularly, in patients with
uncontrollable intracranial pressure and prolonged sec-
ondary events, the release of EAAs was shown to be
massive and likely to cause the above-mentioned de-
rangements in ionic fluxes (Zauner and Bullock 1995).

Nitric oxide synthase and free radical formation

The observation that activation of NMDA receptors can
generate nitric oxide (NO) in a calcium-dependent
manner has given rise to the hypothesis that NO, known
as a cytotoxin, contributes to glutamate neurotoxicity
(Garthwaite et al. 1988). NO is synthesized from L-argi-
nine by the enzyme NO synthase (NOS). Three different
isoforms have been characterized so far: neuronal NOS
(nNOS), endothelial NOS (eNOS), and inducible NOS
(iNOS; Griffith and Stuehr 1995). nNOS and eNOS are
constitutively expressed and depend on intracellular cal-
cium, whereas iNOS is calcium-independent and in-
duced upon immunological stimuli, for instance. De-
pending on the availability of L-arginine and cofactors
such as tetrahydrobiopterin, NOS produces not only NO
but also superoxide anions, which can lead to the forma-
tion of highly cytotoxic peroxynitrite (Heinzel et al.
1992; Xia and Zweier 1997). Such reactions might par-
ticularly occur in cerebral ischemia and trauma, when
substrate and cofactors are likely to become rate-limit-
ing.

Despite the evidence that ischemia and trauma can
have profound influences on NO synthesis, the role

played by NO in these pathophysiologies is still a source
of debate (Choi 1993; Pelligrino et al. 1993; Iadecola et
al. 1994; Iadecola 1997). Inhibition of NOS has been
found to reduce (Nowicki et al. 1991; Buisson et al. 1992;
Nagafuji et al. 1992; Carreau et al. 1994), to not affect
(Dawson et al. 1992; Buchan et al. 1994), or even to en-
hance (Yamamoto et al. 1992; Kuluz et al. 1993; Zhang
and Iadecola 1993) cerebral ischemic damage. The reason
for these apparently contradictory results could be the
fact that, besides its cytotoxic effects, NO is a potent
vasodilatator and an inhibitor of platelet aggregation,
which might improve postischemic blood flow (Iadecola
1997). Furthermore, NO has been described to limit glu-
tamate neurotoxicity by inhibiting calcium influx through
the NMDA receptor (Manzoni et al. 1992; Lipton et al.
1993; Fagni et al. 1995). Finally, it has become clear that
the redox status of NO has a profound impact on the bio-
chemical effects of NO (Lipton et al. 1993; Mohr et al.
1997; Ogura et al. 1997; So et al. 1998).

Current understanding of NO effects in cerebral isch-
emia and trauma situations suggests that the point in
time at which NO is produced after the insult is of great
importance. At very early stages of ischemia, the benefi-
cial vascular effects of eNOS activity seem to outweigh
the potential neurotoxic effects of nNOS activity. A few
hours later, the vascular effects are no longer protective
and NO becomes predominantly toxic. In later stages,
iNOS expression increases and causes a long-lasting,
large production of NO, eventually contributing to the
progression of cell damage.

Oxygen, while being essential for life, can also be
part of the destructive cascade elicited by ischemia and
trauma in brain tissue. Oxygen radicals are products of
normal cellular metabolism. A number of cellular de-
fense mechanims exist to keep the extent of free radical
formation and their effects under strict control. In patho-
physiological situations, however, normal cellular func-
tion may be disrupted to such a degree that oxygen radi-
cal production may be substantially increased and cellu-
lar defense mechanisms are turned over. Formation of
superoxide, hydrogen peroxide, and hydroxyl radicals
can then result in peroxidation injury of lipid mem-
branes, protein, and DNA damage. Despite significant
advances in methodology, techniques assessing the oc-
currence of lipid peroxidation and oygen radical forma-
tion in vivo are not entirely convincing. Most of the evi-
dence for an important role of free radicals in cerebral
ischemia and trauma comes from pharmacological stud-
ies demonstrating that antioxidants and free radical scav-
engers can prevent some of the pathophysiological and
neurological sequelae of CNS trauma and ischemia (for
review, see Braughler and Hall 1989).

