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Abstract
Isosteviol has been indicated as a cardiomyocyte protector. However, the underlying mechanism remains unclear. Thus, we 
sought to confirm the protective effect of isosteviol after myocardial infarction in a model of permanent coronary artery 
occlusion and investigate the potential proangiogenic activity in vitro and in vivo. A 4-week permanent coronary artery 
occlusion rat model was generated, and the protective effect of isosteviol was evaluated by echocardiographic imaging and 
hemodynamics assays. The coronary capillary density was tested by immunochemistry and micro-computed tomography 
(μCT) imaging. The effect of isosteviol on endothelial cells was determined in human umbilical vein endothelial cells 
(HUVECs) in vitro and Tg (kdrl: EGFP) zebrafish in vivo. We also examined the expression of related transcription factors 
by real-time polymerase chain reaction (RT-qPCR). Isosteviol increased ejection fraction (EF), fractional shortening (FS), 
cardiac systolic index (CI), maximum rate of increase of left ventricular pressure (Max dp/dt), and left ventricular systolic 
pressure (LVSP) by 32%, 40%, 25%, 26%, and 10%, respectively, in permanent coronary artery occlusion rats. Interestingly, 
it also promoted coronary capillary density by 2.5-fold. In addition, isosteviol promoted the proliferation and branching of 
HUVECs in vitro. It also rescued intersegmental vessel (ISV) development and improved endothelial cell proliferation by 
approximately fivefold (4–6) in zebrafish embryos in vivo. Isosteviol also upregulated the expression of hypoxia inducible 
factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in zebrafish by fourfold and 3.5-fold, respectively. 
Our findings suggest that isosteviol is a proangiogenic agent and that this activity is related to its protective effects against 
myocardial ischemia.
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Introduction

Myocardial ischemia (MI) is the leading cause of death and 
disability in the world (Liu et al. 2009; Hashimoto et al. 2018). 
Increasing angiogenesis could enrich coronary branching and 
restore the blood supply, which could benefit MI (Pagliaro 
et al. 2020), especially during cardiac remodeling after myo-
cardial infarction (Goodwill et al. 2007). Hence, promoting 
angiogenesis may be a potential target for myocardial ischemia 
treatment. The research on proangiogenesis mainly focuses 
on either growth factors (Fu and Ou 2020) or gene therapy 
(Yuan et al. 2018). Vascular endothelial growth factor (VEGF) 
and fibroblast growth factor (FGF) as proangiogenic growth 
factors have been used in several clinical trials and achieved 
some good results in small-scale experiments (Lederman 
et al. 2002; Lazarous et al. 1996), while they also have obvi-
ous shortcomings, such as poor stability, short half-life, and 
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considerable side effects (Timar et al. 2001). Gene therapy 
mainly involves recombination of various growth factor genes 
into vectors and delivery them into patients to activate down-
stream angiogenesis-promoting signaling pathways and the 
therapeutic effects are long-lasting (Albrecht-Schgoer et al. 
2014). However, the introduced genes may integrate into 
the genome at unexpected sites, which may activate proto-
oncogenes. The viral vector may induce inflammation or trig-
ger an immune response (Eibel et al. 2017). Furthermore, no 
small molecule medicine targeting proangiogenesis has been 
approved. Thus, discovering novel small molecule medicines 
targeting angiogenesis is still needed.

Isosteviol, a worldwide food sweeter, is a potential drug 
candidate with many biological activities (Fan et al. 2016). 
In recent years, many studies have demonstrated that isoste-
viol has obvious therapeutic effects on heart and cerebro-
vascular diseases, including myocardial ischemia (Ke et al. 
2021; Sun et al. 2018), diabetic heart disease (Tang et al. 
2018), stroke (Yang et al. 2018), and myocardial hypertro-
phy (Liu et al. 2020). A recent study suggested that isoste-
viol protects heart against myocardial ischemia and reperfu-
sion injury by remodeling cardiomyocyte metabolism (Mei 
et al. 2020). However, the underlying mechanism is still 
unclear. In this study, we discovered that coronary capillary 
density significantly increased after treatment with isosteviol 
in permanent coronary artery occlusion rats. We hypoth-
esize that isosteviol may act as an angiogenesis activator 
in myocardial ischemia. Therefore, we further investigated 
the proangiogenic activity and the underlying mechanism in 
HUVECs and zebrafish.

