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Abstract
The sperm-derived oocyte activating factor, phospholipase C zeta (PLC ζ), is the only PLC isoform reported in cattle. The 
objectives were to (1) localize PLC ζ in fresh and capacitated bovine sperm and (2) investigate the activation of PLC ζ dur-
ing bull sperm capacitation and contributions of PLC activity to this process. We confirmed interaction of testis-specific 
isoform of Na/K-ATPase (ATP1A4) with PLC ζ (immunolocalization and immunoprecipitation) and tyrosine phosphorylation 
(immunoprecipitation) of PLC ζ (a post-translational protein modification commonly involved in activation of PLC in somatic 
cells) during capacitation. Furthermore, incubation of sperm under capacitating conditions upregulated PLC-mediated 
hyperactivated motility, tyrosine phosphoprotein content, acrosome reaction, and F-actin formation (flow cytometry), imply-
ing that PLC activity is enhanced during capacitation and contributing to these capacitation processes. In conclusion, we 
inferred that PLC ζ is activated during capacitation by tyrosine phosphorylation through a mechanism involving ATP1A4, 
contributing to capacitation-associated biochemical events.
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Introduction

Phospholipase C zeta (PLC ζ) is a sperm-specific phosphoi-
nositide-phospholipase C (PI-PLC) protein, associated with 
male factor infertility (Saunders et al. 2002) and identified in 
several mammals (rat: Ito et al. 2008; mouse: Saunders et al. 
2002; pig: Yoneda et al. 2006; cow: Ross et al. 2008; mon-
keys and humans: Cox et al. 2002). Both PLC ζ (Saunders 
et al. 2002) and post-acrosomal WW-domain binding protein 
(PAWP; Wu et al. 2007) are regarded as the sperm oocyte 
activation factors. Microinjection of the PAWP cRNA or 
recombinant PAWP into porcine, bovine, Xenopus, murine, 
and human oocytes caused calcium oscillations similar to 
those in ICSI, plus oocyte activation. Furthermore, calcium 
oscillations in human and murine oocytes were prevented 
by a competitive inhibitor for PAWP-derived PPGY peptide 

(Aarabi et al. 2014; Wu et al. 2007). However, when murine 
oocytes were microinjected with recombinant PAWP and 
PLC ζ, only the latter caused calcium oscillations similar 
to those during mammalian fertilization (Nomikos et al. 
2014). Moreover, several laboratories have validated the 
role of PLC ζ as a sperm oocyte activation factor (SOAF) in 
a repeatable and reliable manner and confirmed its involve-
ment in oocyte activation by initiating calcium oscillations 
(Heytens et al. 2009; Kashir et al. 2012; Knott et al. 2005; 
Miyazaki et al. 1993; Saunders et al. 2002; Yoon et al. 2008; 
Swann 1990; Swann and Yu 2008). Upon sperm entry into 
the oocyte, PLC ζ in the perinuclear theca (PT) region of 
sperm (Escoffier et al. 2015; Fujimoto et al. 2004) attaches 
to small vesicles inside the oocyte and catalyses hydroly-
sis of  PIP2 to form DAG and  IP3; the latter binds to  IP3 
receptors in the intracellular calcium reserves (endoplasmic 
reticulum), releasing calcium, leading to calcium oscilla-
tion and oocyte activation. There are species-specific rela-
tive changes in frequency and duration of calcium release, 
ranging from every 2 min to every hour (Fissore et al. 1992; 
Kline 1991; Nomikos et al. 2011). Furthermore, PLC ζ is 
immunolocalized to different regions of sperm in various 
mammals (Bedford-Guaus et al. 2011; Fujimoto et al. 2004; 
Kaewmala et al. 2012; Kashir et al. 2013; Mejía-Flores et al. 
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2017; Yoneda et al. 2006; Yoon et al. 2008). Furthermore, 
location of PLC ζ changes from acrosomal region to post-
acrosomal region in human and mouse sperm during capaci-
tation (Grasa et al. 2008; Young et al. 2009).

Capacitation is a maturation process undergone by ejacu-
lated sperm in the female reproductive tract for a species-
dependent interval in order to achieve fertilizing ability 
(Yanagimachi 1994). Various capacitation-associated physi-
ological, biochemical, and molecular changes are involved 
in regulation of sperm function. This involves efflux of cho-
lesterol (Salicioni et al. 2007), increases in intracellular pH 
and calcium (Martínez-López et al. 2009), membrane hyper-
polarisation (Martínez-López et al. 2009), phosphorylation 
modification of proteins at serine (Grasa et al. 2009), threo-
nine (Ramio‐Lluch et al. 2019) and tyrosine residues (Alvau 
et al. 2016; Jin and Yang 2017; Yanagimachi 1994; Zhao and 
Kan 2019), remodelling of actin, and hyperactivated motility 
(Salicioni et al. 2007). Various sperm proteins are engaged 
in regulation of specific sperm functions during capacitation, 
although they are not well characterized. Despite several 
studies on PLC ζ, the mechanism by which it is activated or 
kept inactive in sperm is unknown. A compromised release 
or activation of sperm oocyte factor is the putative cause of 
insufficiency in the calcium oscillation that precedes oocyte 
activation; a lack of oocyte activation causes fertilization 
failure (Malcuit et al. 2006) that contributes to relatively 
low efficiency of intracytoplasmic sperm injection (ICSI) in 
cattle compared to other species (Agulia et al. 2017; Hara 
et al. 2011; Morozumi and Yanagimachi 2005; Salamone 
et al. 2017). Perhaps PLC ζ undergoes protein interactions 
(Kurokawa et al. 2005) and activation during capacitation. 
Regardless, identifying capacitation conditions that promote 
PLC ζ activation could have applications for improving the 
efficiency of assisted reproductive technologies.

A sperm-specific protein Na/K-ATPase α4 (ATP1A4), 
involved in regulation of sperm motility (Jimenez et al. 2010, 
2012) and capacitation (Newton et al. 2010; Thundathil et al. 
2006) was co-localized with PLC ζ in the post-acrosomal 
region of capacitated bovine sperm (Thundathil et al. 2018). 
Furthermore, in somatic cells, the ATP1A1 subunit forms a 
signalling complex with PLC-γ1 and its effector IP3 recep-
tors to form a scaffold (Yuan et al. 2005). In opossum kidney 
cells, stimulation of D1-like receptors coupled to Gsα pro-
teins inhibited Na/K-ATPase activity, sequentially involving 
adenylyl cyclase-protein kinase A (AC-PKA) system and the 
PLC-PKA system (Gomes and Soares-da-Silva 2019). In 
addition, Ang-(1–7) [angiotensin-(1–7), a heptapeptide in 
heart and kidney with a role in maintaining renal homeosta-
sis (Padda et al. 2015) induced inhibition of Na/K-ATPase 
activity that involved participation in a PI-PLC β pathway in 
MDCK cells (Lara et al. 2005). Moreover, PLC is activated 
by tyrosine phosphorylation in somatic cells (Kim et al. 
1991; Sekiya et al. 2004; Tomes et al. 1996; Yu et al. 1998). 