Protein kinases, immediate early genes,
and transcription factors

Activation of effector proteins causing secondary neuro-
nal de- or regeneration after ischemia and traumatic
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brain injury partly results from increased expression of
so-called immediate-early genes (IEGs) and subsequent
formation of transcription factors regulating a great vari-
ety of response genes (Akins et al. 1996; Herdegen et al.
1997).

Induction of IEGs by DNA binding proteins such as
the serum response element (SRE) and the calci-
um/cAMP response element (Ca/CRE) is preceded by
the activation of various second-messenger systems in-
cluding protein kinases such as mitogen-activated pro-
tein kinases (MAPKs), protein kinase A, and protein ki-
nase C (Cahill et al. 1996). Evidence is accumulating
that all these signalling pathways can intersect and there-
fore “greatly alter a cell’s response to a given stimulus”
(Hale et al. 1996). Some examples of IEGs with in-
creased expression after ischemia or traumatic brain in-
jury include c-fos, c-jun, jun-B and jun-D (Kiessling et
al. 1993; Hüll and Bähr 1994; Akins et al. 1996). c-jun
as one of the most prominent IEGs can dimerize with
jun, fos, activating transcription factor (ATF), and other
transcription factors, which together form the activator
protein-1 (AP-1), to control numerous target genes in-
volved in cell cycle, organogenesis, cellular differentia-
tion, apoptosis, cell survival, and regeneration (Angel
and Karin 1991; Gass and Herdegen 1995; Hale et al.
1996; Herdegen et al. 1997). Following axotomy as an in
vivo model of neuronal trauma, there is some correlation
between c-jun expression and neuronal death. After in-
traorbital optic nerve transection, for example, c-jun is
highly expressed in retinal ganglion cells that are sup-
posed to die (Hüll and Bähr 1994; Isenmann and Bähr
1997). Moreover, c-jun has been found in neurons after
ischemic insult (Dragunow et al. 1993). c-jun expression,
predominantly investigated in nonneuronal cells, strong-
ly depends on the activation of stress-activated protein
kinases (SAPK), also known as Jun N-terminal kinases
(JNKs), an alternative cascade of MAPKs. Immunocyto-
chemistry and kinase assays have shown that activation
of JNKs and phosphorylation of c-jun can last for weeks
following neuronal damage and ischemia (Herdegen et
al. 1997). Besides the control of target genes, activated
JNK can interact with various crucial molecules regulat-
ing neuronal death or survival such as p53, bax/bcl-2,
and caspases. The relation between the SAPK-JNK path-
way and the activation of caspases as an up- or down-
stream event is under current investigation (Beyaert et al.
1997; Cardone et al. 1997; Huang et al. 1997; Lee et al.
1997).

Nuclear factor-κB (NF-κB), another transcription fac-
tor distinct from the AP-1 family, is also of interest con-
cerning neuronal death and survival. Since NF-κB is a
preformed factor with regulated activity, it can directly
transduce an extracellular signal to the nucleus, ensuring
a rapid response. Up to now, however, it remains unclear
whether activation of NF-κB supports neuroprotection or
neurodegeneration (O’Neill and Kaltschmidt 1997). An
example for the complex function of NF-κB activation in
neurodegeneration is provided by recent studies that sug-
gest a neuroprotective role of NF-κB in a culture model

of Alzheimer’s disease (Barger et al. 1998; Mattson et al.
1997). In contrast, it was shown that NF-κB is activated
by the neurotoxic peptide Aβ via the formation of reac-
tive oxygen intermediates and can be found around early
plaque stages in Alzheimer’s disease patients, thus in-
dicating a role for NF-κB in neurodegeneration (Kalt-
schmidt et al. 1997; O’Neill and Kaltschmidt 1997).
More detailed investigations in various models of neuro-
nal trauma are necessary to understand the regulation
and interaction of signalling cascades determining the
fate of injured neurons.

