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Abstract
Stem cells derived from dental/odontogenic tissue have the property of multiple differentiation and are prospective in tooth 
regenerative medicine and cellular and molecular studies. However, in the face of cellular senescence soon in vitro, the 
proliferation ability of the cells is limited, so studies are hindered to some extent. Fortunately, immortalization strategies 
are expected to solve the above issues. Cellular immortalization is that cells are immortalized by introducing oncogenes, 
human telomerase reverse transcriptase genes (hTERT), or miscellaneous immortalization genes to get unlimited prolifera-
tion. At present, a variety of immortalized stem cells from dental/odontogenic tissue has been successfully generated, such 
as dental pulp stem cells (DPSCs), periodontal ligament cells (PDLs), stem cells from human exfoliated deciduous teeth 
(SHEDs), dental papilla cells (DPCs), and tooth germ mesenchymal cells (TGMCs). This review summarized establish-
ment and applications of immortalized stem cells from dental/odontogenic tissues and then discussed the advantages and 
challenges of immortalization.
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Introduction

Oral tissues are difficult to achieve self-repair once dam-
aged by disease on account of their weak regeneration abil-
ity, such as tooth hard tissue, dental pulp, and periodontal 
tissue (Chen et al. 2019; Itoh et al. 2018; Li et al. 2020). 
At present, tissue engineering technology brings hope for 
tissue regeneration in dentistry, but it is still in the research 
stage. Stem cells from dental/odontogenic tissues can be 
obtained from the shed or extracted teeth without ethical 

concerns, and they have the capability of multilineage dif-
ferentiation (Ko et al. 2020; Shi et al. 2020). Obviously, 
they serve as an important tool in regeneration research, 
also in physiological and pathological mechanism research 
(Chen et al. 2021a, b; Imber et al. 2021; Liu et al. 2019; 
Xuan et al. 2018). However, their proliferation ability is 
low, and their lifespan is limited when cultured in vitro, 
making it hard to meet the demand for study. After a limited 
number of divisions, they will stagnate irretrievably in a 
phase without proliferation, which is called cellular senes-
cence (Iezzi et al. 2019; Morsczeck 2019, 2021).

A notable feature of senescent cells is the increased 
expression of cell cycle inhibitory proteins, collectively 
known as cyclin-dependent kinase inhibitors, including p21 
and p16 (Alcorta et al. 1996; Dulić et al. 2000; Gorgoulis 
et al. 2019). Cellular senescence usually responds to various 
triggers, including DNA damage, telomere dysfunction, and 
oncogene activation (Gorgoulis et al. 2019; Ovadya et al. 
2018). When the DNA damage response (DDR) occurs, 
the tumor suppressor p53 is activated, stimulating the 
expression of p21 and p16, leading to cellular senescence 
(Beauséjour et al. 2003; Dulić et al. 2000). In the absence 
of telomere maintenance mechanisms such as telomerase 
expression, telomeres shorten with each cell division to a 
certain length, and then the loss of telomere protection trig-
gers DDR (d'Adda di Fagagna et al. 2003). For example, it 
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was reported that primary human pulp cells would undergo 
cellular senescence up to cellular passage 7 (Galler et al. 
2006). Aging dental mesenchymal stem cells showed pro-
gressive loss of telomere DNA length, which may result 
from decreased telomerase activity and increased expres-
sion of aging marker p16 (Mehrazarin et al. 2011).

As a result, cellular senescence brings some troubles 
to researches in stomatology to some degree. Amazingly, 
immortalization strategies are expected to make cells 
acquire infinite proliferation ability in vitro while retaining 
certain differentiation potential, which brings hope for the 
solution of the problems. Currently, various types of stem 
cells from dental/odontogenic tissue have already been 
successfully immortalized, mainly using viral oncogenes 
and the human telomerase reverse transcriptase (hTERT) 
protein, e.g., immortalized human tooth germ stem cell line 
(hTGSC-hTERT), immortalized cementoblasts (OCCM-
30) (D'Errico et al. 2000; Yalvaç et al. 2011). This review 
summarized the establishment and application of immor-
talized stem cells from dental/odontogenic tissues and dis-
cussed the challenges and perspectives of immortalization.

Immortalization strategies

Immortalized stem cells from dental/odontogenic tissues 
must overcome the two proliferative obstacles, senescence, 
and crisis (Counter et al. 1998). Typically, the immortality of 
cell lines could be established by different strategies (Fig. 1), 
including introducing telomerase or human telomerase 
reverse transcriptase (hTERT), mutating cell cycle check-
points (p53/pRb), oncogenes, and spontaneous immortaliza-
tion (MacDougall et al. 1995; Mi et al. 2011; Nakata et al. 
2003; Thonemann and Schmalz 2000a). The most common 
methods to immortalize stem cells from dental/odontogenic 
tissues are the ectopic expression of telomerase or human 
telomerase reverse transcriptase (hTERT) and the overex-
pression of viral oncogenes (Ramboer et al. 2014). Plasmid 
transfection and viral transfection have been widely used to 
transfer immortalization genes into stem cells from dental/
odontogenic tissues (Thonemann and Schmalz 2000a; Wu 
et al. 2015b; Yin et al. 2016). Some other ways were also 
reported, such as spontaneous immortalization and deriving 
from immortomouse (Wang et al. 2020; Wilson et al. 2015). 
However, spontaneous immortalization is a rare event whose 
frequency is less than  10−12. Thus, the transfection of cells 
with recognized immortalizing genes, like viral oncogenes 
and hTERT, is necessary to improve immortalizing effi-
ciency (Katakura et al. 1998; Ramboer et al. 2014).