Based on these reports, perhaps sperm-specific ATP1A4 
activates PLC ζ by tyrosine phosphorylation. Furthermore, 
the activity of PIP2-PLC was higher in capacitated versus 
uncapacitated mouse sperm (Tomes et al. 1996). Therefore, 
we hypothesized that PLC ζ is activated by tyrosine phos-
phorylation during capacitation, and PLC activity contrib-
utes to bovine sperm capacitation.

Materials and methods

Preparation of reagents

Ouabain (100 μM) and heparin (1 mg/ml) stock solutions 
were prepared in sp-TALP (sperm Tyrode’s albumin lac-
tate pyruvate) medium and stored at 4 °C. On the day of 
use, working solutions of ouabain (50 nM) and heparin 
(10 μg/ml) were prepared in final sp-TALP medium (1 mM 
pyruvate, 25 mM NaHCO3 and 2 mM Ca2 +), as described 
(Rajamanickam et al. 2017a). Stock solution of U73122 
inhibitor (1.9 mM) was prepared by diluting it in dimethyl 
sulfoxide (DMSO) and storing it at −20 °C. Working solu-
tion of U73122 inhibitor (10 µM; Sigma-Aldrich, Oakville, 
ON, Canada) was prepared in final sp-TALP medium on the 
day of use.

Generation of bovine anti‑PLC ζ antiserum

A bovine anti-PLC ζ antiserum against N-terminal amino 
acid sequences of PLC zeta 1 Bos taurus was developed 
in collaboration with Thermo Fisher Scientific, Antibody 
Services (Rockford, IL, USA). Bovine PLC zeta sequence 
(accession no. AAI14837; Fig. 1a) was used to identify a 
suitable N-terminal peptide sequence (RDDFKGGKITLE-
KALKLLEK) for peptide synthesis and immunization of 
rabbits. The antiserum from the terminal bleed was affinity-
purified and both affinity-purified antiserum and rabbit pre-
immune serum were used for the study.

Confirmation of anti‑PLC ζ antiserum specificity 
using blocking peptide and mass spectrometry 
analysis

The specificity of antiserum was confirmed using a blocking pep-
tide (as described; Newton et al. 2009) and mass spectrometry 
analysis (as described; Ojaghi et al. 2017). In brief, a Percoll-
washed fresh whole-sperm suspension (50 ×  106/100 µL) was 
extracted by boiling with sample buffer and the resulting protein 
extracts were loaded on two 10% polyacrylamide gels and pro-
teins resolved by SDS-PAGE. One gel was stored in TTBS at 4 
°C, whereas the other gel was immunoblotted with custom-made 
anti-PLC ζ antiserum (1:10,000), and secondary goat anti-rabbit 
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IgG, as described below. The gel stored at 4 °C was stained with 
Coomassie blue staining solution (50% methanol v/v, 40% 
dH2O v/v, 10% acetic acid v/v, 1 M Coomassie blue stain) on a 
rotating platform under the hood for a minimum of 2 h at room 

temperature. Gels were destained by soaking them in destaining 
solution (40% acetic acid v/v, 10% methanol v/v, 50%  dH2O v/v) 
for 30 min on a rotating platform under the hood. The destaining 
solution was replaced with fresh solution once every 15 min. 

Fig. 1  Demonstration of the specificity of custom-made anti-PLC ζ 
antiserum. a Bovine PLC zeta 1 sequence (accession no. AAI14837), 
with the sequence used for antibody production highlighted in bold. b 
Sperm protein extract prepared by boiling sperm with sample buffer 
was electrophoresed, electrotransferred, and immunoblotted with 
a custom-made anti-PLC ζ antiserum. The anti-PLC ζ antiserum 
immunodetected protein bands at ~ 75, ~ 70, and ~ 30 kDa. However, 

anti-PLC ζ antiserum pre-adsorbed with its blocking peptide failed to 
recognize these bands, confirming its specificity. c The correspond-
ing bands immunodetected by anti-PLC ζ antiserum were cut from a 
Coomassie blue-stained gel and subjected to mass spectrometry anal-
ysis. Amino acid sequences highlighted in bold represented bovine 
PLC ζ peptides (identified by mass spectrometry in the protein bands)
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The protein bands corresponding to the immunoreactive bands 
detected by anti-PLC ζ antiserum were cut from the gel and sent 
for mass spectrometry analysis.

To confirm antiserum specificity, the immunoblotted 
membrane was stripped and re-probed with affinity-purified 
anti-PLC ζ antiserum pre-adsorbed to its blocking peptide. 
For this, affinity-purified antiserum (1.19 mg/ml) was incu-
bated with its blocking peptide (BSA-peptide conjugate; 
5 mg/ml) at a 1:2 dilution to provide a blocking peptide 
at a concentration approximately 10 times greater than the 
antiserum. The peptide and antiserum were incubated on a 
shaker at 4 °C overnight and used for immunoblotting, as 
described below.

Processing of fresh bull sperm for experiments

Semen samples were prepared as described (Ojaghi et al. 
2017), with a slight modification. Fresh ejaculates from 
mature Holstein bulls were obtained from a local artificial 
insemination centre (Alta Genetics, Calgary, AB, Canada). 
Only samples with at least 70% progressively motile and 
70% morphologically normal sperm were used. Semen was 
diluted 1:1 in sp-TALPH (sperm Tyrode’s albumin lactate 
pyruvate HEPES) and transported to the laboratory in a ther-
mos maintained at 35 C. Percoll gradient (45–90%) washes 
of semen samples were done by centrifugation (700×g for 
30 min). The resulting sperm pellet was washed with sp-
TALPH to remove Percoll (400×g for 10 min, twice). The 
concentration of the resulting sperm pellet was determined 
using a hemocytometer and sperm concentration adjusted 
as required.

