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Abstract
The features of rDNA amplification have been studied in oocytes of the red-eared slider Trachemys scripta using a number of
specific histochemical and cytomolecular methods. A single nucleolus in early diplotene oocytes is associated with the
nucleolus organizer region (NOR). With oocyte growth, the number of nucleoli increases dramatically and reaches hundreds
by the lampbrush chromosome stage (pre-vitellogenesis). RNA-polymerase I, fibrillarin, and PCNA immunodetection in the
amplified nucleoli and FISH of the 5’ETS probe to the oocyte nuclear content suggest pre-rRNA and rDNA synthesis in the
nucleoli at all stages studied. This implies a continuous reproduction of the nucleoli during oocyte development from early
diplotene up to vitellogenesis. The data obtained offer a different way for rDNA amplification and formation of extrachromo-
somal nucleoli in turtle oocytes compared with the amplified nucleoli formation in amphibian and fish oocytes. In the Sauropsida
clade of Archelosauria, which includes turtles, crocodiles, and birds, rDNA function is known to be suppressed in avian
oogenesis during the lampbrush stage (Gaginskaya et al. in Cytogenet Genome Res 124:251–267, 2009).
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Introduction

Oogenesis is a particular type of cell differentiation responsi-
ble for the formation of a mature egg containing a maternal
stock of macromolecules to ensure initial embryo develop-
ment. Among others, a lot of ribosomal RNA (rRNA) are
required to create an apparatus for massive protein synthesis
in the embryo cells, which rapidly increase in number during
cleavage and blastula formation, as was studied in detail in
amphibian embryogenesis (in particular Davidson 1986).
During the early development of Xenopus laevis, the nucleo-
lus organization is not associated with the transcription pro-
cess per se but rather with the presence of maternal unpro-
cessed rRNAs (Verheggen et al. 1998, 2000). The source of

the maternal rRNA can be endogenous (a function of the oo-
cyte inherent genome) or exogenous (a function of the ge-
nomes inherent to associated cells). Respectively, the pecu-
liarity of a nucleolus organizer (NOR) functionality in the
oocyte genome and the origin of the maternal rRNA stockpile
in the oocyte define some important features related to the
oogenesis type. Hypertranscriptional oogenesis (Dondua
2018) is often accompanied by the amplification of NOR ri-
bosomal DNA (rDNA) resulting in the formation of multiple
extrachromosomal nucleoli in the oocyte nucleus (germinal
vesicle, GV). This is typical of oogenesis in many animals,
both invertebrates and vertebrates. Such animals do not nec-
essarily belong to close taxa. For example, among fish, NOR
rDNA amplification is typical of Acipenseridae (Raikova
1976) and teleost fish (Vincent et al. 1969; Thiry and Poncin
2005), yet apparently not of Elasmobranchii like sharks and
skates (Rückert 1892; Diaz-Andrade et al. 2011).

In vertebrates, apart from certain fish, rDNA amplification
has been described in oocytes of all amphibians (Macgregor
1972, 1982; Callan 1986; Davidson 1986) and some reptilians
(Macgregor and Klosterman 1979; Macgregor 1982), while
avian oocytes with well-developed lampbrush chromosomes
have been found to lack amplified nucleoli (Gaginskaya and
Gruzova 1969; Gaginskaya 1972; Gaginskaya et al. 2009;
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Koshel et al. 2016). In birds, the huge stockpile of rRNA in the
oocyte is of exogenous origin, being supplied by follicular
cells within specific organelles called “transosome” (Press
1964). The latter constitute a kind of ribosome-filled vesicles
separating from the processes of follicular cells into the oocyte
(Bellairs 1965; Press 1964; Schjeide et al. 1970, 1975). In
mammalian oocytes, rDNA does not appear to be amplified
either (Tian et al. 2001).

The phenomenon of rDNA amplification has been studied
most thoroughly in amphibian oocytes, where the meiotic ex-
tra synthesis of rDNA results in the formation of the so-called
nuclear DNA cap at the pachytene stage of the meiotic pro-
phase (Brown and Dawid 1968; Gall 1968; Macgregor 1968,
1972; Perkowska et al. 1968; Gall and Pardue 1969; Ficq and
Brachet 1971). At the early diplotene stage, rDNA copies
dissociate from the cap to form thousands of extrachromo-
somal nucleoli predominantly active in the period of early
vitellogenesis (Macgregor 1972; Spring et al. 1996). These
multiple extrachromosomal nucleoli are located on the periph-
ery of the GV. Their structure, molecular composition, and
activities have been explored comprehensively (Miller and
Beatty 1969; Macgregor 1972; Bakken 1975; Spring et al.
1996; Mais and Scheer 2001; Mais et al. 2002; Brangwynne
et al. 2011).

