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Abstract
Excessive apoptosis of intervertebral disc cells, namely nucleus pulposus (NP) cells, results in decreased cell density and 
extracellular matrix (ECM) catabolism, hence leading to intervertebral disc degeneration (IVDD). As a cell model in the 
present study, a commercially available human NP cell line was utilized. Long noncoding RNAs and microRNAs may regu-
late the proliferation or apoptosis of human NP cells, hence exerting a significant influence on the occurrence of IVDD. 
KLF3-AS1 was discovered to be abnormally downregulated in IVDD tissues. Overexpression of KLF3-AS1 enhanced NP 
cell viability, prevented cell apoptosis, boosted ECM synthesis, and lowered MMP-13 and ADAMTS4 levels. ZBTB20 and 
KLF3-AS1 were co-expressed in IVDD; ZBTB20 overexpression had similar effects on NP cells, ECM production, and 
MMP-13 and ADAMTS4 levels as KLF3-AS1 overexpression. miR-10a-3p may target KLF3-AS1 and ZBTB20 and inhibit 
the expression of ZBTB20. Inhibition of miR-10a-3p enhanced NP cell viability, reduced apoptosis, and enhanced ECM 
synthesis. KLF3-AS1 overexpression increased ZBTB20 expression, whereas miR-10a-3p overexpression decreased ZBTB20 
expression; miR-10a-3p overexpression reduced the effects of KLF3-AS1 on ZBTB20. Overexpression of miR-10a-3p 
consistently decreased the effects of KLF3-AS1 overexpression on NP cell survival, apoptosis, and ECM synthesis. In con-
clusion, KLF3-AS1 overexpression may ameliorate degenerative NP cell alterations through the miR-10a-3p/ZBTB20 axis.

Keywords Intervertebral disc degeneration (IVDD) · Human nucleus pulposus (NP) cells · Long non-coding RNA 
KLF3-AS1 · miR-10a-3p · ZBTB20

Introduction

Adults may experience a decline in quality of life as a result 
of intervertebral disc degeneration (IVDD), which causes 
lower back or upper neck pain and disc herniation (Chen 

et al. 2009). Multiple variables, including inflammation, 
matrix degradation, proteoglycan loss in the nucleus pulpo-
sus (NP), disorder of the concentric lamellae in the annulus 
fibrosus (AF), and spinal instability, have been reported to 
be implicated in IVDD pathogenesis (Grunhagen et al. 2011; 
Stephan et al. 2011; Huang et al. 2014).

Excessive apoptosis of intervertebral disc cells leads to 
reduced cell density and extracellular matrix (ECM) catabo-
lism (Park et al. 2001), both of which have crucial implications 
on IVDD. Additionally, diminished viable cell populations 
within the NP may also promote IVDD (Buckwalter 1995; 
Antoniou et al. 1996). It is hypothesized that NP cell–produced 
type II collagen, aggrecan, and certain ECM components are 
crucial for maintaining the integrity of intervertebral disc 
(IVD) (Pockert et al. 2009; Ding et al. 2012). Furthermore, 
it was previously reported that the upregulation of matrix 
metalloproteinase (MMP) and aggrecanase expression and 
activity is implicated within degenerated intervertebral disc-
derived cells (Zhang et al. 2008; Gruber et al. 2009; Ding 
et al. 2012). Aggrecan breakdown results in disc dehydration, 
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subsequently impacting the disc’s compression resistance and 
height (Cabraja et al. 2013). The aggrecanases are metallo-
proteases that belong to the ADAMTS (a disintegrin and met-
alloproteinase with thrombospondin motifs) family of extra-
cellular proteases, which contribute to aggrecan degradation 
(Tian et al. 2013). The expression levels of ADAMTS-4 and 
ADAMTS-5 showed to be increased within human degenera-
tive disc disease (Hatano et al. 2006). Thus, the loss of NP 
cells, the subsequent decrease in collagen type II and aggrecan, 
and the increase in MMPs and ADAMTS are required for disc 
degeneration.