Materials and methods

Echocardiography

Male Wistar rats (8–10 weeks of age) were purchased from 
Guangdong Medical Laboratory Animal Center and ran-
domly grouped (n = 8–10). The permanent coronary artery 
occlusion model was generated by ligation operation with 
10% chloral hydrate (0.3 ml/100 g) anesthetized. After liga-
tion, 4 mg/kg isosteviol was administered twice a day by 
intraperitoneal injection, continuously for 4 weeks. In the 
sham and model group, the same volume of saline alone 
was injected as solvent control. Four weeks after treatment, 
transthoracic echocardiographic images were obtained by 
the VEVO 2100 high-resolution small animal ultrasound 
imaging system with a 30-MHz probe ms400 as previously 
described (Liu et al. 2014). Briefly, left ventricular end-
diastolic posterior wall thickness (LVPW;d), left ventricu-
lar end-systolic posterior wall thickness (LVPW;s), left 
ventricular end-diastolic internal dimension (LVID;d) and 
left ventricular end-systolic internal dimension (LVID;s) 

were obtained by M-mode. Left ventricle volume diastole 
(LV Vol;d), left ventricle volume systole (LV Vol;s), EF, 
and FS were calculated automatically by the VEVO 2100 
system.

Hemodynamics assays

Cardiac function was measured in rats anesthetized with 
10% chloral hydrate (0.3 ml/100 g) as described before 
(Tang et al. 2018). Briefly, rats were sedated and mechani-
cally ventilated; the hemodynamic function was recorded by 
inserting a microtip catheter equipped with Powerlab into 
left ventricle (LV) via the right carotid artery. LV systolic 
functions were evaluated by assessment CI, Max dp/dt, and 
LVSP in each study group.

Immunohistochemistry

Tissues were obtained from the hearts of permanent coro-
nary artery occlusion rats and were paraformaldehyde-fixed, 
paraffin-embedded, and stained by immunohistochemistry 
for platelet endothelial cell adhesion molecule-1 (CD31, 
dilution 1:200) at 4 °C overnight and then incubated with 
biotin-conjugated goat anti-rabbit IgG (1:600) for 1 h at RT 
and then washed and stained with DAB kit for 5 min. At 
last, counterstaining was performed with hematoxylin and 
examined by light microscopy.

Micro‑computed tomography imaging of cardiac 
vessels

The permanent coronary artery occlusion model was gener-
ated, and 4 mg/kg isosteviol was administered twice a day 
by intraperitoneal injection for 6 weeks. After treatment, 
μCT imaging was performed as previously described (Kivela 
et al. 2014). Briefly, the hearts were perfused with heparin 
(100 IU/kg) in 0.9% saline followed by adenosine (1 mg/
ml) then perfusion-fixed with 4% paraformaldehyde, and the 
coronary arterial was filled with a contrast agent consisting 
of 20% bismuth oxychloride in 5% gelatin. The hearts were 
placed on ice to solidify the contrast medium for 30 min and 
imaged with a Small Animal CT Imaging System.

Cell viability

HUVECs were seeded at a density of 5 × 103 cells/well 
in a 96-well tissue culture dish and incubated at 37 °C in 
humidified conditions (5% CO2 and 95% air) with various 
concentrations of isosteviol; then, a CCK-8 assay was used 
to determine the cell viability following the manufacturer’s 
instructions and cells were visualized at 450 nm with an 
Enspire-2300 Multimode Reader.
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Tube formation assay

The HUVECs were seeded at a density of 2 — × 104 cells/
well on a 24-well culture dish. Each well was supplemented 
with 200 µl medium containing 10% serum and different 
concentrations of isosteviol. The plate was placed at 37 °C 
for 4 h and measured by microscope at 5 × magnification. 
Three random fields of vision were chosen in each well, and 
the images were captured using an AxioCam camera. These 
images were analyzed using Adobe Photoshop CS6 by creat-
ing a new transparent layer to cover the original layer in each 
image. In this new layer, the branches were traced to reveal 
outlines on the original cell images. The pixel value of the 
transparent layer was used to define the length of branches.