Caspases and calpains

Caspases

Besides many apoptosis-inducing or -preventing proteins
that will not be discussed here in great detail, an increas-
ing number of cysteine proteases termed caspases
(cysteinyl aspartate-specific proteinases) are central me-
diators of apoptotic cell death (Alnemri et al. 1996). Our
knowledge about this family of proteases resides mainly
in the fundamental work of Horvitz and colleagues (Ellis
et al. 1991), who dealt with programmed cell death in the
developing nematode Caenorhabditis elegans. During
normal development of this worm, 131 cells of the 1090
originally generated cells die (Ellis et al. 1991). Three
principal genes (ced genes) were identified to mediate or
prevent this apoptotic death. While ced-3 and ced-4 me-
diate apoptosis in C. elegans, ced-9 acts to antagonize
these death genes and to suppress the death program
(Hengarter et al. 1994). Ced-9 bears sequence homology
with the mammalian proto-oncogene bcl-2, one of a fam-
ily of genes involved in the prevention or regulation of
apoptotic death (for review, see Merry and Korsmeyer
1997). The mammalian homologue of ced-4 is the re-
cently identified “apoptotic protease activating factor”
(Apaf-1), which seems to play an important role in cyto-
chrome c-dependent apoptosis (Zou et al. 1997). Ced-3
encodes for a cysteine protease related to the above-men-
tioned group of caspases in vertebrates (Alnemri et al.
1996). Interleukin-1β-converting enzyme (ICE; caspase-1)
was the first caspase identified (Yuan et al. 1993),
whereas CPP32 (caspase-3), also called Yama (the Hindu
god of death) or apopain, is the caspase with the highest
sequence homology to ced-3 (Fernandes-Alnemri et al.
1994; Nicholson et al. 1995). Based on sequence homol-
ogy, structure, and catalytic mechanism, the family of
caspases meanwhile comprises at least 14 members 
(Cohen 1997; Hu et al. 1998; Thornberry and Lazebnik
1998), divided into the ICE and the CED-3 subfamily
(Nicholson and Thornberry 1997).

Evidence for the in vivo relevance of caspases mainly
derives from experiments in knockout mice. Caspase-1
knockout mice, apart from defective generation of ma-
ture interleukin-1β (IL-1β), develop normally and lack
an in vivo phenotype indicating apoptotic failure (Kuida
et al. 1995; Li et al. 1995). Thus, caspase-1 does not ap-
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pear to play an essential, nonredundant role in neuronal
apoptosis. Mice deficient in caspase-3, however, display
a striking phenotype, with profound affection of brain
development resulting in multiple hyperplasias, disorga-
nized cell deployment, and failure in neuronal apoptosis
detectable in the cortex, cerebellum, striatum, hippocam-
pus, and the retina (Kuida et al. 1996). Surprisingly, oth-
er tissues and organ systems were not affected. These re-
sults suggest an important and predominant role for
caspase-3 in neuronal apoptosis (Nicholson and Thorn-
berry 1997). How caspase-3 mediates neuronal apoptosis
and by which pathways caspase-3 is activated in vivo is
under current investigation and not yet completely un-
derstood. It is believed that active caspase-3 leads to
apoptotic death by cleavage of proteins implicated in
DNA repair (poly(ADP-ribose)polymerase, PARP, DNA-
dependent protein kinase, DNA-PK), mRNA splicing
(U1–70 K), sterol biosynthesis (sterol regulatory element
binding proteins, SREBPs), and cytoskeletal reorganiza-
tion (Kumar 1997).

Despite an immense number of studies showing an
activation of caspases during neuronal apoptosis in vitro,
up to now little has been known about caspase activation
following ischemia or traumatic brain injury in vivo. In
1996, for the first time, an increased expression of casp-
ase-1 mRNA and protein in hippocampus after ischemia
was shown (Bhat et al. 1996). This expression of casp-
ase-1 was mainly localized in microglial cells, suggest-
ing an indirect role in ischemic neuronal damage through
mediation of an inflammatory response. One year later,
Hara and colleagues (1997) were able to show an activa-
tion of caspase-1 by detecting the active p20 fragment
after ischemia. An involvement of caspase-2 in ischemic
cell death was suggested by increased mRNA expression
without identification of active fragments (Kinoshita et
al. 1997). Evidence for caspase-3 as mediator of neuro-
nal death after ischemia rises from a study showing the
active fragment of caspase-3 in TUNEL-positive neurons
dying apoptotically by confocal microscopy (Namura et
al. 1998). This is in line with findings after fluid percus-
sion trauma (Yakovlev et al. 1997) and axotomy (Kermer
et al. 1998), in which caspase-3 was identified as a cru-
cial player in neuronal apoptosis. Together, these results
suggest that activation of caspase-3 might be a general
feature in neuronal apoptosis after various types of brain
injury.