Sodium deoxycholate sperm protein extraction 
for immunodetection of ATP1A4

Sperm membrane proteins were extracted as described 
(Rajamanickam et al. 2017a). In brief, 500 µL of extraction 
buffer containing 250 mM sucrose, 50 mM imidazole, 1 mM 
EDTA, 0.1% sodium deoxycholate, pH 7.4, and 1× protease 
inhibitor (Roche Diagnostics, Mannheim, Germany) was 
incubated with 50 ×  106 sperm on ice for 45 min, with occa-
sional vortexing. Samples were centrifuged (10,000×g for 
5 min at 4 °C) and the supernatant containing membrane 
proteins was used for immunoprecipitation of proteins inter-
acting with ATP1A4.

Acetone precipitation of sperm proteins 
for immunoprecipitation of tyrosine 
phosphoproteins

Sperm proteins were extracted by re-suspending 50 ×  106 
sperm in 100 µL of 1× sp-TALPH, boiling with 25 µL of 
buffer containing 0.35 M DTT and 0.35 M SDS dissolved in 

1 M Tris at 95 °C for 5 min and centrifuging at 10,000×g for 
10 min. The resulting supernatant was subjected to acetone 
precipitation (Botelho et al. 2010) to remove SDS and DTT. 
Pre-chilled acetone (−20 °C) was added to the supernatant 
(four times the volume of supernatant), incubated at −20 °C 
for 1 h and centrifuged at 15,000×g for 15 min at 4 °C. The 
supernatant was removed and air dried to remove acetone 
(according to the ThermoFisher Scientific Co. protocol). The 
pellet was dissolved in 0.1% sodium deoxycholate buffer 
(prepared as described above) by sonication. The resulting 
protein mixture was used for immunoprecipitating tyrosine 
phosphoproteins.

SDS‑PAGE, electrophoresis, and immunoblotting

Sperm protein extracts were incubated at 37 °C for 15 min 
(ATP1A4) or whole-sperm suspension (50 ×  106 sperm/100 
µL) boiled for 5 min (PLC ζ) with 25 μL sample buffer (5× 
sample buffer was prepared by dissolving 0.35 M DTT, 0.35 
M SDS, and 1.8 mM Bromophenol Blue in 1 M Tris and 
mixing the resulting solution with glycerol, at a 1:1 ratio; 
Laemmli 1970) depending upon the experiment. These 
protein preparations were loaded on 10% polyacrylamide 
gel, electrophoresed, and electrotransferred at 100 V for 90 
min. The nitrocellulose membranes were stained using 0.2% 
ponceau S in 3% acetic acid (to confirm protein transfer). 
Then, the membrane was blocked with 3% skim milk in 20 
mM Tris-buffered saline containing Tween-20 (1 × TTBS) 
for 1 h and thereafter incubated with primary antibody [anti-
ATP1A4 antiserum (custom-made at the University of Cal-
gary, Calgary, AB, Canada; Newton et al. 2009) or anti-PLC 
ζ antiserum] at 4 °C overnight. After washing (in 1 × TTBS), 
the membrane was probed with secondary antibody conju-
gated to HRP (goat-rabbit IgG; Millipore, MA, USA) for 
45 min. The membrane was washed and exposed to chemi-
luminescence reagents (prepared by mixing 5 mL 1.25 mM 
luminol, 50 μL 10% p-coumeric acid, 15 μL 3% hydrogen 
peroxide) and detected by capturing chemiluminescence on 
a Biorad Molecular Imager Chemi Doc™ XRS + imaging 
system.

Immunolocalization of ATP1A4 and PLC ζ in bull 
sperm

Percoll-washed sperm were adhered to poly-L-lysine-coated 
slides and fixed with 2.5% PFA for 15 min. Cells were per-
meabilized with Triton X-100 (0.1% prepared in PBS) for 
20 min (in case of PLC ζ). Slides were washed in PBS and 
blocked with 10% normal chicken serum for 30 min and 
washed in PBS, then incubated with primary antibody 
[ATP1A4 (1:100) or PLC ζ (1:100)] diluted in 1% normal 
chicken serum for overnight at 4 C and slides were washed 
in PBS. Finally, preparations were incubated with chicken 
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anti-rabbit Alexa 488 or chicken anti-rabbit cy3 antibody 
(1:1000 dilution in PBS; Santa Cruz, CA, USA) for 1 h at 
RT and washed in PBS. Sperm incubated with pre-immune 
serum and secondary antibody alone were used as controls. 
Slides were mounted with Vectashield mounting medium 
(Vector Laboratories Inc., Burlingame, CA, USA) contain-
ing DAPI and examined under epifluorescence microscopy 
(Leica DM 2500 or Zeiss Imager M2).

Immunoprecipitation

The protein A/G beads were washed three times (500× g, for 
30 s at 4 °C). Then, the beads were conjugated with primary 
antibody by incubating at 4 °C for 1.5 h with slow agitation. 
After centrifugation at 500×g for 30 s at 4 C (× 3 times), the 
pellet was treated with 300 µL of sperm protein extracts. The 
contents were incubated for overnight at 4 °C with slow agi-
tation. The preparations were centrifuged and thrice washed 
with 1% Tween in PBS at 500×g for 30 s at 4 °C. Finally, the 
pellet was prepared for immunoblotting by adding 100 µL of 
1% Tween in PBS and 25 µL of sample buffer, then heated 
at 95 °C for 5 min and centrifuged at 10,000×g for 5 min, 
followed by SDS-PAGE, electrophoresis and immunoblot-
ting, as described above.

Evaluation of the interaction of ATP1A4 and PLC ζ 
by immunoprecipitation

As described above, protein beads conjugated with anti-
ATP1A4 antiserum (1:100 diluted in extraction buffer) or 
anti-PLC ζ antiserum (1:300 diluted in extraction buffer) 
were incubated with 300 µL of sperm protein extracts pre-
pared from fresh and capacitated sperm, using sodium deox-
ycholate buffer, as described above. The final pellet obtained 
after washing was boiled with sample buffer and prepared 
for immunoblotting, as described above. The supernatant 
loaded was separated on 10% polyacrylamide gel, electro-
phoresed and electrotransferred and then blocked with skim 
milk. Thereafter, it was incubated with anti-PLC ζ antise-
rum (1:10,000 dilution in TTBS) or anti-ATP1A4 antise-
rum (1:4000), probed with secondary goat anti-rabbit IgG 
(1:4000 dilution in TTBS) and imaged for immunoreactive 
bands.