Zebrafish angiogenesis inhibition model

Zebrafish angiogenesis inhibition model was constructed as 
described before (Zhao et al. 2016). Briefly, 20 healthy Tg 
(kdrl: EGFP) zebrafish (http://​zfin.​org/​ZDB-​FISH-​150901-​
14755) (Beis et al. 2005) embryos were selected and placed into 
a 24-well culture dish at 28.5 °C. Different concentrations of 

isosteviol were added together with 450 nmol/L VEGFR tyrosine 
kinase inhibitor II (VRI) at 24-h post fertilization (hpf) and then 
added again without VRI at 30 hpf. The embryos were observed 
under an Axioshop 2 Plus microscope at 72 hpf, and the images 
were captured using an AxioCam camera. These images were 
analyzed using Adobe Photoshop CS6. The pixel value of the 
transparent layer was used to define the length of ISV.

Fluorescence‑activated cell sorting (FACS)

Tg (kdrl: EGFP) zebrafish embryos were used to establish 
this assay. At 72 hpf, all the embryos were homogenized and 
a mixture solution contains trypsin–EDTA and collagenase 
was added to make the embryos completely dissolved. Then, 
FBS was added to stop trypsin digestion, the cell suspensions 
were centrifuged and gently mixed, and this assay was deter-
mined by flow cytometry. In this study, wild-type zebrafish 
embryos were used as unstained control. P2 was gated based 
on the population in the unstained control (0.3%, close to 0%). 
The gating for model and isosteviol groups was determined by 
referring to the unstained control (supplemental Fig. 1). The 
flow cytometric analysis was performed using FlowJo 7.6.1.

Fig. 1   Isosteviol improves 
systolic function in myocardial 
ischemia rats. The permanent 
coronary artery occlusion 
model was generated by ligation 
operation, and after 4 weeks 
of treatment, transthoracic 
echocardiographic images and 
hemodynamic function were 
recorded by the VEVO 2100 
high-resolution small animal 
ultrasound imaging system and 
Powerlab respectively. (a–a″) 
Echocardiography of rat heart 
demonstrated that isosteviol 
rescued systolic function. (b) 
Ejection fraction (EF). (c) 
Fractional shortening (FS). (d) 
Cardiac systolic index (CI). 
(e) Maximum rate of increase 
of left ventricular pressure 
(Max dp/dt). (f) Left ventricu-
lar systolic pressure (LVSP). 
**P < 0.01, vs model group, 
#P < 0.05, ##P < 0.05 vs sham 
group, n = 8–10 per group
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RNA isolation and real‑time PCR analysis

HUVECs were seeded at a density of 2 × 104 cells/well in a 
24-well tissue culture dish and incubated at 37 °C in humidified 
conditions (5% CO2 and 95% air) with various concentrations 
of isosteviol for 24 h. Trizol reagent was used to isolating total 
RNA from HUVECs cells followed by cDNA synthesis using the 
M-MLV 1st Strand Kit from Invitrogen. Quantitative real-time 
PCR was performed with the SYBR Green Mix. The mRNA 
levels of the relevant markers of angiogenesis, such as HIF-1α, 
VEGFA, and Notch homolog 1, translocation-associated (Dros-
ophila) (Notch1) were compared against the level of β-actin with 
2−△△Ct cycle threshold method. The sequences of the primer 
used are listed in Table 1.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 5 
(GraphPad Software). Statistical analysis of multiply groups 
was performed with one-way ANOVA, followed by Tukey 
or Bonferroni post hoc tests. A P value of less than 0.05 
was considered statistically significant. Measurements are 
expressed as means ± standard errors of the mean (SEM).

Results

Isosteviol improves systolic function in myocardial 
ischemia rats

To evaluate the potential cardioprotective activity of isoste-
viol in myocardial ischemia rats, we assessed systolic 
function by echocardiography and hemodynamics assays. 
Echocardiography of rat heart demonstrated that isosteviol 
rescued systolic function (Fig. 1(a–a″)). There was no signif-
icant change of LVPW;d, LVPW;s, and LVID;d after MI or 
isosteviol treatment (supplemental Fig. 2a–c). The LVID;s 
increased by 48% (#P < 0.05) in the model group compared 
with the sham group, and isosteviol decreased it by 15% 
compared with the model group, but had no significant dif-
ference (supplemental Fig. 2d). The ejection fraction and 
fractional shortening in the model group were 65% and 38%, 

respectively. Isosteviol rescued EF and FS to 86% (*P < 0.05) 
(Fig. 1(b)) and 53% (*P < 0.05) respectively (Fig. 1(c)).