An increasing amount of evidence suggests that non-
coding RNAs, mainly long non-coding RNAs (lncRNAs) 
and microRNAs (miRNAs), could regulate the prolifera-
tion or apoptosis of human NP cells, thus exerting a critical 
effect on IVDD occurrence (Wang et al. 2011; Liu et al. 
2013; Chen et al. 2015, 2017). Recently, Wan et al. (2014) 
performed a lncRNA-mRNA microarray to detect lncRNA 
expression levels within human degenerative and normal NP 
samples. A total of 67 lncRNAs were considerably upregu-
lated and 49 lncRNAs were significantly downregulated, 
and their fold-changes were all greater than 10. Multiple 
lncRNAs undergo post-transcriptional processing to yield a 
variety of short RNAs, such as miRNAs (Rashid et al. 2016). 
Furthermore, lncRNAs serve as competitive endogenous 
RNAs or natural miRNA sponges by occupying the com-
mon binding regions of miRNAs and thereby sequestering 
the miRNAs (Chen et al. 2017). The search for the lncRNA-
miRNA-mRNA axis implicated in NP cell apoptosis and 
ECM formation may yield new IVDD treatment targets.

Gene Expression Omnibus dataset GSE70362 for differ-
entially expressed genes in low-grade and high-grade IVDD 
samples was downloaded and analyzed; KLF3-AS1 was cho-
sen due to its reported function in bone-related disorders. The 
expression of KLF3-AS1 was then confirmed in tissue sam-
ples, and the effects of KLF3-AS1 on the viability and apop-
tosis of NP cells and ECM formation were investigated. Then, 
co-expressed mRNAs with KLF3-AS1 were evaluated, and 
ZBTB20 was chosen. The effects of KLF3-AS1 on the viabil-
ity and apoptosis of NP cells and the formation of ECM were 
analyzed. Using an online tool, we examined miRNAs that 
may target KLF3-AS1 and ZBTB20 and chose miR-10a-3p. 
The predicted miR-10a-3p binding to KLF3-AS1 and ZBTB20 
was validated; the specific effects of miR-10a-3p upon NP 
cells and the dynamic effects of KLF3-AS1 and miR-10a-3p 
upon ZBTB20 expression and NP cells were examined. We 
established a novel lncRNA-miRNA-mRNA axis that modu-
lates NP cell survival, apoptosis, and ECM synthesis.

Materials and methods

Tissue specimen collection

Twelve normal lumbar disc specimens were harvested from 
the patients with spinal trauma undergoing spinal surgery. 
The fifteen degenerative specimens were collected from 
IVDD patients undergoing spinal surgery. All the procedures 
adhered to the 2013 Declaration of Helsinki and obtained 
the approval of the Institutional Review Board of The Third 
Xiangya Hospital of Central South University; informed 
consent was signed by each patient enrolled.

H&E staining

Tissue samples were fixed in 4% paraformaldehyde, embed-
ded in paraffin, and cut into 4-μm-thick sections. H&E stain-
ing was performed for histopathological feature observation 
(Qin et al. 2019).

Real‑time quantitative polymerase chain reaction

The total RNA from target cells or tissues was extracted. The 
oligo-dT-based transcriptor first-strand cDNA synthesis kit 
(Roche Diagnostics, Basel, Switzerland) was used to synthe-
size the cDNA following the manufacturer’s instructions. A 
total of 500 ng total RNA was subsequently added and the 
product was diluted with RNAse-free  H2O to a final concen-
tration of 5 ng/μl. RT-qPCR detection was performed using 
a Power SYBR Green PCR master mix (Life Technologies, 
Carlsbad, California, USA) and ABI Prism 7900HT instru-
ment (Applied Biosystems, Carlsbad, California, USA). The 
relative expression levels were calculated using the  2−ΔΔCt 
method and the GAPDH mRNA level was taken as an inter-
nal reference.

Cell lineage and cell culture

Human NP cells (Catalog #4800) were obtained from Sci-
enCell (Carlsbad, CA, USA) and maintained in Dulbecco’s 
modified Eagles medium (Invitrogen, Carlsbad, CA, USA) 
and 10% fetal bovine serum (Invitrogen) supplemented with 
antibiotics. All the cells were cultured at 37 °C in 5%  CO2 
and showed vimentin and fibronectin positive (Fig. S1).
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Cell transfection

The overexpression of lncRNA KLF3-AS1 or ZBTB20 was 
achieved by transfecting KLF3-AS1-overexpressing (KLF3-
AS1 OE) or ZBTB20 (ZBTB20 OE) vector to target cells. 
KLF3-AS1 OE and ZBTB20 OE were constructed based 
on the pLVX-puro vector (Catalog No. 632164; Takara 
Bio, Kusatsu, Japan). The overexpression or inhibition of 
miR-10a-3p was achieved by transfecting agomir-10a-3p 
or antagomir-10a-3p (GenePharma, Shanghai, China). 
All the transduction was performed with the help of Lipo-
fectamine™ 3000 Transfection Reagent (Thermo Fisher 
Scientific, Waltham, MA, USA).