Establishment by viral oncogenes

The viral oncogenes, the simian virus 40 large T antigen 
(SV40 Tag), and the human papillomavirus 16 (HPV16)  

E6/E7 genes could be used to transform a cell into being 
immortalized (Huang et al. 2015; MacDougall et al. 1995; 
Thonemann and Schmalz 2000a). They have been used to 
establish immortalized stem cells from dental/odontogenic 
tissues, such as M06G3, PLT-1, IDG-CM6, and OCCM-30 
(D'Errico et al. 2000; Kamata et al. 2004; MacDougall et al. 
1995; Wang et al. 2020). These viral oncogenes are well-
known to interfere with the p16/pRb and p53 pathways, 
which plays an important role in maintaining the cell cycle, 
resulting in immortalized cells (Egbuniwe et al. 2013, 2011; 
Kamata et al. 2004; Schafer 1998). Moreover, immortal-
ized stem cells are also derived from immortalized murine 
expressing the SV40 Tag (Wang et al. 2020).

Human telomerase reverse transcriptase

Compared with oncogenes like SV 40, hTERT for immor-
talization has been suggested to avoid genetic and phenotypic 
instabilities, without changing cell differentiation (Yalvaç 
et al. 2011). However, hTERT is limited to being applied in 
some human cell types. Stem cells from dental/odontogenic 
tissues normally had a limited life span in vitro, for the low 
level of telomerase leads to telomeres shortening (Belgiovine 
et al. 2008; Fujita et al. 2005). Therefore, the primary cells 
require overexpression of telomerase to maintain the telomere 
lengths to realize immortalization (Fujita et al. 2005). While 
telomerase activity may not allow stem cells to overcome the 
telomere-independent growth arrest, only the overexpression 
of hTERT may be insufficient to make cells immortal (Colgin 
and Reddel 1999).

Miscellaneous immortalization

Besides a single gene used in cellular immortalization, the 
specific combination of viral oncogenes and the hTERT 
gene has been proven to immortalize stem cells from den-
tal/odontogenic tissues, such as hTERT plus SV40 Tag, 
hTERT plus HPV16 E6/E7, and hTERT plus B lymphoma 
Moloney Murine Leukemia Virus (Mo-MLV) insertion 
region 1 homolog (Bmi-1) (Kamata et al. 2004; Yao et al. 
2019). It has been demonstrated that Bmi-1 regulated cell 
proliferation, apoptosis, and differentiation. Consequently, 
overexpression of Bmi-1 could generate immortalized cell 
lines by inhibiting the transcription of p16/pRB like SV40 
Tag and HPV16 E6/E7 (Jacobs et al. 1999; Jung and Nolta 
2016; Lee et al. 2016a; Yao et al. 2019).

Immortalized stem cells from dental/
odontogenic tissue

As a critical cellular model in vitro, stem cells from dental/
odontogenic tissues have been widely used in tissue engi-
neering and fundamental research due to their differentiation 
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potential and accessibility (Li et al. 2020; Yao et al. 2019; 
Yin et al. 2016). However, primary cells have a limited life 
span because of actual division numbers and soon reach a 
non-proliferative state called cellular senescence. This has 
limited the research on teeth-derived tissue about tooth 
development mechanisms, gene regulation, or substance 
exposure (Galler et al. 2006). Therefore, immortalization 
genes were transferred into primary stem cells from dental/
odontogenic tissues to overcome this obstacle, establishing 
various cells lines applied in the investigation (D'Errico 
et al. 2000; Hanks et al. 1998; MacDougall et al. 1995). The 
sequence of immortalized stem cells from dental/odonto-
genic tissues is presented first by tissue origin and second 

by anatomical location. The tooth germ is composed of both 
epithelial and mesenchymal tissues. So, the tooth germ mes-
enchymal cells from both epithelial and mesenchymal tis-
sues are listed first. Then, there are cells derived from the 
epithelium, including ameloblast-like cells, dental epithelial 
progenitor cells derived from the cervical-loop epithelium, 
and Hertwig’s epithelial root sheath cells. And finally, there 
are cells derived from mesenchymal tissues, including dental 
papilla cells, odontoblast cells, dental follicle cells, stem cell 
lines from the deciduous teeth, stem cells of the dental apical 
papilla, dental pulp stem cells, periodontal ligament stem 
cells, and cementocyte cells. Table 1 shows immortalized 
stem cells from dental/odontogenic tissue.

Fig. 1  Immortalization strategies of stem cells derived from dental/
odontogenic tissue. The immortalized genes of hTERT and viral onco-
genes were transferred into cells by plasmid transfection or viral trans-

duction. Also, stem cells derived from dental/odontogenic tissue are 
probably immortalized spontaneously
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Table 1  Immortalized odontogenic cell lines

Tissue origin Stem cells Cell line Species Immortalized gene Transfer System Reference

Epithelial tissue Human tooth germ 
stem cells

hTGSCs-hTERT Human hTERT Lentivirus (Yalvaç et al. 2011)

hTGSCs-SV40 Human SV40 Lentivirus (Yalvaç et al. 2011)
ihEDMC4 Human SV40 Plasmid (Huang et al. 2015)
iTGMC Mouse SV40 Retrovirus (Luo et al. 2021)

Ameloblast-lineage 
cells

Transformed EOE 
cells

Mouse SV40 Electroporation (Chen et al. 1992)

PABSo-E Pig SV40 Calcium phosphate 
procedure

(DenBesten et al. 
1999)

ALC Mouse Spontaneous 
immortalization

(Nakata et al. 2003)

EOE-2 M Mouse (HPV16) E6/E7 Retrovirus (MacDougall et al. 
2019)

EOE-3 M Mouse (HPV16) E6/E7 Retrovirus (MacDougall et al. 
2019)

Dental epithelial 
progenitor cells 
derived from the 
cervical-loop 
epithelium

HAT-7 Rat Spontaneous 
immortalization

(Kawano et al. 2002)

Hertwig’s epithelial 
root sheath cells

HERS/ERM cell 
line

Human SV40 Electroporation (Nam et al. 2014)

HERS-C2 and 
HERS-H1

Rat SV40 Lentivirus (Li et al. 2019)

HERS Cells Mouse SV40 Immortommouse (Zeichner-David et al. 
2003)

Mesenchymal tissue Dental papilla cells tCPC Bovine SV40 Electroporation (Thonemann and 
Schmalz 2000b)