Few thorough data on rDNA functioning in reptilian
oogenesis are available, being mainly obtained using his-
tological and cytogenetic approaches (Arronet 1973;
Macgregor and Klosterman 1979; Guraya 1989;
Callebaut et al. 1997; Uribe and Guillette 2000; Pérez-
Bermúdez et al. 2012). Nevertheless, these data indicate
a variety of rDNA functional activity during oogenesis in
different representatives of this polyphyletic group of rep-
tilian sauropsids (Macgregor 1982). The information ap-
pears to be contradictory to some extent. rDNA amplifi-
cation has been observed in primitive reptiles of Bipes
genus (Macgregor and Klosterman 1979) and turtles
(Macgregor 1982; Callebaut et al. 1997). However, ac-
cording to some authors (Hubert and Andrivon 1971;
Arronet 1973; Macgregor 1982; Klosterman 1983;
Guraya 1989; Vieira et al. 2010), rDNA does not amplify
in lizard oocytes: a single nucleolus breaks down in the
previtellogenic oocytes (Ricchiari et al. 2003) similarly to
chicken oogenesis (Koshel et al. 2016; Davidian et al.
2017). Ribosomes, in enormous amounts, reach the oo-
cyte from follicular pyriform cells via intercellular bridges
and stock up within special cytoplasmic ribosomal bodies
(Taddei 1972). However, Motta et al. (1991) have dem-
onstrated DNA synthesis at the zygotene–mid-pachytene
stages in the lizard Podarcis sicula oocytes that eventual-
ly resulted in a 5-fold increase of rRNA genes. The au-
thors have estimated this phenomenon as a low level of
rRNA gene amplification representing a small source of
rRNA stockpiled in Lacertidae oocytes in addition to

follicular cells. An uncertain reference to numerous nucle-
oli found in lizard (Sceloporus grammicus) GVs is also
available, but these observations were made on paraffin
sections stained with hematoxylin-eosin (Lozano et al.
2014). Cytological changes in the nucleolar apparatus re-
lated to the oogenesis in lizards, agamas, and some other
representatives of Squamata seem to be very similar to
those related to the oogenesis in chicken and, apparently,
other birds (Koshel et al. 2016; Davidian et al. 2017).
Essentially, lizards and birds represent phylogenetically
the most distant taxa within the Sauropsida group
(Crawford et al. 2012, 2015). The closest reptiles to birds,
namely crocodiles and turtles, seem to have the program
of NOR functionality in oogenesis completely different
from both lizards and birds. Multiple peripheral bodies
inside oocyte nuclei observed on ovary histological sec-
tions stained with hematoxylin-eosin are considered to be
extrachromosomal nucleoli (Macgregor 1982; Guraya
1989; Moore et al. 2008; Nainan et al. 2010; Pérez-
Bermúdez et al. 2012). A more detailed study of the oo-
cyte nuclear structures in the red-eared slider Trachemys
scripta belongs to M. Callebaut, who described numerous
peripheral pyroninophylic nucleoli in the lampbrush stage
oocytes and their accumulation in the center of the GV to
form a karyosphere in pre-mature oocytes (Callebaut et al.
1997). However, the pattern of nucleoli multiplication in
reptilian sauropsid oocytes remains somewhat unsettled.

In this paper, we have used a series of specific histochem-
ical and cytomolecular approaches to investigate the nature,
composition, and dynamics of extrachromosomal nucleoli in
the oocytes of the red-eared slider T. scripta. Oocytes from the
early diplotene up to lampbrush stage have been analyzed.We
have distinguished extrachromosomal nucleoli from numer-
ous coilin-containing nuclear bodies and demonstrated
rDNA replication to take place inside the extrachromosomal
nucleoli. Specific features of rDNA amplification strategy in
oocytes of the red-eared slider have been described and com-
pared with the same strategy in amphibian and fish oocytes.