Evaluation of tyrosine phosphorylation of PLC ζ 
during sperm capacitation

As described above, protein beads conjugated with anti-
phosphotyrosine antibody (1:300 diluted in extraction buffer; 
Millipore, Billerica, MA, USA) were incubated with 300 µL 
of sperm protein extracts prepared from fresh and capaci-
tated sperm by boiling with sample buffer, followed by ace-
tone precipitation of proteins, as described above. The final 

pellet obtained after washing was boiled with sample buffer 
and prepared for immunoblotting. The supernatant loaded 
was separated on 10% polyacrylamide gel, electrophoresed, 
electrotransferred, and blocked with skim milk. Thereafter, 
it was incubated with anti-PLC ζ antiserum (1:10,000 dilu-
tion in TTBS) and probed with secondary goat anti-rabbit 
IgG (1:4000 dilution in TTBS). Finally, blots were imaged 
to detect immunoreactive bands.

Sperm capacitation

Capacitation was done as described (Rajamanickam et al. 
2017a). Briefly, capacitated sperm was prepared by incubat-
ing the Percoll-washed fresh sperm sample (40 ×  106/mL) in 
sp-TALP at 39 °C and 5%  CO2 for 4 h under high humidity, 
with 50 nM ouabain as the capacitating agent. Capacitation 
status was confirmed by comparing tyrosine phosphorylation 
content of proteins among experimental groups by immu-
noblotting and evaluating sperm motility with computer-
assisted sperm analysis (CASA), as described below.

Evaluation of capacitation status of sperm based 
on sperm motility patterns, acrosome reaction, 
and tyrosine phosphoprotein content

CASA (Sperm Vision Minitube, Canada) was used to 
evaluate motility. An aliquot (4 μL) from each experimen-
tal group was loaded into prewarmed (37 °C) Leija slide 
(Nieuw-Vennep, Netherlands) and seven fields per sample 
analysed using the bovine sperm motility program. Propor-
tions of hyperactivated sperm were compared among experi-
mental groups. All treatment groups were analysed for their 
ability to undergo an acrosome reaction. For this, 50 μL 
of sperm sample (40 × 106/mL) was incubated with either 
100 μL /ml LPC (lysophosphatidylcholine; Sigma-Aldrich, 
Oakville, ON, Canada) or TALP alone (negative control) 
for 30 min at 39 °C, in 5%  CO2 and high humidity. Then, 
20 μL of diluted sperm from each treatment group was used 
to prepare smears and fixed using 100% ethanol (at −20 °C 
for 2 min). The smears were dried and stained with 20 μL 
of FITC-PSA (100 μL/mL; Sigma-Aldrich, Oakville, ON, 
Canada) for 10 min in a humidified chamber in a dark room 
(Galantino-Homer et al. 1997). Slides were washed and 
examined under a fluorescent microscope and 100 sperm 
per slide were evaluated for acrosomal integrity (acrosome-
intact or acrosome-reacted). For evaluation of tyrosine phos-
phorylation of proteins, ouabain-capacitated sperm samples, 
along with the controls, were concentrated (10,000×g for 
3 min at RT) and the pellet was washed (10,000×g for 5 min 
at RT) in 1 mL PBS containing 0.2 mM sodium vanadate 
 (Na2VO3). The resulting pellet was boiled with sample 
buffer (containing 1 M  Na2VO3) to extract total protein and 
used for immunoblotting with anti-phosphotyrosine antibody 
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(1:10,000 dilution in TTBS). The membrane was stripped 
and re-probed with a monoclonal anti-β-tubulin antibody 
(1:10,000 dilution in TTBS; Sigma-Aldrich, Oakville, ON, 
Canada) and used for evaluating equal loading of proteins 
from various experimental groups.

Quantification of F‑actin in bull sperm

A flow cytometry-based approach was used for quantifi-
cation of F-actin formation in bull sperm during ouabain-
induced capacitation. The experiment was done as described 
(Rajamanickam et  al. 2017c), with modifications. The 
experimental design included sperm (20 ×  106 sperm/mL) 
incubated ± PLC inhibitor (U73122; 10 μM) during ouabain 
(50 nM) mediated capacitation, plus control groups [(fresh 
uncapacitated sperm (designated as fresh) and sperm incu-
bated in sp-TALP at 39 °C, 5%  CO2 under high humidity for 
4 h (incubation control)]. Sperm samples were treated with 
protamine sulfate (20 µg/mL) to detach agglutinated sperm 
and facilitate a single-cell suspension. All groups were sub-
sequently washed in PBS to remove capacitation-associated 
reagents. Then, 1 µL of fixable live and dead cell stain was 
added to the sperm suspension and incubated for 30 min at 
RT. Sperm was fixed with 2.5% PFA for 15 min and then 
permeabilized with 0.5% Triton for 30 min. Alexa-488 
FITC-Phalloidin stain (F-actin probe) was incubated (1:100) 
for 1 h at RT, and data were acquired using a BD LSR II 
cytometer (BD Biosciences, Mississauga, ON, Canada). The 
excitation source was a diode pumped solid state (DPSS) 
488 nm laser. Voltage settings (log scale) used were as fol-
lows: FSC, 320; SSC, 180; FITC, 790; violet, 400. Negative 
control or auto fluorescent control (cells only) was used to 
adjust voltages and gates, whereas single-color controls (vio-
let and Alexa 488) were used for compensation to minimize 
overlap of violet fluorescence detected in the green channel. 
Subsequently, Detector 1 (emission range of 450 ± 25 nm) 
was used for detecting violet fluorescence (viability status), 
whereas Detector 2 (emission range of 530 ± 15 nm) was 
used for detecting green (F-actin) fluorescence. A total of 
20 ×  103 events was recorded for each group in the form of 
a scatter plot and histogram. The resulting flow cytometric 
data were analysed by computing relative median fluores-
cence intensity (MFI) of each sample.

Statistical analyses

All statistical analyses were done in R studio software. 
Data were not normally distributed when assessed using 
a histogram. Therefore, we used a non-parametric multi-
ple comparison test (Kruskal–Wallis). The F-actin content, 
phosphotyrosine content, percentage hyperactived motility, 
and acrosome reaction were analyzed by a Kruskal–Wal-
lis test, followed by a Dunn test for multiple comparisons 

of groups. For all analyses, P < 0.05 was considered sig-
nificant. ImageJ software (National Institutes of Health, 
Bethesda, MD, USA) was used to quantify the pixel inten-
sities of the bands in immunoblots and GraphPad Prism 8 
(GraphPad Software, San Diego, CA, USA) was used for 
generating bar graphs. Sample size calculations for F-actin 
quantification and hyperactivated motility was done using 
OpenEpi Version 3.01 software.