Calpains

Calpains are calcium-activated neutral proteases belong-
ing to a papain family of cysteine proteases distinct from
caspases. At least six members of the calpain family
have been identified so far. Two isoenzymes are present
in the brain: µ-calpain (calpain I) and m-calpain (calpain
II; Melloni and Pontremoli 1989). Preferred substrates
for proteolysis by calpains are: (1) cytoskeletal proteins
such as fodrin (brain spectrin), microtubule-associated
protein 2 (MAP2), tau, and neurofilaments; (2) enzymes

involved in signal transduction such as protein kinase C
and some phosphatases; (3) membrane proteins such as
EGF receptors; (4) transcription factors (e.g., Jun and
Fos); and (5) calmodulin-binding proteins such as G pro-
teins (for review, see Wang et al. 1989; Saido et al. 1994;
Suzuki et al. 1995). Interestingly, calpains share sub-
strate specificity for the cleavage of fodrin with caspase-
3.

The physiological role of calpains in vivo, however, is
not completely understood yet, but there are reports dem-
onstrating a role in neural differentiation (Hirai et al.
1991), cytoskeletal protein turnover (Giancotti et al. 1992),
long-term potentiation (del Cerro et al. 1990), and physio-
logical apoptosis (Squier and Cohen 1997; Zalewska
1996; Kampfl et al. 1997; Zhivotovsky et al. 1997).

Under pathological conditions, the disruption of calci-
um homeostasis, as it occurs in experimental traumatic
brain injury and ischemia by excessive exposure to exci-
tatory amino acids, leads to an unphysiological activa-
tion of calpains with a strong proteolytic activity and
subsequent cleavage and degradation of intracellular pro-
teins and membranes (Kampfl et al. 1997). Extensive cy-
toskeleton and plasma membrane damage can disrupt the
integrity of the cell, cause increased membrane perme-
ability to ions and even macromolecules, compromise
transport of essential cell products, and induce signalling
cascades, finally mediating secondary neuronal death
(Zalewska 1996).

Pharmacological treatment strategies
for prevention of neuronal death in vivo

The various processes and pathophysiological changes
related to neuronal death after ischemia and trauma as
outlined in the first section of this review initiated precli-
nical and/or clinical putative neuroprotective treatment
strategies in humans. Below, we will give an overview
focused on the most important classes of neuroprotect-
ants. This information cannot be complete but may serve
as a reference for the clinical relevance of basic neuro-
science research.

NMDA antagonists

In the group of pharmacological agents known as
NMDA antagonists, one can distinguish between non-
competitive NMDA antagonists, for instance binding to
the phenylcyclidine (PCP) recognition site of the NMDA
receptor, and competitive NMDA blockers. Most of
these drugs proved to be effective in animal models of
ischemia or trauma, but failed to show significant neuro-
protection in humans.

Dizlocipine (MK-801), belonging to the group of
noncompetitive antagonists, significantly reduced the in-
farct size in focal ischemia models in rats, cats, rabbits,
and primates (Kochhar et al. 1988; Ozyurt et al. 1988;
Park et al. 1988a, 1988b). In global ischemia models, re-
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sults were conflicting, particularly when the treatment
was started after the onset of ischemia (Gill et al. 1988).
In trauma models such as optic nerve lesion, MK-801 led
to a complete rescue of the subpopulation of β-ganglion
cells in cats, whereas it was not effective, even showing
adverse effects, in the rat retina (Russelakis-Carneiro
1996; Schmitt and Sabel 1996). The clinical develop-
ment of dizlocipine was discontinued as a consequence
of safety concerns, particularly psychotic side effects
(Koek et al. 1988; Leung and Desborough 1988; Olney
et al. 1989; Park et al. 1989; Buchan 1990).