PA-1 Human hTERT and HPV16 Plasmid (Kamata et al. 2004)
iBmp2-dp Mouse SV40 Lentivirus (Wu et al. 2010)
mDPCET and 

mDPC6T
Mouse SV40 Lentivirus (Lin et al. 2013)

iMDP-3 Mouse SV40 Electroporation (Wang et al. 2013)
hDPC-TERT Human hTERT Lentivirus (Yang et al. 2013)
Im DM Mouse SV40 Lentivirus (Liu et al. 2015)
iBmp2ko/ko dp Mouse SV40 Lentivirus (Wu et al. 2015a)

Odontoblast cells M06-G3 Mouse SV40 Retrovirus (MacDougall et al. 
1995)

MDPC-23 Mouse Spontaneous 
immortalization

(Hanks et al. 1998)

tCPC E Bovine HPV 18 E6/E7 Electroporation (Thonemann and 
Schmalz 2000a)

T4-4 and T3-2 Rat hTERT Plasmid (Hao et al. 2002)
OLC Mouse Spontaneous 

immortalization
(Arany et al. 2006)

P4-2 Pig SV40 Plasmid (Iwata et al. 2007)
Im OB Mouse SV40 Lentivirus (Liu et al. 2015)
iPDBs Rat SV40 Retrovirus (Cao et al. 2020)

Dental follicle cells DF1, DF2, and DF3 Mouse SV40 Plasmid (Luan et al. 2006)
BCPb8 Bovine bmi-1 and hTERT Retrovirus (Saito et al. 2005)
MDFE6−EGFP cells Mouse HPV-16 E6 Retrovirus (Yokoi et al. 2007)
iDFCs Human SV40 Plasmid (Wu et al. 2015b)
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Tooth germ mesenchymal cells (TGMCs)

Tooth germ mesenchymal cells (TGMCs), as minimally inva-
sive alternative adult stem cell sources, are mostly obtained 
after orthodontic treatments or maxillofacial surgery in adults 

without ethical concerns (Yalvaç et al. 2011). Because of the 
differentiation and regenerative potential of cranial neural-
crest-originated mesenchyme cells in tooth development, 
TGMCs are an ideal tool for studying the mechanism of 
tooth development and providing an alternative solution in 

Table 1  (continued)

Tissue origin Stem cells Cell line Species Immortalized gene Transfer System Reference

Stem cells from 
human exfoliated 
deciduous teeth

TP-023(SI) and TP-
053(SI)

Human Spontaneous 
immortalization

(Wilson et al. 2015)

TP-023 (I) Human hTERT Retrovirus (Wilson et al. 2015)
TERT-SHED Human hTERT Lentivirus (Yin et al. 2016)
SHED-Bmi1-EGFP Human Bmi-1 Lentivirus (Yao et al. 2019)

Stem cells of dental 
apical papilla

iSCAPs Mouse SV40 Retrovirus (Wang et al. 2014)

DSCS Human SV40 Plasmid (Sanz-Serrano et al. 
2022)

Dental pulp cells tHPC Human SV40 Electroporation (Galler et al. 2006)
HDP-hTERT cells Human hTERT Retrovirus (Kitagawa et al. 2007)
tDPSCs Human hTERT Retrovirus (Egbuniwe et al. 

2011)
iHDPCs Human SV40 Plasmid (Li et al. 2020)
DP-1 Human hTERT and SV40 Plasmid (Kamata et al. 2004)
K4DT cells Human mutant cyclin-

dependent kinase 
4 (CDK4R24C), 
Cyclin D1, and 
hTERT

Retrovirus (Orimoto et al. 2020)

Periodontal ligament 
stem cells

IM cells Mouse H-2 Kb tsA58 Immortommouse (D'Errico et al. 1999)

SV cells Mouse SV40 Wild-type SV40 (D'Errico et al. 1999)
RPDL Rat SV40 Transgenic rats (Kubota et al. 2004)
PLT-1 Human hTERT and HPV16 Plasmid (Kamata et al. 2004)
A4 and C10 Human hTERT Retrovirus (Fujita et al. 2005)
STPLF Human SV40 and hTERT Plasmid (Fujii et al. 2006)
TesPDL1-4 Swine hTERT Calcium phosphate 

procedure
(Ibi et al. 2007)

iPDL Human HPV 16 E6/E7 Retrovirus (Pi et al. 2007)
M-HPL1 Human bmi-1 and hTERT Retrovirus (Shiga et al. 2008)
PDL-hTERT cells Human hTERT Lentivirus (Docheva et al. 2010)
SH Human hTERT Plasmid (Hasegawa et al. 

2010)
I-PDL cells Human hTERT Retrovirus (Hung et al. 2010)
BT-PFs Human hTERT Plasmid (Mi et al. 2011)
PDLSC-Bmi1 Human Bmi-1 Lentivirus (Wei et al. 2017)
TERT-hPDLSCs Human hTERT Lentivirus (Chen et al. 2019)
STPDL and STP-

DLDS
Human hTERT and SV40 Plasmid (Asakawa et al. 2022)

hPLF-hTERT Human hTERT Not mentioned (Nogueira et al. 2021)
Cementocyte cells OCCM-30 Mouse SV40 Immortommouse (D'Errico et al. 2000)

RCM cells Rat SV40 Plasmid (Kitagawa et al. 2005)
HCEM-1 and -2 Human hTERT Retrovirus (Kitagawa et al. 2006)
IDG-CM6 Mouse Immortommouse (Zhao et al. 2016)
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the cellular therapy for various maladies (Huang et al. 2015; 
Luo et al. 2021). However, primary TGMCs from humans 
are rare, and their proliferative abilities are limited. There-
fore, there is no doubt that importance should be attached to 
establishing immortalized tooth germ stem cells (Huang et al. 
2015; Yalvaç et al. 2011). The strategies of immortalization 
by SV 40 large T antigen and hTERT had been evaluated 
in human TGMCs, and the result suggested that TGMCs-
hTERT is safer than hTGMCs -SV40 because hTGMCs-
SV40 showed abnormal karyotypes and hTERT-TGMCs 
were free from any chromosomally morphological change. 
Meanwhile, hTGMCs-hTERT preserve MSC characteristics 
and transform them into adipo-, osteo- and odonto-genic 
cells. Furthermore, hTGMCs-hTERT reduces neuro-toxicity 
of SH-SY5Y cells even at great passage numbers showing 
neuroprotective effects (Yalvaç et al. 2011). Another cell 
line, ihEDMC4 transformed by SV40, displayed a higher 
proliferation rate and maintained multipotency, similar to 
primary human dental mesenchymal cells (Huang et  al. 
2015). In addition to human-immortalized TGMCs, TGMCs 
derived from Mice are also immortalized (iTGMCs) (Luo 
et al. 2021). Taken together, immortalized TGMCs serve as 
an important resource for studying the mechanisms of tooth 
development, tooth tissue engineering, and cellular therapy 
of various diseases (Huang et al. 2015; Luo et al. 2021;  
Yalvaç et al. 2011).