Toluidine blue staining

The NP cells were planted on a glass slide, rinsed with PBS, 
fixed with paraformaldehyde for 30 min at room tempera-
ture, and rinsed with PBS 3 times for 5 min each time. Then 
stain the NP cells with 1% toluidine blue for 5 min, wash 
with double-distilled water for 1 min, observe, and take pic-
tures under an inverted phase contrast microscope.

Immunofluorescent staining

NP cells were fixed with 4% paraformaldehyde for 10 min 
and washed with iced PBS thrice. For antigen retrieval, 
100 mM Tris with 5% [W/V] urea (pH 9.5) was used, and 
cells were permeated with 0.5% Triton X-100 for 10 min. 
NP cells were subsequently incubated with a PBST of 1% 
BSA for 30 min for blocking the non-specific binding of the 
antibodies. NP cells were then incubated with anti-Aggrecan 
(13880-1-AP, Proteintech, Wuhan, China) or anti-Collagen 
II (CSB-PA005739ESR2HU, Cusabio, Wuhan, China) at 
4 °C overnight. After the incubation, the cells were washed 
with PBS thrice for 5 min per time. The cells were treated in 
the dark for 1 h at room temperature with FITC-conjugated 
secondary antibody (Beyotime, Shanghai, China) (soluble 
in 1% BSA). The secondary antibody solution was poured 
and the cells were washed with PBS in the dark thrice, 5 min 
each time. NP cells were then incubated with DAPI (DNA 
staining) for 1 min for nucleus staining and then rinsed 
with PBS. The cover glass was sealed with nail polish and 
a drop of sealing medium. The results were examined and 
photographed using a fluorescence microscope (Olympus). 
Aggrecan or Collagen II fluorescence appeared green, while 
nuclei fluorescence appeared blue.

CCK‑8 for cell viability

The cell viability was detected using a CCK-8 kit (Beyo-
time). A total of 5 ×  103 cells were planted into each well of a 
96-well plate. A total of 20 μl of CCK-8 solution was added 

to each well and incubated with the cells for 2 h at 37 °C. At 
the end of the incubation, the optical density (OD) value was 
measured at 450 nm through a microplate reader.

Flow cytometry assay

NP cell apoptosis was measured using an Annexin V-FITC 
Apoptosis Detection Kit (Beyotime). NP cells were trans-
duced for 48 h, dissociated with 0.25% trypsin without 
EDTA, and incubated with test solution in the chemical kit 
according to the manufacturer’s instructions. Finally, a flow 
cytometer was used to evaluate apoptotic NP cells (ACEA 
Biosciences, U.S.A.).

Immunoblotting

The hypotonic iced buffer was used to lyse target cells. 
After determining protein concentrations, protein samples 
were loaded and separated using SDS–PAGE. The blots 
were subsequently transferred to a PVDF membrane and 
treated for 24 h at 4 °C with the primary antibodies. The 
following antibodies were used: anti-Aggrecan (13880-1-
AP, Proteintech), anti-Collagen II (CSB-PA005739ES-
R2HU, Cusabio), anti-SOX9 (ab185966, Abcam), anti-
MMP13 (CSB-PA07029A0Rb, Cusabio), anti-ADAMTS4 
(ab185722, Abcam), and anti-ZBTB20 (ab127702, Abcam). 
The membrane was then treated with an HRP-conjugated 
secondary antibody (1:1000) at room temperature for 1 h. 
The enhanced chemiluminescence reagent allowed for the 
imaging of the proteins.