Materials and methods

Biological materials and ethical approval

Nucleoli from oocytes of the red-eared slider T. scripta were
explored. The ovaries were obtained from six 7-year-old ma-
ture females and two 1-year-old immature females. The pro-
cedures related to manipulation of animals were approved by
the Ethical Committee of St. Petersburg State University
(Statement #131-03-3 issued 01.06.2017) in accordance with
the NIH guidelines set forth in Guide for the Care and Use of
Laboratory Animals (2011).
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Ovary cryosections

The pieces of T. scripta ovaries were fixed at room tempera-
ture in 4% paraformaldehyde in PBS for 2 h, washed several
times in PBS, cryoprotected with 30% sucrose in PBS over-
night at + 4 °C, frozen in Surgipath® FSC 22® Frozen
Section Embedding Medium (Leica Biosystems, USA) in liq-
uid nitrogen, and stored at − 80 °C. Cryosections of 10 or
20 μm made using Leica CM1850UV cryotome (Leica
Biosystems, USA) were mounted on Superfrost-plus slides
(Thermo Scientific, Germany). Before processing, the cryo-
sections were dried for 2 h at room temperature.

Manual dissection of GV and GV content from oocyte

Oocyte nuclei (GVs) and their inner contents were manually
isolated from the lampbrush oocytes of 0.5–1.5 mm diameter
using Leica MZ12 stereomicroscope and tungsten preparative
needles. The procedures were carried out in “5:1 + phos-
phates” medium according to the previously described proto-
col (Saifitdinova et al. 2017). GVs were stained with SYTOX
Green (Molecular Probes, USA), nucleic acid specific fluoro-
chrome, or with SYBR Green (Molecular Probes, USA),
double-stranded DNA (dsDNA) specific fluorochrome, dilut-
ed to 1:5000 and 1:1000 in “5:1 + phosphates” medium,
respectively.

Indirect immunofluorescent staining

Immunofluorescent staining was applied to ovary cryosec-
tions, whole isolated GVs, and GV content spreads from
lampbrush stage oocytes. Indirect immunostaining procedure
was carried out as described previously (Davidian et al. 2017).
Tominimize the nonspecific antibody binding, the slides were
incubated in 5%Gibco horse serum (ThermoFisher Scientific,
USA) in PBS for 1 h at + 37 °C.

The primary anti-fibrillarin antibodies (ab4566, Abcam,
United Kingdom), RNA-polymerase I (Ochs et al. 1994),
dsDNA (MAB030, Chemicon International, USA), PCNA
(ab29[pc10], Abcam, United Kingdom), FLASH (Yang
et al. 2009), and anti-p80 coilin polyclonal serum R288
(Andrade et al. 1991) were used at a dilution of 1:500,
1:100, 1:300, 1:1000, 1:100, and 1:2000, respectively. The
ovary cryosections, intact GVs, and GV spreads were incubat-
ed with primary antibodies overnight at + 4 °C, and with the
corresponding secondary antibodies for 1 h at + 37 °C. All
antibodies were diluted in PBS with 5% Gibco horse serum
(ThermoFisher Scientific, USA). The preparations were coun-
terstained with 1 μg/mL DAPI (4 ′, 6-diamidino2-
pheni l indole -d ihydrochlor ide) in DABCO (1,4-
diazabicyclo[2.2.2]octane) antifade solution in PBS with
glycerol.

FISH probe preparation

To prepare FISH probe of 5′external transcribed spacer (5′
ETS), the PCR primers were designed from the de novo as-
sembled rRNA gene cluster of T. scripta, using the Unipro
UGENE 1.16.1 software package, as follows: F 5′-GGTC
GCTGACTTCTTCTCTA and R 5′-AAGAAGGATGTCGG
GAGTC (Beagle Ltd., Russia). The probe was amplified and
labeled with digoxigenin by PCR using these primers. The
reaction mixture contained 1×Taq buffer with 2.5 mM
MgCl2 (Sileks, Russia), 0.07 mM digoxigenin-11-dUTP
(Jena Bioscience, Germany), 0.4 mM dATP, dCTP, and
dGTP, 0.13 mM dTTP (Sileks, Russia), 0.4 μM F and R-
primers, 2.5 U Taq polymerase (Sileks, Russia), and 10 ng
T. scripta genomic DNA per 20 μL. The PCR was performed
in a MJ Mini (BioRad, USA) amplifier. PCR protocol: 5 min
at 94 °C; 35 cycles of 20 s at 94 °C, 15 s at 57 °C, and 20 s at
72 °C; 5 min at 72 °C; and hold at + 4 °C.

The 5′ETS sequence is spliced from the pre-rRNA mole-
cule when it maturates to 18S, 5.8S, and 28S rRNA. 5′ETS
RNA does not incorporate into ribosomes, being present only
in the nucleolus. This makes it a reliable marker of pre-rRNA
transcripts when used in accordance with the RNA FISH
protocol.