Dextrorphan and dextromethorphan are also noncom-
petitive NMDA antagonists, interacting with the PCP
binding site. In a rabbit model of ischemia, both agents
reduced the infarct volume, when given before or after
the onset of ischemia (George et al. 1988; Steinberg et
al. 1988a, 1988b, 1989). In a small pilot study of ten pa-
tients, dextromethorphan did not cause any severe side-
effects (Albers et al. 1991), whereas the clinical develop-
ment of dextrorphan had to be stopped because of simi-
lar side effects to those elicited by dizolcipine (Albers et
al. 1995).

Cerestat (CNS 1102; Reddy et al. 1994), another non-
competitive NMDA antagonist, significantly reduced in-
farct volume even when given 15 min after permanent
occlusion of the MCA in rats (Meadows et al. 1994). A
first dose-finding safety trial with Cerestat in over 60 pa-
tients approached neuroprotective dose levels without
major side effects (Fisher 1994). A safety and efficacy
trial of Cerestat in acute ischemic stroke patients is in
progress (Turrini 1996).

Competitive NMDA antagonists include substances
such as CGS 19755 (Selfotel), CPP, APH, MDL 100,453
(Boast et al. 1988; Hasegawa et al. 1994; Warkins and
Olverman 1998). Selfotel is probably the most extensive-
ly studied drug in this group. Phase III clinical trials
were terminated because of increased mortality (statisti-
cally not significant) in the treatment group and/or psy-
chotic side effects (Wahlgren 1997). Eliprodil, an antag-
onist binding to the polyamine site of the NMDA recep-
tor, was effective in animal models of ischemia (Gotti et
al. 1990). However, a large phase III trial was recently
terminated after interim analysis indicated a lack of effi-
cacy (Wahlgren 1997).

Calcium channel antagonists

Opening of voltage-dependent calcium channels contrib-
utes largely to intracellular calcium overload during
excitotoxic events. Glutamate-mediated depolarization
leads to activation of voltage-dependent calcium chan-
nels, allowing extracellular calcium to enter the cell
along its concentration gradient.

Nimodipine, an antagonist of L-type calcium chan-
nels, has been evaluated in controlled randomized trials
for neuroprotection in acute ischemia using various treat-
ment regimen. The Intravenous Nimodipine West Euro-
pean Stroke Trial (INWEST) had to be terminated due to

worsened outcome and increased mortality (Wahlgren et
al. 1994). Hypotension during intravenous nimodipine
treatment might have been the reason for the worse func-
tional outcome compared with placebo. Another study,
with patients who had been given nimodipine orally,
found a significant 38% reduction of the odds for an un-
favorable outcome only in those patients who had re-
ceived the treatment within the first 12 h after the onset
of symptoms (Mohr et al. 1994). The early treatment ap-
proach is now being tested in a Dutch study (Very Early
Nimodipine Use in Stroke, VENUS; Limburg 1996).

Glutamate release inhibitors

A known endogenous inhibitor of presynaptic EAA re-
lease is the nucleoside adenosine, which mediates its
neuroprotective effects via four subtypes of G-protein-
coupled receptors (Simpson et al. 1992; Olah and Stiles
1995). In the brain, EAA release is reduced predomi-
nantly via the A1 adenosine receptor. Exogenous adeno-
sine receptor agonists and enhancement of endogenous
adenosine levels by metabolic inhibitors or uptake inhib-
itors have been discussed as promising therapeutic op-
tions ameliorating excitotoxic neuronal death. Reports
reviewing the neuroprotective effects of such compounds
following ischemia are numerous (Sweeney 1997). How-
ever, severe cardiovascular side effects of receptor ago-
nist treatment such as bradycardia and hypotension have
been reported (Sollevi 1986; von Lubitz et al. 1994) in-
dicating that “the possible therapeutic value of treating
acute stroke with systemically administered adenosine or
one of the currently available metabolically stable ana-
logs is dubious” (Sweeney 1997).

Another drug reducing neurotransmitter release, prob-
ably by interaction with presynaptic voltage-sensitive so-
dium channels, is BW619C89, a derivate of the anticon-
vulsive lamotrigin, which proved to be neuroprotective
in experimental ischemia (Leach et al. 1993; Graham et
al. 1994; Smith et al. 1997). Safety and tolerability was
recently tested in a small group of stroke patients (Muir
et al. 1998). Development of a phase III trial was
stopped owing to detrimental effects.