Results

Generation of a custom‑made anti‑PLC ζ antiserum

Affinity-purified PLC ζ antiserum developed against a 
N-terminal sequence (RDDFKGGKITLEKALKLLEK; 
accession no. AAI14837) of 1-phospholipase C zeta of Bos 
taurus identified specific bands (∼ 75, ~ 70, and ~ 30 kDa) 
from bull sperm protein extracts (Fig. 1b). Re-probing the 
same membrane with anti-PLC ζ antiserum pre-adsorbed to 
its blocking peptide failed to detect the same protein bands 
(Fig. 1b), demonstrating antiserum specificity. Using mass 
spectrometry (LC/MS), we confirmed that ~ 75, ~ 70, and 
~ 30 kDa protein bands included PLC ζ (Fig. 1c).

Expression of PLC ζ and ATP1A4 in bull sperm

Immunolocalization experiments determined that PLC ζ 
was expressed in the acrosomal region of fresh bull sperm. 
Control groups incubated with pre-immune serum and sec-
ondary antibody alone without primary antibody lacked a 
fluorescent signal. DAPI (blue) was used to counterstain the 
nucleus. PLC ζ was redistributed to post-acrosomal region of 
capacitated sperm (Fig. 2a, g). Furthermore, ATP1A4 was 
immunolocalized to the entire sperm head in fresh sperm, 
but only to the post-acrosomal region of capacitated sperm 
(Fig. 2i, j).

ATP1A4 and PLC ζ interact during capacitation

Immunoprecipitation of sodium deoxycholate extracted sperm 
protein with anti-ATP1A4 antiserum and immunoblotting with 
anti-PLC ζ antiserum demonstrated a specific immunoreac-
tive band of PLC ζ at ~ 75 kDa. The positive control (sample 
buffer-treated total sperm protein extract) had multiple bands 
of PLC ζ at ~ 75, ~ 70, and ~ 30 kDa (indicated with arrows; 
Fig. 3a). Conversely, when anti-PLC ζ antiserum was used for 
immunoprecipitation and anti-ATP1A4 antiserum was used 
for immunoblotting, an immunoreactive band corresponding 
to ATP1A4 was identified at ~ 110 kDa (Fig. 3b).
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Fig. 2  Expression of PLC ζ 
and ATP1A4 in bull sperm. 
Sperm were adhered to poly-L-
lysine coated slides. Immu-
nofluorescence staining was 
done using Alexa-fluor 488 or 
Cy3 after probing the sperm 
with anti-PLC ζ antiserum or 
anti-ATP1A4, respectively, with 
nucleus counterstained by DAPI 
(blue). PLC ζ was localized 
to acrosomal region of fresh 
sperm a Alexa-fluor 488 and 
counterstained with DAPI; b 
staining with Alexa-fluor alone 
and post-acrosomal region of 
capacitated sperm g Alexa-fluor 
488 and counterstained with 
DAPI; h staining with Alexa-
fluor alone. Negative controls 
included sperm incubated with 
pre-immune serum or secondary 
antibody alone d, f, respectively 
with corresponding DAPI-
stained fields c, e, respectively. 
ATP1A4 was immunolocalized 
to entire fresh sperm head i and 
to the post-acrosomal region in 
capacitated sperm j 
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PLC ζ undergoes tyrosine phosphorylation 
during sperm capacitation

Our immunoprecipitation studies demonstrated that PLC 
ζ (~ 75 kDa) underwent tyrosine phosphorylation and the 
content of tyrosine phosphorylated PLC ζ was higher in 
ouabain-capacitated sperm compared to uncapacitated fresh 
sperm (Fig. 4a, b).

PLC activity required for hyperactivated motility 
and achieving the ability to undergo an acrosome 
reaction

The percentage of sperm with hyperactivated motility 
(Fig. 5a) in the ouabain-capacitated group was higher (16.4%; 
p < 0.05) than in the control groups: uncapacitated sperm 
(fresh); sperm incubated in sp-TALP for 4 h (3.7 or 10.5%, 
respectively), or the group preincubated with U73122, fol-
lowed by ouabain capacitation (4.5%). The ability of sperm 
to undergo an acrosome reaction in the group preincubated 
with PLC inhibitor U73122, followed by incubation under 
capacitating conditions, was lower (21.3%; p < 0.05) than the 
ouabain-capacitated group (53.7%; Fig. 5b).

PLC activity required for tyrosine phosphorylation 
of sperm proteins during capacitation

Phosphotyrosine content of sperm proteins in the group pre-
incubated with the PLC inhibitor U73122, followed by incu-
bation under capacitating conditions, was lower (p < 0.05) 
than that of the ouabain-capacitated group (Fig. 5c, d).

F‑actin content increased in sperm 
under capacitating conditions

Flow cytometry-based quantification of F-actin content 
(Fig. 6a) demonstrated that content of F- actin increased 
during capacitation (Fig. 6b, c).

PLC activity required for F‑actin formation 
under capacitating conditions in sperm

Ouabain-capacitated sperm had increased F-actin content 
and ouabain-capacitated sperm preincubated with U73122 
(PLC inhibitor) had decreased F-actin content, as evi-
denced by the histogram on the FITC log scale on the x-axis 
(Fig. 7a, b).

Fig. 3  Interaction of ATP1A4 and PLC ζ during sperm capacitation. a 
Sodium deoxycholate sperm protein extract was immunoprecipitated with 
a custom anti-ATP1A4 antiserum and immunoblotted with a custom anti-
PLC ζ antiserum. Fresh and ouabain-capacitated sperm demonstrated 
PLC ζ at ~ 75 kDa; positive control (total sperm protein extract). b Sodium 
deoxycholate sperm protein extract was immunoprecipitated with custom 
anti-PLC ζ antiserum and immunoblotted with custom-made anti-ATP1A4 

antiserum. Fresh sperm and ouabain-capacitated sperm demonstrated 
ATP1A4 at ~ 110 kDa; positive control (sodium deoxycholate sperm pro-
tein extract). Negative control (anti-PLC ζ antiserum or anti-ATP1A4 
antiserum conjugated with protein A beads without sperm protein extract) 
demonstrated only HC and LC; HC: heavy chain, ~ 50  kDa; LC: light 
chain, ~ 25 kDa
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Discussion

Bovine PLC ζ was expressed in acrosomal region of fresh 
bull sperm and localized to the post-acrosomal region of 
capacitated sperm. The IP studies confirmed interaction of 
PLC ζ with ATP1A4 and tyrosine phosphorylation of PLC 
ζ during ouabain-mediated capacitation. Unfortunately, 
we could not quantify a capacitation-associated change in 
PLC activity, due to the lack of a suitable assay. However, 
based on studies from somatic cells (Li et al. 2009; Yu et al. 
1998) and our previous study (Rajamanickam 2017b), we 
expected that capacitation-associated tyrosine phosphoryla-
tion of PLC ζ upregulates its activity through a mechanism 
involving ATP1A4, EGFR, which is critical for the success-
ful completion of tyrosine phosphorylation of a cohort of 
sperm proteins, hyperactivated motility, F-actin formation 
and ability to undergo an acrosome reaction. This study pro-
vided evidence for the potential involvement of PLC ζ in the 
regulation of these processes.