Ameloblast‑lineage cells

During tooth formation, epithelium-derived cells of the 
tooth germ go through a progressive differentiation lead-
ing to ameloblasts that synthesize enamel (Hatakeyama  
et al. 2011). Eventually, ameloblasts undergo apoptosis  
when enamel full thickness is complete  and the teeth 
erupt. This pattern of tooth development limits the obtain-
ment of human or rodent dental epithelial cells to study 
the mechanism of ameloblasts function and amelogenesis 
(MacDougall et al. 2019). Therefore, the establishment of 
immortalized tooth epithelial cell line will be beneficial to 
reveal the mechanism of epithelial differentiation in tooth 
development. Nakata et  al. established a spontaneously 
immortalized mouse ameloblast-lineage cell line (ALC),  
which maintained the expression of ameloblast-specific 
genes (amelogenin, tuftelin, and enamelin) in long-term 
culture and the ability to induce bio-mineralization in vitro 
(Nakata et al. 2003). Several studies had shown that the viral 
oncogenes such as the SV‐40 large T antigen and the HPV 
16 E6/E7 genes had the ability to immortalize enamel organ 
epithelia (EOE) epithelial cells derived from mouse (Chen 
et al. 1992; MacDougall et al. 2019) and swine (DenBesten 
et al. 1999). These immortalized cells had unlimited pro-
liferation capacity and continue to retain the characteris-
tics of ameloblasts, expressing enamel matrix markers and  

producing mineralized extracellular matrixes (DenBesten 
et al. 1999; MacDougall et al. 2019). Generally, ameloblast-
like immortalized cell lines are useful tools for the study of 
enamel bioengineering.

Dental epithelial progenitor cells derived 
from the cervical‑loop epithelium

Dental epithelial stem cells in tooth buds give rise to vari-
ous cell types: inner enamel epithelium, stratum interme-
dium, stellate reticulum, and outer enamel epithelium. 
The connection between the inner enamel epithelium and 
the outer enamel epithelium is the cervical loop, which is 
closely related to the renewal of dental epithelium-producing 
enamel matrix and/or inducing dentin formation (Kawano 
et al. 2002). Because of the difficulty in obtaining tissues, 
it is necessary to use indefinitely propagated cells to inves-
tigate the mechanism of tooth epithelial cell differentiation. 
Subsequently, immortalized dental epithelial progenitor cell 
line (HAT-7) derived from the cervical-loop epithelium 
of rat lower incisor was established (Kawano et al. 2002). 
In vitro experiments showed that these cells could produce 
ameloblast lineage cells, stratum intermedium cells, stellate 
reticulum, and outer enamel epithelium (Kawano et al. 2004). 
In addition, fibroblast growth factor 10 was proved to serve 
an important role in coupling mitogenesis of the cervical-
loop cells and the production of stratum intermedium cells 
(Kawano et al. 2004). Obviously, HAT-7 was useful in the 
study of the process of tooth germ development.

Hertwig’s epithelial root sheath cells

Hertwig’s epithelial root sheath (HERS) is a bilayered epi-
thelial sheath that originated from the fusion of inner and 
outer enamel epithelia below the level of the cervical crown 
margin during tooth development (Zeichner-David et al. 
2003). As individual dental epithelial stem cells in the peri-
odontal ligament, HERS play an essential role in tooth root 
development (Huang et al. 2010). Margarita et al. reported 
the establishment of an immortal HERS from transgenic 
mice harboring the SV40 able to differentiate and produce a 
mineralized extracellular matrix similar to acellular cemen-
tum (Zeichner-David et al. 2003). Furthermore, primary 
HERS cells isolated from human periodontium were also 
immortalized by electroporation with SV40 large T anti-
gen. Immortalized HERS cells maintain the morphological 
and immunophenotypic characteristics and epithelial and 
embryonic stem cell markers (Nam et al. 2014). Like pri-
mary HERS cells, immortalized HERS cells could undergo 
EMT in response to TGF-β and differentiate into cementum-
forming cells and generate cementum-like tissue. Interest-
ingly, HERS cell lines induced DPCs to differentiate into 
odontoblasts and develop dentin-like tissue (Li et al. 2019).
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Additionally, epithelial cell rests of Malassez (ERM) are 
quiescent epithelial remnants of the Hertwig’s epithelial root 
sheath (HERS) in the periodontal ligament, involved in the 
repair/regeneration of cement or enamel (Tsunematsu et al. 
2016). Odontogenic epithelial cells from ERM were spon-
taneously immortalized. Interestingly, immortalized odonto-
genic epithelial (iOdE) cells have similar features to stem cells 
that exist in ERM and are capable to produce calcifications 
(Tsunematsu et al. 2016). In conclusion, immortalized HERS 
cell line provides an unlimited cell source for understanding 
the function of HERS cells and tooth root regeneration.