Immunohistochemical staining (IHC staining)

The tissue sections were fixed in acetone for 10 min − 20 °C, 
permeabilized with 0.2% triton (Sigma, St. Louis, MO, USA) 
at room temperature for 10 min, and then incubated with 
a blocking solution (3.75% BSA/5% goat serum; Zymed, 
Carlsbad, CA, USA) for 30 min. The samples were subse-
quently incubated with anti-ZBTB20 (ab127702, Abcam) 
for 1 h at room temperature. All sections were incubated 
with the HRP-conjugated poly-anti-rabbit antibody (Boster 
Biotech, Wuhan, China) for 30 min at 37 ℃. Finally, sections 
were observed under a microscope after being treated with 
freshly prepared DAB reagent (Boster Biotech) for 5 min.

Dual‑luciferase reporter assay

KLF3-AS1 fragment or ZBTB20 3′-UTR fragment con-
taining conserved miR-10a-3p binding sites were ampli-
fied by PCR and subcloned into the psiCHECK™-2 
vector (Promega Corporation, Madison, USA) for gen-
erating wild-type reporter plasmids, wt-KLF3-AS1, 
and wt-ZBTB20 3′-UTR. A mutation was introduced 
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to the predicted miR-10a-3p binding site in KLF3-AS1 
or ZBTB20 3′-UTR for generating mutant-type reporter 
plasmids, mut-ZBTB20 3′-UTR. HEK-293 cells were co-
transfected with the aforesaid luciferase vector (200 ng) 
and either agomiR-10a-3p or antagomiR-10a-3p using 
Lipofectamine 3000 (Invitrogen). The luciferase activ-
ity was then measured 48 h after transfection using a 
luminometer (Promega, Madison, USA) according to the 
manufacturer’s instructions.

Data processing and statistical analysis

The data of three independent experiments are expressed 
as means ± SD, and one-way analysis of variance 
(ANOVA) was used for statistical analysis and Tukey’s 
multiple comparison test or independent sample t-test. 
The significance level is based on the probability of 
P < 0.05 or P < 0.01. SPSS 17.0 statistical software was 
used for all the analyses.

Results

KLF3‑AS1 is downregulated in degenerative 
intervertebral disc tissues

Firstly, the expression level of KLF3-AS1 was confirmed 
within degenerative whole IVD tissue samples of Thomp-
son grades I–II, III, IV, and V, according to GSE70362. 
Figure 1a illustrates that the expression level of KLF3-AS1 
was dramatically decreased within high-grade IVDD tissues. 
Moreover, according to GSE70362, the expression level of 
KLF3-AS1 was significantly reduced in nucleus pulposus 
tissues (NP cells) from high-grade degenerative interverte-
bral disc tissues (Kazezian et al. 2015) (Fig. 1b). The expres-
sion of KLF3-AS1 was significantly reduced in the entire 
blood of IVDD patients compared to that of healthy controls 
according to GSE124272 (Wang et al. 2019) (Fig. 1c).

The histopathological characteristics of degenerative 
whole intervertebral disc tissues and normal control tissues 
were confirmed by H&E staining (Fig. 1d, d’). In addition, 

Fig. 1  KLF3-AS1 is downregulated in degenerative interverte-
bral disc tissues. (a) KLF3-AS1 expression in degenerative whole 
intervertebral disc tissues of Thompson grades I–II, III, IV, and V, 
according to GSE70362. (b) KLF3-AS1 expression in nucleus pulpo-
sus tissues from degenerative intervertebral disc tissues of Thompson 
grades I–II, III, IV, and V, according to GSE70362. (c) KLF3-AS1 
expression in the whole blood of patients with intervertebral disc 

degeneration (IVDD) and healthy controls, according to GSE124272. 
(d, d’) Degenerative whole intervertebral disc tissues and normal 
control tissues were collected and the histopathological features were 
confirmed by H&E staining. (e) KLF3-AS1 expression was examined 
in IVDD (n = 15) and normal control (n = 12) samples by qRT-PCR. 
*P < 0.05, **P < 0.01
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the expression level of KLF3-AS1 in IVDD tissues was sig-
nificantly lower than that in the control group (Fig. 1e).