A commercial PLC ζ antibody was available from 
MyBiosource Co., San Diego, CA, USA. The antibody 
was developed in rabbits against the N-terminal sequence 
of human PLC ζ. Using mass spectrometry, we confirmed 
that the protein bands detected by the antibody were PLC 

ζ. However, potency of this antibody was inconsistent fol-
lowing storage. Therefore, we generated an affinity purified 
PLC ζ antiserum in rabbit against the N-terminal sequence 
(RDDFKGGKITLEKALKLLEK; accession no. AAI14837) 
of bovine PLC ζ and used it in our subsequent experiments. 
The antiserum detected immunoreactive protein bands at 
~ 75, ~ 70, and ~ 30 kDa from total sperm protein extracts 
prepared by boiling sperm with sample buffer. The X–Y 
catalytic domain, the linker region of PLC, is susceptible 
to proteolysis (Ellis et al. 1993; Fernald et al. 1994). The 
lower molecular bands (~ 70 and ~ 30 kDa) may have been 
due to proteolytic degradation (Kurokawa et al. 2007) of 
PLC ζ. Moreover, immunoblotting using this antiserum 
pre-adsorbed to the peptide sequence used for developing 
the antiserum (blocking peptide) failed to detect the above-
described protein bands, confirming antiserum specificity. 
Furthermore, mass spectrometry analysis confirmed these 
immunoreactive bands (~ 75, ~ 70, and ~ 30 kDa) identified 
by our custom anti-PLC ζ antiserum also included PLC ζ.

We were unable to demonstrate PLC ζ from sperm pro-
tein extracts prepared with sodium deoxycholate detergent, 
a detergent used by our laboratory for extracting ATP1A4 
from sperm. Similarly, cytosolic sperm extracts prepared 
using sperm buffer (containing 75 mM KCl and 1 mM DTT) 

Fig. 4  Tyrosine phosphorylation of PLC ζ during capacitation. Pro-
teins were acetone-precipitated from sperm extracts prepared by boil-
ing sperm with sample buffer and used for immunoprecipitation. a 
Tyrosine phosphoproteins immunoprecipitated with antiphosphoty-
rosine antibody and immunoblotted with anti-PLC ζ antiserum dem-
onstrated PLC ζ ~ 75 kDa from fresh and capacitated sperm; positive 

control (acetone-precipitated sperm protein extract); negative con-
trol (anti-phosphotyrosine antibody conjugated with protein A beads 
without sperm protein extract); HC: heavy chain, ~ 50 kDa; LC: light 
chain, ~ 25  kDa. b Relative pixel intensities of PLC ζ bands from 
fresh and capacitated sperm were quantified after normalizing the 
data with β- tubulin. abp < 0.05; n = 3
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Fig. 5  Involvement of PLC ζ in regulation of sperm capacitation. Percoll-
washed sperm preparations were incubated in medium alone for 0 (fresh) 
or 4 h with or without ouabain (incubation control); or preincubated with 
U73122, followed by incubation with ouabain for 4 h at 39 C in 5%  CO2 
under high humidity. These experimental groups were incubated in trip-
licate and processed concurrently to assess hyperactivation and tyrosine 
phosphoprotein content. a Hyperactivated motility, assessed using com-
puter-assisted sperm analysis (CASA). Percentage hyperactivated motility 
was calculated based on amplitude of lateral head displacement > 7 μm, 
linearity < 60%, and curvilinear velocity > 120  μm. a−cValues without a 
common superscript differed (p < 0.05, n = 3). b Acrosome reaction test 
was induced using LPC and percentage acrosome-reacted sperm from 

each experimental group was calculated. a,bValues without a common 
superscript differed (p < 0.05, n = 3). c Total sperm proteins extracted by 
boiling with sample buffer were immunoblotted with antiphosphotyrosine 
antibody (upper panel) and re-probed with anti-β-tubulin antibody (lower 
panel) for equal protein loading. c Pixel intensities for 270, 250, 100, 75, 
and 45  kDa phosphotyrosine bands (indicated by arrows) were quanti-
fied and normalized to corresponding β-tubulin and compared among 
the groups. Zero values along the x-axis represent groups for which pixel 
intensity could not be detected in the immunoblots. a−cWithin a band, pixel 
intensity values without a common superscript differed (p < 0.05, n = 3)
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and high-pH soluble sperm extracts prepared using alkaline 
carbonate (100 mM  Na2CO3, pH 11.5) from pig sperm with 
PLC activity failed to detect 72 kDa immunoreactive bands 
of PLC ζ (Kurokawa et al. 2005, 2007). However, a specific 
PLC ζ band was demonstrated at ~ 75 kDa by IP of sperm 
proteins from sodium deoxycholate-extracted sperm pro-
teins. Extracting PLC ζ is difficult, due to its unique locali-
zation to the PT of sperm (Fujimoto et al. 2004). However, 
IP could concentrate low-abundant protein from protein 
extracts (Michielsen et al. 2005), demonstrating PLC ζ in 
the immunoprecipitate extracted through this approach. 
Briefly, sodium deoxycholate extracted sperm proteins were 
incubated with anti-PLC ζ antibody conjugated with beads, 
resulting in immunoprecipitation of PLC ζ.