Dental papilla cells (DPCs)

Dental papilla cells (DPCs) are mesenchymal cells that 
can differentiate into odontoblasts and produce a dentin 
matrix, which makes up the central mineralized tissue of 
teeth. However, the process of dentinogenesis is complex, 
and the exact mechanisms are not well understood (Wang 
et al. 2013). Simultaneously, primary cells are rare, and their 
proliferation is limited. Therefore, immortal dental papilla 
cells are needed to overcome these hurdles to establish the 
foundation for odontogenesis research. Generally, dental 
papilla cell lines have a higher proliferation rate and retain 
the phenotypic characteristics similar to primary hDPCs, 
expressing dentin phosphoprotein (DPP), dentin matrix 
protein 1 (DMP1), dentin sialoprotein (DPP), and Nestin 
showing the capacity to differentiate and form mineralized 
nodules (Thonemann and Schmalz 2000b; Wang et al. 2013; 
Yang et al. 2013). Besides, there are some specific dental 
papilla cell lines. An immortalized mouse floxed Bmp2 
dental papilla mesenchymal cell line (iBmp2-dp cells) was 
generated for studying the mechanisms of stem cells from 
dental/odontogenic tissue differentiation and dentin forma-
tion mediated by Bmp2 (Wu et al. 2010). Furthermore, Cre 
fluorescent protein (GFP) was inducted into iBmp2-dp cells 
to generate immortalized deleted Bmp2 dental papilla mes-
enchymal  (iBmp2ko/ko-dp) cells. In the  iBmp2ko/ko-dp cells, 
expression of tooth-related marker genes and differentiation 
was decreased, and extracellular matrix remodeling was also 
impaired (Wu et al. 2015a). Besides, Fam20c is also playing 
an essential role in the mineralization of dentin. And immor-
talized mouse floxed Fam20c dental papilla mesenchymal 
cell lines retained the morphology of primary cells (Liu 
et al. 2015). Interestingly, a tamoxifen-regulated Cre recom-
bination system generated the tamoxifen-mediated reversibly 
immortalized mouse dental papilla cell line (Mdpcet). Once 
reversing the immortalization, cells would undergo replica-
tive senescence and differentiate into odontoblast-like cells 
(Lin et al. 2013). All in all, these immortalized cells serve 
as an excellent surrogate model for the basic research of 
molecular mechanisms of odontoblast differentiation and 

dentin formation but also are potential in drug toxicity tests 
and material biocompatibility examinations (Wang et al. 
2013; Yang et al. 2013).

Odontoblast cells

The odontoblasts responsible for the dentin synthesis are 
considered neural crest-derived mesenchymal cells from the 
first branchial arch (Arany et al. 2006). However, the denti-
nogenesis molecular mechanism remains undefined to date 
(Arany et al. 2006; MacDougall et al. 1995). Therefore, it is 
of great interest to develop a valuable reproducible cellular 
model to clarify the mechanism of tooth development. The 
earliest odontoblast cell lines, M06-G3, were established by 
transfection with SV40 large T antigen, derived from Swiss 
Webster E-18 (vaginal plug day 0) first mandibular molars. 
M06-G3 showed odontoblast characteristics, highly express-
ing dentin phosphoprotein, type I collagen, and alkaline 
phosphatase (MacDougall et al. 1995). Then, two mice’s 
odontoblast cell lines were spontaneously generated. MDPC-
23 and odontoblast-lineage cell (OLC) could be induced cal-
cification and mineralization in osteogenic differentiation 
medium and maintain odontoblast characteristics (Arany 
et al. 2006; Hanks et al. 1998). In addition, bovine dental 
papilla-derived cells were transfected by HPV 18 E6/E7 to 
overcome senescence, resulting in immortalized cell lines 
(tCPC E), which maintained the phenotype of odontoblast-
like cells with expression of procollagen type I, alkaline 
phosphatase, and osteocalcin (Thonemann and Schmalz 
2000a). Interestingly, rat odontoblast cells immortalized by 
hTERT have an odontoblast-like phenotype and synthesize 
mineralized dentin-like tissue both in vitro and in vivo (Hao 
et al. 2002). Conclusively, it is firmly proved that these cell 
lines will function as valuable tools in research concerning 
the modulatory mechanism of odontoblast differentiation, 
tissue engineering of dentin repair and regeneration, and 
biocompatibility testing of dental materials (Hao et al. 2002; 
Thonemann and Schmalz 2000a).

Dental follicle cells (DFCs)

The dental follicle is formed by an ectomesenchymal pro-
genitor cell population in the early stages of tooth bud for-
mation, surrounding the tooth germ. Progenitors in the den-
tal follicle were considered the origin of periodontal tissues, 
including the periodontal ligament, cementum, and alveolar 
bone (Luan et al. 2006; Saito et al. 2005). Under certain 
conditions, DFCs can differentiate into osteogenic, chon-
drogenic, adipogenic, and neuronal cells (Wu et al. 2015b). 
The limited life span has hampered progress in expanding 
specific progenitor or stem cells (Saito et al. 2005). Thus, 
immortal DFCs have been generated to overcome the limi-
tations. BCPb8, a bovine DFC cell line, immortalized by 
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Bmi-1 and hTERT, formed cementum-like tissue and 
expressed osteocalcin, bone sialoprotein, type I collagen, 
and osteopontin Mrna (Saito et al. 2005). Besides, three cell 
lines (DF1, DF2, and DF3) were isolated from the SV40 
transforming mice dental follicle cells, and each of them 
owns specific characteristics suggesting that these cell lines 
were separate and distinct. DF1 may be linked to periodontal 
ligament-type lineage without mineralization behavior, DF2 
was highly undifferentiated, and DF3 might be related to 
cementoblastic or alveolar bone osteoblastic lineage (Luan 
et al. 2006). Human-immortalized DFCs were also estab-
lished with SV40 by the piggyBac transposon-mediated 
vector, which could be deimmortalized by FLP recombi-
nase (Wu et al. 2015b). A mouse immortalized DFC cell 
line  (MDFE6−EGFP) was transduced with EGFP lentivirus 
expressing a mutant HPV 16 E6 gene lacking the PDZ-
domain binding motif.  MDFE6−EGFP cell transplants in vivo 
could generate PDL-like tissues with the expression of Scx, 
periostin, type XII collagen, and the fibrillar assembly of 
type I collagen (Yokoi et al. 2007). There is little doubt that 
these immortal DFCs could play an essential role in cemen-
togenesis study and periodontal regeneration therapy.