Lubeluzole is a benzothiazole compound that pre-
vents the increase in extracellular glutamate concentra-
tions and inhibits glutamate-induced nitric oxide-related
neurotoxicity. Systemically administered lubeluzole re-
duced infarct size and sensorimotor deficits in animal
models of ischemia (De Ryck 1996) and proved to be
well tolerated in stroke patients in a dose-dependent
manner (De Keyser et al. 1997). A single intravenous in-
jection of 10 mg lubeluzole/day reduced stroke mortality
in a phase II study (Diener et al. 1996). The North Amer-
ican phase III trial showed a reduction in mortality and a
significant improvement in functional and neurological
recovery in the lubeluzole group (Grotta 1997). In gener-
al, no such effect was found in the European and Austra-
lian phase III trial, but treatment benefit was related to
stroke severity with a significant reduction of mortality
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only in patients for whom stroke severity was mild to
moderate (Diener 1998). A new trial with a modified
protocol is in progress. It has to be noted that lubeluzole
is the first and, to the authors knowledge, the only neuro-
protectant that has led to positive results in acute isch-
emic stroke in large phase III trials so far.

GABA agonists

γ-Amino-butyric acid (GABA) is the major inhibitory
neurotransmitter in the CNS modulating glutamate re-
lease via hyperpolarization of the cell membrane, sug-
gesting a neuroprotective action via reversing the excito-
toxic cascade (del Zoppo et al. 1997). While baclofen, a
GABAB agonist, was ineffective, muscimol, a GABAA
receptor agonist, as well as clomethiazole, another
GABA agonist, proved to be protective in experimental
cerebral ischemia (Lyden and Hedges 1992; Sydserff et
al. 1995). The latter has already been tested in phase III
(the Clomethiazole Acute Stroke Study, CLASS, unpub-
lished data). However, the final analysis was not con-
vincing (Bogousslavsky 1998).

Free radical scavengers

Potential agents reducing free radical damage include su-
peroxide dismutase (SOD), catalase, alpha-tocopherol,
glutathione, lazaroids, iron chelators, and phenyl-t-butyl-
nitrones (PBN).

Tirilazad, a lipid peroxidation inhibitor, has been
shown to significantly reduce infarct size in various
stroke models (Xue et al. 1992). In clinical trials, howev-
er, Tirilazad was ineffective (Haley et al. 1995).

PBNs form stable adducts with various kinds of free
radicals. In gerbils and rats, PBN reduced ischemia-in-
duced forebrain edema and loss of hippocampal CA1
neurons (Yue et al. 1992; Sen and Phillis 1993; Cao and
Phillis 1994). Excitotoxic lesions in the striatum, pro-
duced by injection of NMDA, AMPA, kainate, or malon-
ate, were significantly attenuated by PBN and its de-
rivative S-PBN (Schulz and Beal 1995). Interestingly, 
S-PBN was found either to add to the neuroprotective ef-
fect of the NMDA antagonist MK-801 or potentiate the
neurotrophic effect of brain-derived neurotrophic factor
(BDNF; Schulz et al. 1995; Klöcker et al. 1998). To our
knowledge, there is no clinical trial testing PBN in the
treatment of mechanical or ischemic CNS injury yet.

Gangliosides

EAAs unequivocally contribute to secondary neuronal
death after injury as described above. Blocking down-
stream pathological events of EAA receptor stimulation
without affecting physiological activation offers a thera-
peutic option avoiding the side-effects of direct receptor
antagonism. This property, known as abuse-dependent

antagonism (Manev et al. 1990), was shown for the ex-
ogenous monoganglioside GM1 as a member of a family
of glycosphingolipids. In vitro and in vivo treatment
with GM1 or GM1-L (siagoside) attenuates EAA-related
neuronal death in a dose-dependent manner even when
administered systemically (for review, see Leon et al.
1990). First clinical trials in stroke patients were initiated
in the early 1980s (Bassi et al. 1984; Battistin et al.
1985). However, two large trials were finished in 1994
without convincing evidence of efficiacy for this thera-
peutic approach (Alter et al. 1994; Lenzi et al. 1994)