There are differences among species in distribution of PLC ζ 
in sperm: in acrosomal, equatorial, and post-acrosomal regions 
of head and in the tail region of human sperm (Kashir et al. 
2011a, 2011b, 2012, 2013; Yoon et al. 2008); in acrosomal 
and post-acrosomal regions of murine sperm (Fujimoto et al. 
2004); in acrosomal and post-acrosomal regions and tail region 
of porcine sperm (Fujimoto et al. 2004; Kaewmala et al. 2012; 
Yoneda et al. 2006); in acrosomal, equatorial segment, mid-
piece, as well as principle piece of flagellum of equine sperm 
(Bedford-Guaus et al. 2011); and in equatorial region of bovine 
sperm (Mejía-Flores et al. 2017). In the present study, PLC ζ 
was detected in the acrosomal region of fresh bovine sperm, 
using immunolocalization and an affinity-purified antiserum 
developed in rabbits. The pre-immune serum used as a control 

Fig. 6  F-actin quantification in 
sperm using flow cytometry. a 
P1: total cells analyzed; P3: live 
cells; P4: dead cells; P5: F-actin 
fluorescence from viable sperm 
cells; Q3 and Q4: viable sperm 
cells with low and high F-actin 
fluorescence, respectively; Q1 
and Q2: dead sperm cells with 
low and high F-actin fluores-
cence, respectively. b Represents 
fluorescence intensity histogram 
from uncapacitated (fresh) and 
ouabain-capacitated sperm. A 
shift towards the right represents 
the increase in the content of 
F-actin evidenced by increased 
fluorescence intensity. c The 
sperm sample from the experi-
mental groups; uncapacitated 
group (after percoll wash) and 
rest of the experimental group 
(at end of capacitation) were 
stained with FITC-Phalloidin 
stain (F-actin probe) and relative 
median fluorescence intensity was 
quantified using flow cytometry. 
The experiment was replicated 
using four samples of bull semen. 
a,bValues without a common 
superscript differed (p < 0.05)

795Cell and Tissue Research (2021) 385:785–801



1 3

failed to detect any similar pattern, indicating the specificity 
of this antibody. This differed from previous reports (Mejía-
Flores et al. 2017), but the pattern was more consistent with 
reports from other species. Variation in the localization of 
PLC ζ was reported in murine (Fujimoto et al. 2004; Young 
et al. 2009) and human sperm (Grasa et al. 2008; Kashir et al. 
2011a, 2011b, 2013; Yoon et al. 2008) and capacitation-asso-
ciated re-localization of this protein was reported in both of 
these species (Grasa et al. 2008; Young et al. 2009). Similarly, 
our results demonstrated re-localization of PLC ζ to the post-
acrosomal region in capacitated bovine sperm. Consistent with 
our previous reports (Newton et al. 2010; Rajamanickam et al. 
2017a), ATP1A4 was immunolocalized to the entire head in 
fresh sperm. Moreover, PLC ζ and ATP1A4 was co-localized 
to the post-acrosomal region in capacitated sperm (Thundathil 
et al. 2018). Similarly, re-localization of phospho-tyrosine con-
taining protein (Cormier and Bailey 2003), heat shock protein 
(Kamaruddin et al. 2004), ATP1A4 (Newton et al., 2010), and 
tACE (Ojaghi et al. 2017) occurs during capacitation in bovine 
sperm. However, underlying mechanisms of protein redistribu-
tion remain unknown. During synthesis, proteins will be tar-
geted to specific locations (Counillon and Pouyssegur 2000; 
Hubbard et al. 1989) through various mechanisms, including 
passive diffusion with trapping and active translocation or 
active transport directed by attachment of membrane proteins 
to actin cytoskeleton (Cowan et al. 1991). The protein, which 
has binding sites on actin filaments, can move by indirectly 
binding to them with intermittent attachments to glycoproteins 

(Cowan et al. 1991; Kucik et al. 1989; Ouyang et al. 2005). The 
lipid raft as a molecular protein transport system has reported 
for heat shock protein (HSP70); it is transported to the lipid 
droplet, then folded on to the lipid monolayer and transported 
across the membrane (Elmallah et al. 2020). These suggested 
mechanisms could facilitate redistribution of sperm proteins 
during capacitation.

The molecular mechanisms of oocyte activation by PLC 
ζ are clearly defined. PLC ζ from sperm, when released 
into the oocyte, activates the PIP2 pathway, resulting in 
increased intracellular calcium, leading to calcium oscil-
lation and oocyte activation (Fissore et al. 1992; Nomikos 
et al. 2011; Swann et al. 2006; Xu et al. 1994). However, 
the immediate oocyte activation induced by PLC ζ in sperm 
following oocyte penetration suggests its potential activation 
during sperm capacitation. Consistent with this hypothesis, 
the activity of PIP2-PLC was higher in capacitated versus 
uncapacitated mouse sperm (Tomes et al. 1996). However, 
molecular mechanisms of capacitation-associated PLC ζ 
activation are unknown.

In somatic cells,  Na+/K+-ATPase and PLC interaction 
(Gomes and Soares-da-Silva 2019; Lara et al. 2005; Yuan 
et al. 2005) leads to its activation by tyrosine phosphoryla-
tion (Wang et al. 2004; Yuan et al. 2005). Again, PLC is 
activated by tyrosine phosphorylation (Rodríguez-Fragoso 
et al. 2009; Wahl et al. 1989; Yuan et al. 2005) by EGFR, 
which in turn is activated by Src (Tice et al. 1999; Liu et al. 
2004; Nair and Sealfon 2003). Furthermore, Src is activated 

Fig. 7  Involvement of PLC ζ in F-actin formation during capacita-
tion. a Sperm samples from the experimental groups were stained 
with FITC-Phalloidin stain (F-actin probe) and relative median fluo-
rescence intensity was quantified using flow cytometry. a−cValues 
without a common superscript differed (p < 0.05). The experiment 