Specific effects of KLF3‑AS1 overexpression  
on NP cells

Considering the importance of NP cell activities in the eti-
ology of IVDD, we continued to investigate the impact of 
KLF3-AS1 on NP cell phenotypes. Toluidine blue staining 
revealed chondrocyte-like characteristics of NP cells (Fig. 2a), 
while immunofluorescent (IF) staining revealed amounts of 
Aggrecan and Collagen II in NP cells (Fig. 2b, b’). Transduc-
tion of a KLF3-AS1-overexpressing vector into NP cells led 
to KLF3-AS1 overexpression (KLF3-AS1 OE). The overex-
pression of KLF3-AS1 was confirmed by qRT-PCR (Fig. 2c). 
KLF3-AS1 overexpression significantly promoted NP cell 
proliferation and inhibited cell apoptosis (Fig. 2d–e’’). As 
for ECM deposition, KLF3-AS1 overexpression increased 
Aggrecan, Collagen II, and Sox-9 proteins while decreasing 
MMP-13 and ADAMTS4 proteins (Fig. 2f, f’).

ZBTB20 is positively correlated with KLF3‑AS1

To select the KLF3-AS1 expression-related genes, Pearson’s 
correlation coefficient was used to analyze the expression 
correlation based on GSE70362 and GSE124272 (∣r∣ > 0.5, 
p < 0.05). Six gene (DDHD2, LINC00342, ZBTB20, SUN1, 
NR3C1, and ZFP90) expressions were positively correlated 
with KLF3-AS1 expression, and 3 gene (NGRN, C12orf49 
and TFPI) expression were negatively correlated with KLF3-
AS1 expression in both GSE datasets. ZBTB20 has the high-
est correlation coefficient r value. According to GSE124272, 
the expression level of ZBTB20 in IVDD patients’ whole 
blood was significantly lower than that of healthy controls 
(Fig. 3a). Also, according to GSE124272, ZBTB20 expres-
sion in tissue samples was favorably linked with KLF3-AS1 
expression (Fig. 3b). IHC staining and qRT-PCR demon-
strated that ZBTB20 protein and mRNA levels were signifi-
cantly lower in IVDD tissues than in control group tissues 
(Fig. 3c, d). ZBTB20 was positively associated with KLF3-
AS1 in collected tissue samples (Fig. 3e).

Specific effects of ZBTB20 overexpression  
on NP cells

After establishing the overexpression of ZBTB20 and 
its favorable connection with KLF3-AS1, the particular 
effects of ZBTB20 on NP cells were studied. KLF3-AS1 
overexpression within NP cells dramatically boosted 
ZBTB20 protein levels (Fig. 4a, a’). NP cells were then 
transduced with a ZBTB20-overexpressing vector to pro-
duce ZBTB20 overexpression (ZBTB20 OE). Immunoblot 

analyses verified the overexpression of ZBTB20 (Fig. 4b, 
b’). Similar to KLF3-AS1 overexpression, ZBTB20 over-
expression increased NP cell viability and suppressed 
apoptosis (Fig. 4c–d’’). In addition, the overexpression of 
ZBTB20 increased Aggrecan, Collagen II, and Sox-9 pro-
teins while decreasing MMP-13 and ADAMTS4 proteins 
during ECM deposition (Fig. 4e, e’).

miR‑10a‑3p directly targets KLF3‑AS1 and ZBTB20

Since microRNA could mediate the crosstalk between 
lncRNA and mRNA, we searched for microRNAs that 
could simultaneously target KLF3-AS1 and ZBTB20. 
Online resources and databases converged in miR-10a-3p 
and miR-5584p (Fig. 5a). In order to select one miRNA, 
we compared the expression levels of miR-10a-3p and 
miR-5584-3p in IVDD and normal tissue samples; Fig. 5b 
demonstrates that the expression level of miR-10a-3p was 
considerably higher in IVDD tissue samples than in con-
trol group samples (Fig. 5b, b’).