Neurotrophic factors and other growth factors

Based on the neurotrophic factor hypothesis (Barde
1989), lack of trophic support was suggested to cause
secondary neuronal death after neuronal trauma. During
the last decade, regulation of mRNA as well as neuro-
protective action of neurotrophic factors such as the neu-
rotrophins (NGF, BDNF, NT-3, NT-4/5), basic fibroblast
growth factor (bFGF), insulin-like growth factor (IGF),
glial-derived neurotrophic factor (GDNF), and ciliary
neurotrophic factor (CNTF) was investigated in various
models of ischemia and traumatic brain injury in vivo.
To give only a few examples, the neurotrophins, CNTF,
and IGF-I exhibit neuroprotective action on axotomized
mouse motoneurons (Li et al. 1994). Following experi-
mental cerebral or retinal ischemia in rat and mouse,
several growth and neurotrophic factors rescued injured
neurons, including NGF, BDNF, IGF-I, and FGF (Nakata
et al. 1993; Siliprandi et al. 1993; Mattson and Scheff
1994; Unoki and LaVail 1994; Doré et al. 1997; Schabitz
et al. 1997; Cuevas et al. 1998; Ferrer et al. 1998; Hicks
et al. 1998; Ishimaru et al. 1998). After optic nerve tran-
section, axotomized retinal ganglion cells could be res-
cued by neurotrophins, GDNF, and other factors (Mey
and Thanos 1993; Mansour-Robaey et al. 1994; Peinado-
Ramón et al. 1996; Klöcker et al. 1997, 1998). However,
there are data suggesting that trophic factors rather delay
neuronal death than provide permanent rescue (Naumann
et al. 1994; Di Polo et al. 1998; Ishimaru et al. 1998).

Some of the factors mentioned above have already
been clinically tested in amyotrophic lateral sclerosis and
diabetic neuropathy, unfortunately only with moderate
success (for review, see Ochs et al. 1997). A first Ameri-
can and European phase III trial has been launched to
treat stroke in humans with bFGF. Neurotrophic effects
of neurotrophins following traumatic brain injury in hu-
mans have not been investigated yet.

Calpain inhibitors

As stated above, calpains are activated after cerebral
ischemia and traumatic brain injury (Bartus et al. 1998).
There is an increasing number of studies verifying a neu-
roprotective effect of calpain inhibitors in vivo. Bartus et
al (1994), for example, showed that administration of a
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calpain inhibitor within 3 h after occlusion of the MCA
(MCAO) in rats reduced the infarct volume by 75%. Fol-
lowing traumatic brain injury, inhibitors of calpains at-
tenuated cytoskeletal protein loss in cortical neurons,
leading to a reduced extent of contusion at the injury site
(Postmantur et al. 1997). Since no clinical trials with
these drugs are reported so far, future studies are needed
to qualify this therapeutic approach for use after neuro-
nal injury in humans.

Caspase inhibitors

By means of special synthetic inhibitors, the cascade of
caspases can be blocked specifically and irreversibly
with excellent neuroprotective effects in vitro (for re-
view, see Martinou and Sadoul 1996; Cohen 1997). Up
to now, data applying these promising compounds in vi-
vo have been rare. One of the first in vivo papers in this
context was the work of Milligan and coworkers (1995),
who showed that caspase inhibition arrests developmen-
tal programmed cell death of motoneurons. Effectiveness
of caspase inhibition after ischemia with reduced infarct
region in mice was demonstrated by Hara et al. (1997).
Evidence of caspase-3 as major mediator of neuronal ap-
optosis (Nicholson and Thornberry 1997) led to thera-
peutic approaches with a potent inhibitor of caspase 
3-like proteases: z-DEVD-cmk (benzyloxycarbonyl-
Asp-Glu-Val-Asp-chloromethylketone). This compound
proved to be a highly neuroprotective agent in vivo after
MCAO in rats (Namura et al. 1998), axotomy of adult rat
retinal ganglion cells (Kermer et al. 1998), and fluid per-
cussion trauma (Yakovlev et al. 1997). More studies are
necessary to support this therapeutic strategy as a gener-
al neuroprotectant in various models of neuronal injury.
Subsequently, after optimizing administration, this ap-
proach might be very promising in the treatment of cere-
bral trauma and even neurodegenerative disorders as al-
ready discussed elsewhere (Holtzman and Deshmukh
1997).