Stem cells from human exfoliated deciduous  
teeth (SHEDs)

Stem cells from human exfoliated deciduous teeth (SHED) 
are noninvasive, easy to access, with few ethical concerns, 
and valuable stem cells for tissue engineering and regenera-
tive medicine (Martinez Saez et al. 2016). Moreover, SHEDs,  
as multipotential stem cells, grew faster than adult stem cells 
and successfully differentiated into odontoblasts, osteo-
blasts, chondrocytes, adipocytes, and neural cells (Martinez 
Saez et al. 2016; Yin et al. 2016). However, SHED cultured 
in vitro could not escape from entering replicative senes-
cence. So, there are several methods to overcome SHED 
cellular senescence (Yin et al. 2016). Wilson et al. (2015) 
established spontaneously immortalized SHEDs and hTERT-
immortalized SHEDs and then observed genomic instability 
in hTERT-immortalized SHEDs but not in the spontaneously 
immortalized SHEDs. Moreover, hTERT-SHED showed nor-
mal karyotype even at the late passage, but they had differ-
ent biomarkers than SHED. Additionally, the immortalized 
SHEDs could differentiate into neurons in culture (Yin et al. 
2016). Then, Bmi-1-immortalized SHEDs with an enhanced 
green fluorescent protein (EGFP) marker (SHED-Bmi1-
EGFP) were generated using the Bmi-1 lentivirus. This cell 
line maintained multiple differentiation ability, normal phe-
notype, karyotype, and no tumorigenicity (Yao et al. 2019). 
Indeed, immortalized SHEDs are regarded as a potential tool 
for studying SHEDs and tissue regeneration therapies (Wilson 
et al. 2015; Yao et al. 2019; Yin et al. 2016).

Stem cells of the dental apical papilla (SCAPs)

Stem cells of the dental apical papilla (SCAPs) located in the 
apical papilla of immature permanent teeth represent dental 
MSCs with high proliferative potential, low immunogenic-
ity, and self-renewal ability. In addition, there is considerable 
evidence that SCAPs can produce various cell lines, such 
as odontogenic, osteogenic, adipogenic, neurogenic, chon-
drogenic, and hepatogenic cells (Kang et al. 2019). SCAPs 
may be a promising source for pulp-dentin, periodontal, 
bone, neural regeneration, and bioroot engineering (Kang 
et al. 2019). Since further studies and therapies require many 
SCAPs, it is necessary to establish immortalized SCAPs. 
The first clone of human SCAPs transfected with hTERT 
and HPV16 represented continuous growth over 150 popu-
lation doubling levels (PDL), capable of mineralization and 
sialophosphoprotein (DSPP) expression in the presence of 
β-glycerophosphate (Kamata et al. 2004). SV40 large T anti-
gen was also transfected into human SCAPs to establish a 
cell line, dental stem cells SV40 (DSCS). The DSCS shows a 
higher proliferative capacity and retains its morphology and 
multipotency (Sanz-Serrano et al. 2022). Moreover, it was 
demonstrated that the reversible iSCAPs were established 
by using a reversible immortalization system expressing 
SV40 T flanked with Cre/loxP sites, expressing mesenchy-
mal stem cell markers. When Cre recombinase was intro-
duced to remove SV40 T antigen from iSCAPs, proliferation 
would expectedly decrease (Wang et al. 2014). Furthermore, 
iSCAPs could differentiate into bone, cartilage, and adipo-
cytes under BMP9 stimulation (Wang et al. 2014). Taken 
together, iSCAPs get over the challenges of maintaining 
sufficient SCAPs for studies and will be an essential tool 
to study SCAP biology and dental repair and regeneration.

Dental pulp stem cells (DPSCs)

Dental pulp stem cells (DPSCs) are regarded as mesenchy-
mal stem cells (MSCs) that possess multipotent differentia-
tion (Anitua et al. 2018; Yamada et al. 2019). Consequently, 
DPSCs have been thought to be the potential for basic 
research and clinical use as alternative stem cell sources. 
It has been demonstrated that DPSCs could differentiate 
into various cell lines like odontoblasts, osteoblasts, chon-
drocytes, adipocytes, and neural cells (Anitua et al. 2018). 
Nevertheless, the mechanisms of DPSCs concerning prolif-
eration, differentiation, migration, and transduction are still 
not clear-cut (Kitagawa et al. 2007; Yamada et al. 2019). A 
previous study reported that cultured primary human pulp 
cells would undergo cellular senescence up to cellular pas-
sage seven, and cultured transfected cells would face cellular 
crisis up to passage 18 after transfection (Galler et al. 2006). 
Therefore, immortalized DPSCs overpassing cellular senes-
cence is necessary to study the detailed mechanism.
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The early human dental pulp cell line DP-1 was immortal-
ized by transferring the hTERT and SV40 genes into cells 
with liposomes. DP-1 formed a mineralized matrix and 
expressed alkaline phosphatase (ALP), osteocalcin (OCN), 
osteopontin (OPN), and dentin sialophosphoprotein (DSPP) 
genes (Kamata et al. 2004). Galler et al. (2006) and Li et al. 
(2020) only transfected DPSCs with SV40 by electroporation 
or the piggyBac system to make cells immortalized, retaining 
many phenotypic characteristics of primary cells. Interest-
ingly, deimmortalized human dental pulp cells (dHDPCs) 
were established by infecting iHDPCs with Ad-FLP recom-
binase to remove the SV40 T-Ag, which was conducive to the 
recovery effect of the iHDPCs. In addition, HDP cells were 
also immortalized with the ectopic expression of hTERT, 
expressing odontogenic markers of cell proliferation and 
mineralization. These characteristics were possibly linked 
with the expression of p16 at a low level (Egbuniwe et al. 
2011; Kitagawa et al. 2007). Moreover, a novel immortal-
ized dental pulp cell line was established by co-expressing a 
mutant cyclin-dependent kinase 4 (CDK4R24C), cyclin D1, 
and TERT, which maintained stemness characteristics and 
its original diploid chromosomes (Orimoto et al. 2020). The 
established immortalized HDPCs with stable growth abilities 
and normal phenotype will be a good resource for studying 
the biological characterization of dental pulp cells, dental 
pulp injury repair, and tooth regeneration (Kamata et al. 
2004; Kitagawa et al. 2007).