The hemodynamic function was recorded by inserting a 
micro tip catheter equipped with Powerlab into left ventricle 
(LV) via the right carotid artery. As shown in Fig. 1(d–f), 
the CI, Max dp/dt, and LVSP in the model group were 182 
1/s, 9305 mmHg/s, and 93 mmHg,respectively, and isoste-
viol rescued them by 25% (**P < 0.01), 26% (**P < 0.01), 
and 10% (**P < 0.01) respectively. Therefore, a significant 
correlation was found between isosteviol and cardioprotec-
tive activity.

Isosteviol improves coronary angiogenesis 
in myocardial ischemia rats

Interestingly, we found that the coronary capillary density 
increased after treatment with isosteviol in myocardial 
ischemia rats. CD31 was stained to determine the tube num-
ber by immunohistochemistry. As shown in Fig. 2a–c, the 
arrow indicates the blood vessels stained by immunohis-
tochemistry. Isosteviol increased the average tube number 
by 2.5-fold compared with the model group (***P < 0.001; 
Fig. 2d). To determine the effects of isosteviol on the entire 
coronary arterial, we filled coronary arteries with a contrast 
agent and analyzed them with µCT. The results indicated 
that isosteviol significantly increased coronary angiogenesis 
compared with the model group (Fig. 2e–h), which is con-
sistent with the immunohistochemistry results. However, RQ 
was similar in all groups (supplemental Fig. 3a). Isosteviol 
moderately rescued EE compared with model group but had 
no significant difference (supplemental Fig. 3b).

Isosteviol enhances angiogenesis in HUVECs in vitro

The process of angiogenesis is complicated, mainly including 
proliferation and tube formation. Thus, we first used HUVECs 
to examine the effect of isosteviol on proliferation by the 
CCK8 assay. Isosteviol at 0.3125 μmol/L, 1.25 μmol/L, and 
5 μmol/L increased the cell viability by 25.6% (*P < 0.05), 
26.1% (*P < 0.05), and 28.8% (*P < 0.05), respectively, com-
pared with the blank group. No significant increase in the cell 

Table 1   List of primers used 
for real-time polymerase chain 
reaction

Gene (ID) Primer 5′-3′ Product (bp)

β-actin (NM_001101.5) Forward: CAT​TAA​GGA​GAA​GCT​GTG​CT 208
Reverse: GTT​GAA​GGT​AGT​TTC​GTG​GA

HIF-1α (NM_181054.3) Forward: GAA​AGC​GCA​AGT​CCT​CAA​AG 167
Reverse: TGG​GTA​GGA​GAT​GGA​GAT​GC

VEGFA (NM_001025366.3) Forward: CTG​CTG​TCT​TGG​GTG​CAT​TG 142
Reverse: AGC​TGC​GCT​GAT​AGA​CAT​CC

Notch1 (NM_017617.5) Forward: CAA​CAT​CCA​GGA​CAA​CAT​GG 229
Reverse: GGA​CTT​GCC​CAG​GTC​ATC​TA
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viability was observed in the group treated with 20 μmol/L 
isosteviol (Fig. 3e). Thus, isosteviol improves the proliferation 
of HUVECs.

We further tested the tube formation of HUVECs after 
treatment with different concentrations of isosteviol. As 
shown in Fig. 3a–d, the arrows point to the newly formed 
branches. The branch length in 1.25 μmol/L and 5 μmol/L 
isosteviol groups increased by 80% (***P < 0.001) and 93% 
(***P < 0.001), respectively, compared with the blank control, 
but no significant difference was observed in the 20 μmol/L 
isosteviol group (Fig. 3f). As shown in Fig. 3g, Isosteviol at 
1.25 μmol/L, 5 μmol/L, and 20 μmol/L increased the branch 
number by 34% (***P < 0.001), 38% (***P < 0.001), and 46% 
(***P < 0.001), respectively, compared with the blank control. 
Thus, isosteviol enhances the branches of HUVECs. Overall, 
no matter the tube length or tube number, isosteviol was con-
firmed to improve angiogenesis in HUVECs in vitro.