agomir-10a-3p or antagomir-10a-3p was transduced 
into NP cells to induce miR-10a-3p expression, and 
qRT-PCR was used to demonstrate miR-10a-3p overex-
pression or inhibition (Fig. 5c). Overexpression of miR-
10a-3p lowered in NP cells, but inhibition of miR-10a-3p 
increased ZBTB20 protein levels (Fig. 5d, d’). To confirm 
the proposed binding of miR-10a-3p to KLF3-AS1 and 
ZBTB20, we produced wild-type and mutant-type KLF3-
AS1 and ZBTB20 luciferase reporter vectors, as well as 
co-transfected reporter vectors in NP cells with agomir-
10a-3p/antagomir-10a-3p. When co-transfected with wild-
type reporter vectors (wt-KLF3-AS1/wt-ZBTB20), miR-
10a-3p overexpression inhibited, whereas miR-10a-3p 
inhibition enhanced the luciferase activity of the reporter 
vectors, when co-transfected with mutant-type reporter 
vectors (mut-KLF3-AS1/mut-ZBTB20), miR-10a-3p 
overexpression or inhibition failed to alter the luciferase  
activity (Fig. 5e, f).

Specific effects of miR‑10a‑3p on NP cells

Since miR-10a-3p targets ZBTB20, it is speculated that 
it also plays a role in NP cell phenotypes. Target cells 
are transduced with antagomir-NC or antagomir-10a-3p 
and evaluated cell phenotypes to verify the hypothesis. 
Figure 6a–b’’ demonstrated that inhibiting miR-10a-3p 
increased NP cell viability while inhibiting cell death. 
MiR-10a-3p suppression increased Aggrecan, Collagen II, 
and Sox-9 proteins but decreased MMP-13 and ADAMTS4 
proteins during ECM deposition (Fig. 6c, c’).
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Dynamic effects of KLF3‑AS1 and miR‑10a‑3p  
on NP cells

Finally, it was examined if KLF3-AS1 might offset the 
effects of miR-10a-3p on ZBTB20 expression. ZBTB20 
protein levels were measured in target cells co-transduced 
with KLF3-AS1 OE and agomir-10a-3p. KLF3-AS1 over-
expression increased the protein levels of ZBTB20, while 
miR-10a-3p overexpression decreased them; the effects 

Fig. 2  Specific effects of KLF3-AS1 overexpression on NP cells. 
(a) NP cells were identified using Toluidine blue staining for chon-
drocyte-like features. (b, b’) NP cells were identified using immu-
nofluorescent (IF) staining for Aggrecan and Collagen II levels. (c) 
KLF3-AS1 overexpression was achieved in NP cells by transducing 
KLF3-AS1-overexpressing vector (KLF3-AS1 OE). The overex-
pression of KLF3-AS1 was confirmed by qRT-PCR. Then, NP cells 
were transduced with KLF3-AS1 OE or negative control (vector) and 
examined for cell viability by CCK-8 assay (d); cell apoptosis by flow 
cytometry (e–e’’); the protein levels of Aggrecan, Collagen II, Sox-
9, MMP-13, and ADAMTS4 by immunoblotting (f, f’). *P < 0.05, 
**P < 0.01

◂

Fig. 3  ZBTB20 is positively 
correlated with KLF3-AS1. 
(a) ZBTB20 expression in the 
whole blood of patients with 
intervertebral disc degeneration 
(IVDD) and healthy controls, 
according to GSE124272. 
(b) The correlation between 
ZBTB20 and KLF3-AS1 
expression in tissue samples, 
according to GSE124272, 
analyzed by Pearson’s correla-
tion analysis. (c, c’) ZBTB20 
levels in tissue samples were 
examined using Immunohis-
tochemical (IHC) staining. 
(d) ZBTB20 mRNA levels in 
tissue samples were examined 
using qRT-PCR. (e) The cor-
relation between ZBTB20 and 
KLF3-AS1 expression in tissue 
samples analyzed by Pearson’s 
correlation analysis. *P < 0.05
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of KLF3-AS1 overexpression on ZBTB20 were partially 
moderated by miR-10a-3p overexpression. In the mean-
time, Fig. 7a, a’ demonstrates that KLF3-AS1 overexpres-
sion increased Aggrecan, Collagen II, and Sox-9 levels and 
decreased MMP-13 and ADAMTS4 levels, while miR-
10a-3p overexpression had the opposite effect on these pro-
teins; similarly, the effects of KLF3-AS1 overexpression on 
these proteins were partially attenuated by miR-10a-3p over-
expression. Overexpression of miR-10a-3p had the reverse 
impact of that of KLF3-AS1; the effects of KLF3-AS1 over-
expression on NP cell phenotypes were partially mitigated 
by miR-10a-3p overexpression (Fig. 7b–c’’’’).