Immunomodulation and modulation of cell metabolism

After having realised that the brain is an immune-compe-
tent organ, a potential neuroprotective role for immune
modulators after injury evolved. Indeed, pretreatment of
rats with steroids provides protection against hypoxic-
ischemic brain damage. The underlying mechanism,
however, is unknown (Tuor 1997). Inhibition of protein
synthesis, for example, with cycloheximide has been
shown to prevent neuronal apoptosis and proved to be
neuroprotective in experimental focal cerebral ischemia
(Linnik et al. 1993; Ishitani and Chuang 1996). More-
over, tacrolimus (FK506) and cyclosporin, both immu-
nosuppressive agents, were of benefit after ischemia in
rats and gerbils (Shiga et al. 1992; Sharkey et al. 1996).

The only immune modulatory strategy that has
reached clinical testing so far is the blockade of selected

leucocyte and endothelial cell adhesion receptors by a
murine antibody against the intercellular adhesion mole-
cule ICAM-1 (enlimomab). Although the antibody was
shown to reduce neurological deficits after embolic
stroke in rabbits and rats (Bowes et al. 1993; Zhang et al.
1994), the clinical testing indicated no positive effects
when compared with placebo (unpublished data; see
Bogousslavsky 1998).

Others

Besides the described neuroprotective treatment strate-
gies, few other approaches have been performed to re-
duce tissue damage following ischemia in animals and
humans that are not acting via pathways described
above. Piracetam, for instance, increases cyclic adeno-
sine monophosphate in the brain. Heiss et al (1983)
found that glucose metabolism in ischemic brain in acute
stroke patients may be increased by piracetam. A ran-
domized controlled study found no significant difference
in clinical outcome between piracetam and placebo
group (De Deyn 1998). Results of a large phase II trial
are lacking so far.

Lifarizine is a sodium and calcium channel modulator
with neuroprotective potential in experimental ischemia.
A phase II trial reported a poorer outcome in the verum
group (Squire et al. 1995), so that a phase III trial has
been abandoned.

Citicholine raises the possibility of systemically ad-
ministering cytidine and choline, both essential metabo-
lites for cell membrane repair. Two smaller clinical
stroke trials reported safety and efficiacy (Tazaki et al.
1988; Clark et al. 1997). The drug is already available in
Japan and Europe. No results of a phase III trial are re-
ported.

Ebselen is a lipophilic compound containing selenium
and inhibiting lipid peroxidation. Its neuroprotective po-
tential was tested in cats and in rats. Oral treatment of
stroke patients in a small study ameliorated the patients’
outcome 1 month following stroke (Yamaguchi et al.
1998). A phase III study will follow.

Serotonin receptor agonists have been considered to
be neuroprotectants in cerebral ischemia, and opiate re-
ceptor antagonists such as naloxone have been shown to
ameliorate neuronal injury (Hamilton et al. 1985; 
Andrews et al. 1988). Also barbiturates are suggested to
be neuroprotective by reducing metabolic demands in
the affected tissue. However, larger clinical trials were
unsuccessful or are not yet available.

Conclusions

This review shows that significant advances have been
made in the recent years in identifying the cellular and
molecular mechanisms that underlie secondary neuronal
loss after trauma and ischemia. However, the clinical set-
ting and the human conditions are much more complex
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than any animal model system available at present.
Therefore, a therapeutic strategy possibly needs to be
tested in several models and must proof efficacy also af-
ter delayed drug administration, which is closer to the
clinical situation than online drug administration per-
formed in many model systems. Furthermore, it seems
that one single-treatment strategy will not be able to
solve the whole problem. Instead, complex combination
applications that target several cell death pathways need
to be evaluated in the laboratory as well as in the hospi-
tal. This will pose major difficulties in clinical trials be-
cause of trial design and randomization of patients to
treatment arms that have already proven to be not as ef-
fective as a single-treatment regimen. Further insight in-
to the molecular regulation pattern of cell survival and
death may help to design better targets for a pharmaco-
logical or gene therapy in the future.
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