Isosteviol promotes angiogenesis in zebrafish 
in vivo

After experiments with HUVECs in vitro, the Tg (kdrl: 
EGFP) zebrafish was used as an in vivo model to evalu-
ate the angiogenesis effects of isosteviol. As shown in 
Fig. 4(a), we first treated embryos with VRI and isosteviol 
for 6 h (24 hpf to 30 hpf) to prepare zebrafish embryos 

that had sprouting of intersegmental blood vessels (ISV) 
pre-inhibited. Then VRI was washed away, and isosteviol 
(0 µmol/L, 3.125 µmol/L, 12.5 µmol/L, 50 µmol/L) was 
added. As shown in Fig. 4(b–b″), the model group induced 
a loss of almost all their ISV (20/20) and a majority of the 
head vessels (20/20) at 72 hpf. As shown in Fig. 4(c–e″), 
we observed that ISV sprouts extended from the dorsal 
aorta and head vessels were recovered after treatment with 
different concentrations of isosteviol. These results indi-
cated that isosteviol promotes angiogenesis. We defined 
embryos with more than three ISV sprouts as recovered 
embryos, and the recovery rate (recovered embryos count/
total embryos) was measured. Isosteviol at 3.125 μmol/L, 
12.5 μmol/L, and 50 μmol/L increased the recovery rate 
by 2.4-fold, 2.4-fold, and 3.1-fold, respectively, compared 
with the model group (Fig. 4(f)). The tube length in the 
3.125 μmol/L, 12.5 μmol/L, and 50 μmol/L isosteviol group 
increased by fourfold (*P < 0.05), sixfold (***P < 0.001), 
and fivefold (**P < 0.01), respectively, compared with the 
model group (Fig. 4(g)). Isosteviol also increased the tube 
number by twofold (*P < 0.05), fourfold (***P < 0.001), 
and threefold (**P < 0.01), respectively, compared with 
the model group (Fig. 4(h)). These results indicate that 
isosteviol improved angiogenesis in zebrafish embryos no 
matter in tube length or tube number, consistent with the 
data in vitro.

Fig. 2   Isosteviol improves coronary angiogenesis in myocardial 
ischemia rats. a–c CD31 was stained to determine the tube number 
by immunohistochemistry; the arrows point to the coronary capil-
lary; the bar is 20 × magnification. d Average tube number per sec-

tion of different group. Isosteviol increased capillary significantly. 
***P < 0.001, vs model group. n = 6 per group. e–h μCT was used to 
further determine the effect of isosteviol on arterial. The magnifica-
tion image is 40 × . n = 4–5 per group
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Isosteviol increases vascular endothelial cell 
proliferation in zebrafish

Angiogenesis is a complicated process, mainly including 
proliferation and tube formation. Since we demonstrated 
that isosteviol promotes angiogenesis in zebrafish at 72 
hpf, we investigated the process involved in isosteviol 
mediated angiogenesis. Endothelial cell count is one of 
the major ways to quantify proliferation. Thus, we per-
formed flow cytometry at 72 hpf to measure endothe-
lial cell count. Tg (kdrl: EGFP) zebrafish embryos were 
used to conduct this assay, and the wild-type zebrafish 
embryos were used as unstained control. In Fig. 5(a–a″), 
the red points represent the cells and the points in box 
P2 are fluorescent cells. Isosteviol at 12.5 µmol/L and 
50 µmol/L increased the fluorescent percentage to 10% 
and 9%, respectively, compared with the model group 
(3.9%). Isosteviol at 12.5 µmol/L and 50 µmol/L increased 
fluorescent intensity by 62% and 16%, respectively, com-
pared with the model group (Fig. 5(b)). In Fig. 5(c), the 
fluorescent intensity of overlay histograms is shown. The 

model group (red line) on the left most had the lowest flu-
orescent intensity, while the 12.5 µmol/L isosteviol group 
(blue line) on the right most had the highest. Thus, these 
results demonstrated that isosteviol improves endothelial 
cell proliferation.

Isosteviol upregulates the expression of HIF‑1α, 
VEGFA, and Notch1

To study the potential molecular pathway of the proangio-
genic activity of isosteviol, we examined the expression 
of HIF-1α, VEGFA, and Notch1 factors for angiogenesis 
using RT-qPCR. HIF-1α and VEGFA in the group after 
treatment with 5 µmol/L isosteviol increased by four-
fold (**P < 0.01) and threefold (*P < 0.05), respectively, 
compared with the blank control; however, there is no 
significant increase in HIF-1α and VEGFA observed in 
1.25 µmol/L and 20 µmol/L isosteviol group (Fig. 6(a–b)). 
Notch1 had a 1.5-fold increase in the 5 µmol/L isosteviol 
group compared with the blank group but had no signifi-
cant difference (Fig. 6(c)). Isosteviol improves cardiac 