Discussion

This study investigates the roles and mechanisms of the 
KLF3-AS1/miR-10a-3p/ZBTB20 axis in NP cell morpholo-
gies and IVDD progression, as hyper apoptosis of NP cells 
could lead to decreased cell density and ECM degradation, 
hence contributing to the development of IVDD. KLF3-AS1 
was shown to be abnormally downregulated inside IVDD 
tissues. Overexpression of KLF3-AS1 enhanced NP cell 
viability, prevented cell apoptosis, boosted ECM synthe-
sis, and lowered MMP-13 and ADAMTS4 levels. ZBTB20 
and KLF3-AS1 were co-expressed in IVDD; ZBTB20 

Fig. 4  Specific effects of ZBTB20 overexpression on NP cells. (a, a’) 
NP cells were transduced with KLF3-AS1 OE and examined for the 
protein levels of ZBTB20 by immunoblotting. (b, b’) ZBTB20 over-
expression was achieved in NP cells by transducing ZBTB20-overex-
pressing vector (ZBTB20 OE). The overexpression of ZBTB20 was 

confirmed by immunoblotting. Then, NP cells were transduced with 
ZBTB20 OE or negative control (vector) and examined for cell via-
bility by CCK-8 assay (c); cell apoptosis by flow cytometry (d–d’’); 
the protein levels of Aggrecan, Collagen II, Sox-9, MMP-13, and 
ADAMTS4 by Immunoblotting (e, e’). **P < 0.01
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overexpression had similar effects on NP cells, ECM syn-
thesis, and MMP-13 and ADAMTS4 levels as KLF3-AS1 
overexpression. miR-10a-3p may target KLF3-AS1 and 
ZBTB20 and suppress the expression of ZBTB20. Inhibi-
tion of miR-10a-3p enhanced NP cell viability, reduced 
cell death, and enhanced ECM synthesis. KLF3-AS1 over-
expression increased ZBTB20 expression, whereas miR-
10a-3p overexpression decreased ZBTB20 expression; 

miR-10a-3p overexpression reduced the effects of KLF3-
AS1 on ZBTB20. Overexpression of miR-10a-3p consist-
ently decreased the effects of KLF3-AS1 overexpression on 
NP cell survival, apoptosis, and ECM synthesis.

KLF3-AS1 is an MSC-Exos-derived lncRNA (Ensembl: 
ENST00000440181) reported in ExoCarta (http:// www. exoca rta.  
org). It has been shown that KLF3-AS1 exerts a tumor- 
suppressive effect on esophageal squamous cell carcinoma 

Fig. 5  miR-10a-3p directly targets KLF3-AS1 and ZBTB20. (a) 
Online tools and database were used to screen for miRNAs that 
might target KLF3-AS1 and ZBTB20 simultaneously; 2 miRNAs 
were obtained. (b, b’) The expression levels of miR-10a-3p and miR-
5584-3p in IVDD and normal tissues were examined using qRT-PCR. 
(c) miR-10a-3p expression was achieved in NP cells by transducing 
agomir-10a-3p or antagomir-10a-3p. The overexpression or inhibition 

of miR-10a-3p was confirmed by qRT-PCR. (d, d’) NP cells were 
transduced with agomir-10a-3p or antagomir-10a-3p and examined 
for the protein levels of ZBTB20 by Immunoblotting. (e–f) Wild- and 
mutant-type KLF3-AS1 and ZBTB20 luciferase reporter vectors were 
constructed and co-transfected in NP cells with agomir-10a-3p or 
antagomir-10a-3p; the luciferase activity was determined. *P < 0.05, 
**P < 0.01, #P < 0.05, ##P < 0.01

http://www.exocarta.org
http://www.exocarta.org
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by decreasing the inhibitory effect generated by miR-185-5p  
on KLF3 to inhibit the tumor cells’ ability to invade and  
migrate (Liu et al. 2020). Overexpression of the exosomal 
lncRNA KLF3-AS1 from MSCs lowered cell apoptosis and 
pyroptosis, as well as the extent of the myocardial infarc-
tion, and halted the progression of myocardial infarction 
in cardiomyocytes exposed to hypoxia (Mao et  al. 2019).  
Reportedly, in osteoarthritis, exosomal KLF3-AS1 could 
promote chondrocyte proliferation and inhibit apoptosis (Liu 
et al. 2018a, b), which is at odds with its role in esophageal 
squamous cell cancer. In the current investigation, abnormal 
downregulation of KLF3-AS1 was detected in IVDD tissue  
samples, indicating a potential role in the etiology of IVDD.