Oligonucleotide probe, 5′-CGCGUUCUCUCCCUCUCA
CUCCCCAA-Cy3, specific to U3 snoRNA, was also used as
an RNA probe for RNA FISH. This probe was kindly provid-
ed by I. Aparin (Shemyakin-Ovchinnikov Institute of
bioorganic chemistry, Russia).

Fluorescent in situ hybridization

FISH was applied to ovary cryosections and GV content
spreads. The cryosections were pre-treated similarly to
fluorescence immunostaining, while the GV content
spreads were not pre-treated. FISH was performed as de-
scribed earlier in Davidian et al. (2017). For DNA in situ
hybridization, the preps were denatured and pre-treated
wi th RiboShredde r™ RNase Blend (Ep icen t r e
Biotechnologies, USA) at a dilution of 1:10 for 1 h at +
37 °C. For RNA FISH, the preps were neither denatured
nor pre-treated with RNase. To reduce nonspecific anti-
body binding, the preps were incubated in 5% Gibco
horse serum (ThermoFisher Scientific, USA) solution in
4×SSC with 0.1% Tween-20 for 1 h at + 37 °C. To detect
digoxigenin-labeled probe, primary and secondary anti-
bod ies conjuga ted wi th cyan ine Cy3 (Jackson
ImmunoResearch, USA) were used at a dilution of 1:400
for 1 h at + 37 °C with subsequent washing in 4×SSC
with 0.1% Tween-20, and 2×SSC. The slides were coun-
terstained with DAPI in DABCO antifade solution with
glycerol and 2×SSC.
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Microscopy

The slides were examined using DMRXA and DM4000B
(Leica Microsystems, Germany) epifluorescence microscopes
and Leica TCS SP5 (Leica Microsystems, Germany) confocal
laser scanning microscope with the related software. The fin-
ished image was produced using the maximum intensity pro-
jection function. The lasers used for analysis were 488 nm and
543 nm. Confocal microscope images were processed,
deconvoluted, and analyzed with SVI Huygens software. To
quantify the nucleoli number inside the GV, Fiji software
using the “3D objects counter” function was applied to the
manually isolated GVs immunostained with anti-fibrillarin
antibodies. In total, eight GVs from the lampbrush oocytes
were analyzed.

Results

According to morphological data (Callebaut et al. 1997), the
ovaries of 1-year immature turtle T. scripta contain oocytes
from the leptotene stage to the pre-lampbrush diplotene mei-
otic stage. The lampbrush and post-lampbrush oocytes are
present in the ovaries of older immature and adult females
(Guraya 1989; Callebaut et al. 1997). In this work, we inves-
tigated the contents of the nucleus in oocytes from the ovaries
of both immature and adult females non-stimulated to oocyte
maturation. In our study of the features of amplified nucleoli
origination and development in T. scripta oocytes, we focused
on three successive stages of oocyte growth, namely, earlier
diplotene oocytes located in germinal beds and not surrounded
by follicular cells, pre-lampbrush diplotene oocytes, which are
already surrounded by follicular epithelium, and the larger
oocytes with well-developed lampbrush chromosomes in the
GV. Nuclear structures were explored using ovary cryosec-
tions, both intact GV and GV content manually dissected from
the oocyte. For nucleoli detection at different oocyte stages,
both in situ hybridization of the 5’ETS probe and immunoflu-
orescent detection of antibodies specific to fibrillarin were
used. Notably, GV and GV content manual dissection is pos-
sible from the lampbrush oocytes only.

Nucleoli and coilin-containing bodies can be detected
at all analyzed stages of T. scripta oocyte growth

In GVs manually dissected from oocytes of 0.5–1.5 mm di-
ameter, multiple round nuclear bodies were observed after
staining with SYTOX Green (Fig. 1a). On a maximum inten-
sity confocal projection, lampbrush chromosomes are distin-
guishable, and extrachromosomal nuclear bodies of different
sizes are brightly fluorescent. The largest bodies can be
vacuolized. It is commonly known that amphibian GVs con-
tain a good deal of amplified extrachromosomal nucleoli

along with various coilin containing bodies, such as Cajal
Bodies (CB), Histon Locus Bodies (HLB), pearls (Nizami
et al. 2010; Nizami and Gall 2012). To distinguish nucleoli
from extrachromosomal coilin-containing bodies, we applied
simultaneous immunostaining with fibrillarin and p80 coilin
antibodies. In lampbrush oocytes, numerous extrachromo-
somal bodies were found to be true nucleoli, while the rest
represented coilin-containing entities (Fig. 1b–b”). This con-
firmed the previous hypotheses of rDNA amplification in tur-
tle oogenesis (Guraya 1989; Callebaut et al. 1997).