Fig. 3   Isosteviol enhances angiogenesis in HUVECs in  vitro. Three 
random fields of vision were chosen in each well, and the images 
were captured using an AxioCam camera. These images were ana-
lyzed using Adobe Photoshop CS6 by creating a new transparent 
layer to cover the original layer in each image. In the new layer, the 
branches were traced to reveal outlines on the original cell images. 
The pixel value of the transparent layer was used to define the length 
of branches. a–d Differentiation of HUVECs in three-dimensional 

Matrigel culture with isosteviol (0  µmol/L, 1.25  µmol/L, 5  µmol/L, 
20  µmol/L); the bar is 200  µm. The arrows point to the branch-
ing sprouts. e Effects of isosteviol on the proliferation of HUVECs. 
*P < 0.05, vs blank group, n = 4 per group. f Increased branch length 
in isosteviol-treated HUVECs. ***P < 0.001, vs blank group, n = 18 
per group. Three individual experiments repeat. g Increased branch 
numbers in isosteviol-treated HUVECs. ***P < 0.001, vs blank group, 
n = 18 per group. Three individual experiments were conducted
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function and promotes angiogenesis by improving the 
vascular endothelial cell proliferation and tube formation 

through upregulation of HIF-1α and VEGFA expression 
but not Notch1 (Fig. 6(d–d″)).

Fig. 4   Isosteviol promotes angiogenesis in zebrafish in  vivo. 
Zebrafish angiogenesis inhibition model was constructed, and the 
embryos were observed under an Axioshop 2 Plus microscope at 
72 hpf, and the images were captured using an AxioCam camera. 
These images were analyzed using Adobe Photoshop CS6. The pixel 
value of the transparent layer was used to define the length of ISV. 
(a) Experiment procedure of the zebrafish angiogenesis evaluation 
of isosteviol. (b–e) Different groups of zebrafish embryos at 72 hpf. 
Model (b–b″), 3.125  µmol/L isosteviol (c–c″), 12.5  µmol/L isoste-

viol (d–d″), and 50 µmol/L isosteviol (e–e″). The bar is 500 µm. The 
arrows point to sprouts of the intersegmental blood vessels (ISV). 
The magnification image is 10 × . n = 20 per group. Three individual 
experiments were conducted. (f) More than three ISV sprouts as 
recovered embryos, and the recovery rate was measured. The graph 
shows ISV-recovered rate. n = 20 per group. (g) Average branch 
length in different groups. (h) Average branch numbers in different 
groups. ***P < 0.001, **P < 0.01, *P < 0.05, vs model group, n = 20 per 
group
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Discussion

Myocardial ischemia is a severe threat to human health and 
life [1]. Even though there are various drugs targets (De 
Vries et al. 2018), most of them have unavoidable limita-
tions. For example, β-receptor blocker reduces myocardial 
oxygen consumption. Meanwhile, it may inhibit cardiac 
function (Garcia-Prieto et al. 2017). Nitrates may produce 
drug resistance in the long term (Muenzel and Daiber 2018). 
Thus, the development of novel drugs with new targets for 
myocardial ischemia is still in need.

Isosteviol is a cardiomyocyte protector (Ke et al. 2021; 
Sun et al. 2018; Liu et al. 2020; Mei et al. 2020; Chen et al. 
2019), but the underlying mechanism is still unclear. No 
reports have demonstrated if isosteviol or its analogues may 
directly interact with the vascular endothelial cells. Our 
previous studies indicated that isosteviol and its analogues 
might increase mitochondrial function and prevent reactive 
oxygen species damage in cardiomyocytes (Liu et al. 2020; 
Zhang et al. 2019); in this study, we report that isosteviol 
improved cardiac function in permanent coronary artery 

occlusion by improving the vascular endothelial cell prolif-
eration and tube formation.

Furthermore, a higher density of coronary capillary was 
observed after isosteviol treatment. Thus, we hypothesize 
that isosteviol may directly promote angiogenesis based 
on this result, and that the newly formed capillaries may 
support sufficient oxygen and nutrition and compensate for 
the energy consumed by increasing mitochondrial func-
tion. However, there are obvious differences between rat 
and human heart coronary arteries. Thus, it is necessary to 
investigate the effect of isosteviol on promoting coronary 
angiogenesis in pigs and other mammals.