was replicated with semen samples from four bulls. b Fluorescence 
intensity histogram from each group. The shift of the histogram 
towards right represents an increase in the F-actin content, as indi-
cated by an increase in FITC-Phalloidin fluorescence intensity
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by ouabain-mediated  Na+/K+-ATPase signaling complex 
(Wang et al. 2004). In addition, ouabain-induced activation 
of EGFR (Rajamanickam et al. 2017b) and involvement of 
EGFR in the activation of PLC (Finkelstein et al. 2010) have 
been reported in sperm during capacitation. Furthermore, 
tyrosine phosphorylation of PLC is involved in several cel-
lular processes, including chemotaxis, cell proliferation 
and migration (Asokan et al. 2014; de Gorter et al. 2007; 
Jones et al. 2005; Kim et al. 1991). Our immunoprecipita-
tion studies confirmed the interaction of ATP1A4 and PLC 
ζ in bovine sperm. Based on studies from somatic cells and 
previous research from our lab (Thundathil et al. 2018), we 
hypothesized that PLC ζ is activated by tyrosine phospho-
rylation and its activation promotes capacitation-associated 
biochemical changes in sperm. To test this hypothesis, we 
used immunoprecipitation (IP) studies to evaluate tyrosine 
phosphorylation of PLC ζ during capacitation. In that regard, 
since SDS, a component of the sample buffer, interfered with 
the IP experiments, we used acetone to precipitate sperm 
proteins from sample buffer-extracted sperm proteins, as 
described (Botelho et al. 2010). As expected, our IP results 
demonstrated tyrosine phosphorylation of PLC ζ in capaci-
tated sperm. Furthermore, mass spectrometry analysis of the 
bands from SDS-PAGE gel (~ 75, ~ 70, and ~ 30 kDa) had 
specified variable modifications (mascot best match using 
possible arrangements of modifications that may or may not 
be present; www. matri xscie nce. com) at phospho groups of 
serine, threonine, and tyrosine in the peptide. In somatic 
cells, PLC γ1 isoform undergoes phosphorylation on tyros-
ine residues Try-771, 783, 1253, 1254 (Kim et al. 1991; 
Sekiya et al. 2004). However, further studies are required to 
identify specific tyrosine phosphorylation sites on PLC ζ. 
Although PLC ζ and ATP1A4 interacts and tyrosine phos-
phorylation of PLC ζ occurs during capacitation, further 
studies are required to confirm involvement of an ATP1A4-
mediated mechanism in tyrosine phosphorylation and acti-
vation of PLC ζ. However, based on information from other 
cell systems, ATP1A4 signalling initiated by ouabain inter-
action leads to EGFR activation, tyrosine phosphorylation 
of PLC ζ and its activation during capacitation.

We investigated involvement of PLC activity in tyrosine 
phosphorylation of sperm proteins, hyperactivation, ability 
to undergo acrosome reaction, and F-actin formation during 
capacitation. Pre-incubation of sperm with the PLC inhibi-
tor U73122 (Alonso et al. 2017), followed by induction of 
capacitation using 50 nM ouabain, inhibited phosphotyros-
ine content of a cohort of sperm proteins (45 to 270 kDa 
range); proportion of sperm undergoing hyperactivated 
motility and acrosome reaction; and actin polymerization. 
The direct involvement of PLC in tyrosine phosphorylation 
of other proteins remains unknown. Regardless, PLC con-
tributes to the upstream regulation in activation of PKC, 
which triggers activation of multiple signalling pathways 

involved in tyrosine phosphorylation of proteins (Thundathil  
et al. 2012). Therefore, we inferred that an increase in PLC 
activity contributed to an increase in tyrosine phospho-
protein content of sperm during capacitation, through the 
above-described mechanisms. This interpretation was fur-
ther supported by the finding that the presence of a PLC 
inhibitor during capacitation decreased tyrosine phospho-
protein content of sperm proteins.

Actin (G-actin monomer) is present in the sperm head, 
connecting piece in the neck or tail regions, with species-
specific variations in their location (Flaherty et al. 1998; 
Fouquet et al. 1992). The major location of F-actin in mam-
malian species is in the sub-acrosomal region (Clarke et al. 
1982; Fouquet et al. 1990; Peterson et al. 1990). F-actin, 
present in the flagellum of guinea pig sperm, is involved in 
sperm motility (Azamar et al. 2007). Furthermore, gelsolin, 
an actin-severing protein is translocated to the sperm head 
during capacitation. As gelsolin prevented actin polymeri-
zation, this translocation facilitated an increase in F-actin 
in sperm tail during capacitation essential for hyperacti-
vated motility (Breitbart and Finkelstein 2015; Itach et al. 
2012). In somatic cells, tyrosine phosphorylation of PLC γ1 
mediated by growth factor receptor has an important role in 
cytoskeletal (actin) organization (Yu et al. 1998). Perhaps 
activation of PLC by tyrosine phosphorylation is involved in 
increased F-actin formation in the sperm tail and head; the 
former contributes to hyperactivated motility and the latter 
prevents spontaneous acrosome reaction. Consistent with 
this hypothesis, there was reduced hyperactivated motility 
and decreased acrosome reaction when PLC inhibitor was 
used during capacitation, suggesting the involvement of PLC 
activity in the regulation of hyperactivated motility and acro-
some reaction.

We used a flow cytometry-based approach to quantify 
F-actin content in capacitated sperm. There was significant 
decrease in F-actin content after pre-incubation of sperm 
with the PLC inhibitor U73122 (Alonso et al. 2017), fol-
lowed by induction of capacitation using 50 nM ouabain. 
Phosphorylation-related activation of PLC by the signalling 
complex of  Na+/K+-ATPase-EGFR through ouabain inter-
action (Haas et al. 2000; Ullrich and Schlessinger 1990) 
results in PIP2 pathway activation, which in turn activates 
PKC. Polymerization of G-actin to F-actin is facilitated 
by PKC through other mediator proteins (PLD, CaMKII; 
Rajamanickam et al. 2017b). The capacitation-associated 
increase in F-actin content and the inhibition of this process 
in presence of a PLC inhibitor implicated a capacitation-
associated increase in PLC activity and its involvement in 
F-actin formation.

Altogether, based on the above studies, we inferred that 
PLC activity is crucial for capacitation. Since the PLC 
inhibitor used in this study was not specific for PLC ζ and 
other PLC isoforms are likely to be present in bull sperm as 
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reported in the mouse (Choi et al. 2001; Fukami et al. 2003) 
and boar (Parrington et al. 2002), specific contributions of 
PLC ζ to bull sperm capacitation remain unknown. There-
fore, further studies using knockout models are required to 
confirm the role of PLC ζ activity in this process and elu-
cidate the functional significance of localization of PLC ζ 
in the acrosomal region of bull sperm, as reported in other 
species (Young et al. 2009).

In conclusion, this study established the relevance of 
PLC family during capacitation. We inferred that ATP1A4 
in sperm interacts with ouabain and results in the forma-
tion of a signal plex with EGFR, followed by activation of 
Src, which in turn results in tyrosine phosphorylation and 
activation of PLC ζ. This activation increased PLC activ-
ity, contributing to upregulation of capacitation-associated 
biochemical modifications such as tyrosine phosphorylation 
of proteins, hyperactivated motility, acrosome reaction, and 
F-actin formation. In addition, this increase in capacitation-
associated PLC activity may be relevant for oocyte activa-
tion immediately following sperm penetration of the oocyte.
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