The acceleration of NP cell apoptosis and senescence would 
produce IVDD, leading to a number of detrimental effects, 

including cell cycle arrest, limited cell viability, increased 
pro-inflammatory activity, and decreased expression of matrix 
macromolecules (Feng et al. 2017; Xie et al. 2018). The ECM 
produced by NP cells is predominantly composed of proteo-
glycan and collagen II, which play a crucial role in the patho-
physiology of IVDD (Vergroesen et al. 2015). In IVDD, the 
breakdown of type II collagen and proteoglycan (mostly aggre-
can) is mediated by MMP3 and MMP13, which are elevated 
within degenerated NP cells (Wang et al. 2017a, b), and the 
loss of the balance between ECM deposition and degradation 
would result in the mitigation of intervertebral disc structural 
integrity, thereby promoting IVDD development (Kepler 
et al. 2013). In the current study, KLF3-AS1 overexpression 
enhanced NP cell viability, prevented cell apoptosis, elevated 
Aggrecan and Collagen II levels, and lowered MMP-13 and 

Fig. 6  Specific effects of miR-
10a-3p on NP cells. Target cells 
were transduced with antago-
mir-NC or antagomir-10a-3p 
and examined for cell viability 
by CCK-8 assay (a); cell apop-
tosis by flow cytometry (b–b’’); 
the protein levels of Aggrecan, 
Collagen II, Sox-9, MMP-13, 
and ADAMTS4 by immu-
noblotting (c, c’). *P < 0.05, 
**P < 0.01
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ADAMTS4 levels, indicating that KLF3-AS1 could improve 
degenerative alterations in NP cells.

To further explore the molecular mechanism behind 
KLF3-AS1’s role in regulating the phenotypes of NP cells, 
we discovered that ZBTB20 was co-expressed with KLF3-
AS1 and that miR-10a-3p could target both KLF3-AS1 

and ZBTB20. In other words, miR-10a-3p targets ZBTB20 
and suppresses ZBTB20 expression, but KLF3-AS1 can 
counteract miR-10a-3p-mediated suppression of ZBTB20. 
Using chondrocyte-specific Zbtb20 knockout mice, Zhou 
et al. (2015) found that the absence of chondrocyte Zbtb20 
delays endochondral ossification and postnatal growth. 

Fig. 7  Dynamic effects of KLF3-AS1 and miR-10a-3p on NP cells. 
Target cells were co-transduced with KLF-AS1 OE and agomir-10a-3p 
and examined for the protein levels of ZBTB20, Aggrecan, Collagen II, 
Sox-9, MMP-13, and ADAMTS4 by immunoblotting (a, a’); cell via-

bility by CCK-8 assay (b); cell apoptosis by flow cytometry (c–c’’’’). 
*P < 0.05, **P < 0.01, compared with the control group; #P < 0.05, 
##P < 0.01, compared with the vector + agomir-10a-3p group
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MiR-10a-3p has been linked to the effects of Kaempferol 
on BMSC osteogenic differentiation and osteoporosis 
reduction (Liu et al. 2021). In this study, ZBTB20 overex-
pression or miR-10a-3p inhibition exerted similar effects 
on NP cells as KLF3-AS1 overexpression; notably, miR-
10a-3p overexpression partially attenuated the roles of 
KLF3-AS1 overexpression in the viability and apoptosis 
of NP cells, and the protein levels of aggrecan, type II 
collagen, MMP-13, and ADAMTS4.

These data suggest that KLF3-AS1 overexpression may 
ameliorate the degenerative alterations in NP cells, presum-
ably via the miR-10-3p/ZBTB20 axis. Regarding the limita-
tions of this investigation, no animal models were utilized to 
examine the in vivo effects of the KLF3-AS1/miR-10a-3p/
ZBTB20 axis. Prior to the clinical application of the axis, 
animal testing would be required.
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