Angiogenesis, a complicated process of forming blood 
vessels from existing vessels (Risau et al. 1997), plays 
a critical role in various biological processes such as 
embryonic development, tissue repair, and wound healing 
(Nowak-Sliwinska et al. 2018) Currently, proangiogenic 
therapy trials have focused on the use of growth factors 
or gene therapy. Toldo et al. (2016) demonstrated that 
the recombinant human AAT-Fc reduced the acute myo-
cardial inflammatory injury after ischemia–reperfusion 

Fig. 5   Isosteviol increases vascular endothelial cell proliferation in 
zebrafish. Tg (kdrl: EGFP) zebrafish embryos were used to conduct 
this assay, wild type zebrafish embryos were used as unstained con-
trol. P2 was gated based on the population in the unstained control. 
The flow cytometric analysis was performed using FlowJo 7.6.1. 
(a–a″) The red points represent the cells, and the points in box P2 
are fluorescent cells in different group. The scatter plots show the 
percentage of fluorescent intensity in the model (450  nmol/L VRI) 

and isosteviol (12.5 µmol/L and 50 µmol/L) groups. Three individual 
experiments repeat. (b) The bar graph displays the average fluores-
cent intensity after treatment in different groups. (c) The fluores-
cent intensity of overlay histograms is shown. The model group (red 
line) on the leftmost had the lowest fluorescent intensity, while the 
12.5  µmol/L isosteviol group (blue line) on the rightmost had the 
highest
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in the mouse. Yang et al. (2015) found that the modified 
VEGF decreased scar size, enhanced angiogenesis, and 
improved cardiac function. Therefore, angiogenesis could 
be a potential therapy for cardiovascular diseases includ-
ing myocardial ischemia (Mitsos et al. 2012), and small 
molecules with different functions that enhance angio-
genesis have become another direction for therapeutic 
strategy (Huang et al. 2012). Considering the new finding 
that isosteviol promotes coronary capillary density, we 
hypothesize that isosteviol may directly improve angio-
genesis. Thus, we further evaluated this activity in vitro 
and in vivo.

Our experimental results indicated that isosteviol mark-
edly improved the proliferation and branch formation of 
HUVECs in vitro. Isosteviol enhanced endothelial cell pro-
liferation. Likewise, isosteviol treatment caused a notice-
able increase in the number of branches. Furthermore, 
isosteviol treatment in zebrafish embryos also induced an 
extraordinary proangiogenic phenotype, in which longer and 
more vessels were formed. These data clearly demonstrated 
that the isosteviol promotes endothelial cell proliferation, 
sprouting, and branching in HUVECs in vitro and zebrafish 
in vivo. In addition, the endothelial cell counts of zebrafish 
were determined by flow cytometry. The results suggested 

that isosteviol increased endothelial cell proliferation, fur-
ther examining the angiogenic activity of isosteviol.

However, the molecular mechanism is still unclear. Our 
experimental results suggested that isosteviol may promote 
the expression of HIF-1α and VEGFA. As VEGFA is a 
master regulator of angiogenesis (Milincovici et al. 2018), 
the upregulation of VEGFA may be the core factor respon-
sible for this activity. Interestingly, HIF-1α, a well-known 
hypoxia-sensitive pathway regulator that plays a vital role 
in proangiogenesis (Serocki et al. 2018), was significantly 
increased. In addition, HIF-1α is an antioxidant on ischemia 
injure via targeting mitochondria (Li et al. 2019; Jiang et al. 
2019). Thus, the up-regulation of HIF-1α may be a con-
siderable mechanism for the anti-oxygen stress activity of 
isosteviol.

Conclusion

In conclusion, our study, for the first time, demonstrated 
that isosteviol promotes angiogenesis directly and increases 
capillary density in myocardial ischemia rats. Isosteviol also 
ameliorates cardiac function by improving vascular endothe-
lial cell proliferation and tube formation. The angiogenesis 

Fig. 6   Isosteviol increases the expression of HIF-1α, VEGFA, and 
Notch1. The mRNA levels of HIF-1α (a), VEGFA (b), and Notch1 
(c) in HUVECs cells were conducted by RT-qPCR. The values shown 
in this graph represent means ± S.D. from three independent experi-

ments. *P < 0.05, **P < 0.01 vs blank group. (d–d″) Mechanistic illus-
tration of isosteviol improves cardiac function and promotes angio-
genesis by improving vascular endothelial cell proliferation and tube 
formation
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activity of isosteviol may be correlated with VEGFA and 
HIF-1α signaling.
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