Periodontal ligament stem cells (PDLSCs)

The periodontal ligament (PDL) is a nonmineralized tissue 
connecting the cementum with the inner wall of the tooth 
socket bone that provides anchorage of teeth and cushions 
for mastication stress (Mi et al. 2011). It is reported that 
periodontal ligament stem cells (PDLSCs) can differenti-
ate into both osteoblast-like cells and fibroblast-like cells, 
which play a promising role in periodontal tissue regenera-
tion (Chen et al. 2019). However, the precise differentiation 
and regeneration mechanism of PDLSCs is unclear due to 
the limitation of PDLSC lifespan to some extent. Therefore, 
there is an urgent need for immortalized PDLSC lines to 
investigate the molecular events (Fujii et al. 2006). At the 
present, increasing studies have been carried out to establish 
PDLSC lines successfully. Firstly, animal periodontal liga-
ment cells were immortalized by transduction with SV40, 
involving immortal periodontal ligament cell lines derived 
from periodontal ligament cells (PDL) of transgenic mice 
and rats (D'Errico et al. 1999; Kubota et al. 2004). Sub-
sequently, several immortalized human periodontal liga-
ment cells were achieved by induction of the hTERT gene. 
Because of a heterogeneous cell population of the PDL, 
Fujita et al. (2005) reported two different types of cell lines 
derived from PDL, one that could form a mineralized matrix 

and another that was not. It was mostly demonstrated that 
transfected cells retained the characteristics of the original 
PDL and calcification activity (Fujii et al. 2006; Pi et al. 
2007). One cell line, TesPDL3, was indicated to have several 
phenotype characteristics of fibroblasts, vascular endothelial 
cells, and osteoblasts (Ibi et al. 2007). In addition, subcuta-
neous transplantation of these immortal cells in nude mice 
showed no tumorigenicity (Chen et al. 2019). Amazingly, 
periodontal ligament cell-derived immortalized cells estab-
lished from healthy (STPDL) and Down’s syndrome patient 
(STPDLDS) were transfected by SV40T-Ag and hTERT. 
Definitely, the STPDLDS cell line is expected to serve as a 
useful tool for the study of periodontal disease in Down’s 
syndrome patients (Asakawa et al. 2022).

Apart from the hTERT gene, human PDL was also 
immortalized by introducing Bmi1, PDLSC-Bmi1, which 
maintained the biological functions compared with primary 
PDLSCs even in a proliferative state (Wei et al. 2017). Sur-
prisingly, PDL cells derived from deciduous teeth were also 
successfully immortalized, expressing the molecular marker 
genes of PDL cells and differentiating into osteoblastic cells 
(Hasegawa et al. 2010). In short, immortal PDLSCs are likely 
to be a feasible resource for fundamental research of peri-
odontitis and valuable tools for PDL engineering development 
(Chen et al. 2019; Docheva et al. 2010; Hasegawa et al. 2010).

Cementocyte cells

Cementum is a thin layer of bone-like mineralized tissue 
produced by cementoblasts, covering tooth root dentin. Peri-
odontal ligament fibers anchor between the cementum and 
alveolar bone, thus fixing the tooth to the alveolus socket 
and protecting the integrity of root surfaces (Wang et al. 
2016; Zhu et al. 2020). Cementoblasts are relevant to cemen-
tum matrix deposition and mineralization, which play an 
essential role in cementum development and regeneration 
(Wang et al. 2017; Zhu et al. 2020). Distinctly, it is necessary 
to establish immortal cementoblasts to overcome cell life 
span limitations. A cementocyte cell line (OCCM-30) was 
acquired from OC-tAg transgenic mice, containing the SV40 
large T-antigen, expressing cementoblasts makers, such as 
bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin 
(OC) (D'Errico et al. 2000). Another cementocyte cell line, 
IDG-CM6, was isolated from Dmp1-GFP+/− mice, immor-
talized by using the interferon (IFN)-g-inducible promoter 
driving expression of a thermolabile large T antigen. The 
expression profile of this cell line was involved in minerali-
zation and alkaline phosphatase activity (Zhao et al. 2016). 
Besides, rat cementum lining cells (RCM-C3 and -C4) 
were also established by transfection of the thermolabile 
SV40 T-antigen gene (Kitagawa et al. 2005), and the human 
cementoblast cell line (HCEM) was immortalized by trans-
fection of hTERT gene (Kitagawa et al. 2006). In general, 
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all the immortalized ementocyte cells serve as a model to 
study cementogenesis to understand the development, home-
ostasis, and regeneration mechanisms of periodontal tissues 
(D'Errico et al. 2000; Kitagawa et al. 2006).

Application of immortalized stem cells from dental/
odontogenic tissues

At present, a variety of odontogenic immortalized cell 
lines have been successfully established. Cell lines such as 
MDPC-23, OCCM-30, and OLC have played an important 
role in tissue engineering research, cytological studies, and 
material studies (Fig. 2) (Arany et al. 2009; de Lima et al. 
2009; Hakki et al. 2018; Lee et al. 2010; Li et al. 2021; 
Simon et al. 2010; Swanson et al. 2020; Zhang et al. 2021). 
However, due to safety concerns, these cells have not been 
really used in clinical treatment (Natesan 2005).

Application in tissue engineering

Dental immortalized cells are expected to play an impor-
tant role in tissue engineering due to their multidirectional 
differentiation and infinite proliferation. It was suggested 
that spontaneously immortalized odontoblast cells (OLCs) 
applied in bioengineered organ germ method developed 

into teeth after transplantation under the kidney capsule and 
in vitro (Arany et al. 2009). PDL-like tissue was observed 
in the periodontal ligament after immortalized mouse den-
tal follicle cells (MDFE6-EGFP cells) were transplanted 
into severe combined immunodeficiency mice (Yokoi 
et al. 2007). Additionally, a swine PDL fibroblast cell line, 
TesPDL3, generated tube-like structures under FGF-2 
stimulation (Shirai et al. 2009). Furthermore, immortalized 
DPSCs could differentiate into neurons, showing neurons’ 
morphological characteristics (Wilson et al. 2015). Although 
immortalized stem cells from dental/odontogenic tissues 
have not yet been used in clinical treatment, they have great 
potential for cellular therapy.

Application in cytological researches

Apart from its application in tissue engineering, many stud-
ies have been carried out to understand the pathogenesis 
and therapy of dental disease. It was reported that the func-
tion of OCCM-30 cells would be changed via regulating 
gene expression and mineral formation with an exposure 
to bisphosphonates in vitro (Chun et al. 2005). Besides, 
OCCM-30 cells and PDL cells were applied in the study of 
internal root resorption (IRR), suggesting the essential role 
of Chemerin/ChemR23 and C/EBPβ in tooth root resorption 
(Ito et al. 2018; Ye et al. 2020). For tissue regeneration, bone 

Fig. 2  Application of immortalized cell lines derived from dental/odontogenic tissue. Immortalized cell lines cell lines have been used in tissue 
engineering research, cytological studies, and material studies
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morphogenetic proteins, such as BMP4, BMP7, and BMP9, 
were demonstrated to increase osteogenic differentiation of 
OCCM-30 cells (Bozic et al. 2012; Cao et al. 2020; Hakki 
et al. 2010; Wang et al. 2017). Amazingly, HtgsC-hTERT 
even proves neuro-protection’s ability in vitro by increas-
ing the cell viability of SH-SY5Y treated with hydrogen-
peroxide or doxo-rubicin (Yalvaç et al. 2011).

Application in material researches

Several immortalized stem cells from dental/odontogenic 
tissues have been applied in the biocompatibility testing 
of dental materials. MDPC 23 is most commonly used to 
evaluate the cytotoxicity of dental materials, including 
adhesives, resin-modified glass-ionomer lining cement, 
and carbamide peroxide bleaching gel (Alvarez et al. 2019; 
Aranha et al. 2006; de Lima et al. 2009; Lee et al. 2016b). 
Furthermore, dental resin components, biodentin, MTA, 
and barrier membranes were tested by immortalized bovine 
dental papilla–derived cells, immortalized murine pulp cells, 
OCCM-30 cells, and immortalized periodontal ligament stem 
cells (Hakki et al. 2009; Spinell et al. 2019; Thonemann et al. 
2002; Zanini et al. 2012).

Challenges and perspectives

Currently, multiple immortalized multitudinous cell lines 
were established to provide a new opportunity in tissue 
engineering and regenerative medicine, study physiologi-
cal and pathobiological mechanisms, and test the safety of 
dental materials (Alvarez et al. 2019; Arany et al. 2009; Ye 
et al. 2020). These cell lines have overcome cellular senes-
cence and possess unlimited proliferation capacity. However, 
immortalized cells have not been fully utilized in tissue engi-
neering. To solve this problem, conditional immortalization 
strategies have been established, such as temperature-based 
regulation, recombinase-based control, and transcriptional 
regulation, to acquire accurate excision of oncogenes. Nev-
ertheless, it cannot guarantee that these methods are 100% 
efficient, and cells need further elimination which has not 
deleted the transgene (Li et al. 2020; Lin et al. 2013; Luo 
et al. 2021; MacDougall et al. 1995; Ramboer et al. 2014; 
Wang et al. 2019). So, the safety problem is still a major 
obstacle to clinical application, and there are more efforts 
needed to remove transgenes to guarantee safety.

Another concern is the ability of immortalized cell lines 
to differentiate. Huang et al. (2015) reported that immortal-
ized dental mesenchymal cell line maintained the ability 
to differentiate and form mineralized nodules. But Ikbale 
et  al. (2016) proved that the differentiation efficiency 
of primary DPSCs into osteoblasts was approximately 
60% higher than hTERT DPSCs. Concerning the loss of 

differentiation ability, the decellularized cell-deposited 
extracellular matrix (DecM) has developed in recent years, 
which is considered to possess anti-senescence and anti-
oxidative effects and promote differentiation (Wang et al. 
2019). Besides, bone morphogenetic protein, as an effective 
bio-facto, is potential in osteo/odontogenic regeneration 
and tooth engineering (Bozic et al. 2012; Li et al. 2020; 
Luo et al. 2021). Therefore, it is hopeful that the combina-
tion of immortalized stem cells from dental/odontogenic 
tissues and DecM or the growth factor may overcome the 
unsatisfactory osteogenic and odontogenic differentiation 
ability of cells using immortalization strategies alone.

Conventional methods of producing immortalized 
cell lines often require genome manipulation resulting in 
genomic instability. Recently, conditional reprogramming 
(CR) has emerged as a novel tool for the long-term cul-
ture of primary cells, such as tumor cells, primary epithe-
lium cells, and so on. Particularly, it does not alternate the 
genetic background of the primary cells (Wu et al. 2020). 
CR co-cultured primary cells with irradiated mouse fibro-
blast feeder cells in the presence of Rho-related protein 
kinase (ROCK) inhibitor Y-27632. The cell lines generated 
by CR acquire stem-like characteristics and maintain full 
differentiation (Liu et al. 2017). Therefore, CR has poten-
tially broad application prospects in the establishment of 
immortalized stem cells from dental/odontogenic tissue.

Conclusions

At present, many kinds of stem cells from dental/odontogenic 
tissue have been established into immortalized cell lines, 
which are mostly used in basic studies, like tissue engineer-
ing and cytological and material research. However, although 
many studies have shown that it is nontumorigenic, the bio-
logical behavior of immortalized cells is still questioned due 
to the existence of foreign genes (Kamata et al. 2004; Lin 
et al. 2013). In addition, when immortalized cells obtain 
robust proliferation capacity, the differentiation capacity is 
decreased to a great extent (Li et al. 2020; Wang et al. 2019). 
These issues restrict the application of immortalized cells at 
present, which are expected to be solved in the future.
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