In lampbrush oocytes, coilin-containing bodies had differ-
ent configuration and size: some of them had a round shape
(Fig. 2a), while others resembled rings varying in size (Fig.
2b). Noteworthy is that only one type prevails in each
lampbrush oocyte. In some GVs, we observed irregular ring-
like coilin-containing bodies of a diameter exceeding 10 μm.
The coilin-containing bodies of all types were not found to
interact with anti-FLASH antibodies after indirect immuno-
staining (not shown). Most likely, they are CBs and/or some
unidentified bodies rather than HLB. In the coilin-containing
bodies, we never detected fibrillarin, while the nucleoli never
revealed coilin. The nucleoli are clearly identifiable when im-
munostained with anti-fibrillarin antibodies (Fig. 2a) or
hybridyzed with U3 snoRNA probe (Fig. 2b). The U3
snoRNA was shown to participate in the earliest cleavage
event of pre-rRNA processing and remain bound to the proc-
essed rRNA product (Kass et al. 1990; Correll et al. 2019).

Early diplotene oocytes situated within the ovary germinal
beds comprise 1 or 2, sometimes 3, nucleoli (Fig. 3a), and a
single coilin-containing body (not shown). As oocytes grow,
the number of nucleoli and coilin-containing bodies increases.
The GVs in pre-lampbrush oocytes may contain a dozen or
more nucleoli (Fig. 3b). In GVs with completely developed
lampbrush chromosomes, the number of nucleoli and coilin-
containing bodies increases, the nucleoli number reaches 300–
400. On the frozen sections of the lampbrush oocytes, most of
the nucleoli are located on the periphery of the nucleus direct-
ly under the nuclear envelope (Fig. 3c).

The sizes of the nucleoli in the lampbrush oocyte GVs vary
significantly. The nucleoli may vary within 1–40 μm range in
the same GV. Figure 4 represents a typical sample of the
T. scripta oocyte nucleoli organization and diversity as it is
visible on the GV content preps stained with anti-fibrillarin
antibodies and counterstained with DAPI. The significant part
of the nucleolar volume is a zone of fibrillarin location, which
suggested the fibrillar component area within the bipartite
nucleolus, a distinctive, presumably granular component
(GC) area around it (Thiry and Lafontaine 2005; Bartholomé
et al. 2019). It is noteworthy that some small fibrillarin inclu-
sions have been found within the suggested GC area that may
be very small nucleoli. At this level, we cannot say whether
the smaller nucleoli merge with each other or split off the
larger ones. Being non-membrane intranuclear organelles,
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which are phase-separated condensates, they can either merge
or split (Brangwynne et al. 2011; Feric et al. 2016).

Nucleoli are active in pre-rRNA synthesis at all studied
stages of T. scripta oocyte growth

At every studied stage of oocyte development, the nucleoli
demonstrated the same pattern of nucleolar activity. This is
shown by detection of the pre-rRNA nascent transcripts in
nucleoli when performing RNA FISH of 5’ETS probe to the
cryo-sectioned prep (Fig. 3a–a”). Figure 3 shows incomplete-
ly labeled nucleoli when RNA FISH was performed with
5’ETS probe. The fluorescence pattern was comparable to that
of the fibrillarin fluorescence in Fig. 4. Although this might be
in a certain inconsistency with data on the earliest separation
of 5’ETS during pre-rRNA processing (Turowski and
Tollervey 2015), we consider the result in accordance with
the fact that in Xenopus oocytes maternal rRNAs are stored
as unprocessed pre-rRNA (Verheggen et al. 1998, 2000). The
rDNA transcription is supported by the detection of RNA-
polymerase I in the nucleoli. Figure 5a–a” demonstrates the
presence of RNA-polymerase I and fibrillarin in the oocyte
nucleoli at early diplotene and pre-lampbrush stages. The
RNA-polymerase I signal, which ought to be associated with

active rDNA repeats, is scattered over the fibrillarin (sug-
gested fibrillar component) location zone (Fig. 5a” and
insertion).

The same pattern of RNA-polymerase I signal distribution
was revealed at all studied stages of the T. scripta oocyte
development. Fibrillarin and U3 snoRNAs were also found
in all nucleoli, which is indicative of pre-rRNA processing
and general nucleolar activity in the red-eared slider oocytes.

Amplified rDNA replicates in extrachromosomal
nucleoli at all studied stages of T. scripta oocyte
growth

In GVs manually dissected from lampbrush oocytes, the
DNA-specific SYBR Green fluorochrome identified
lampbrush chromosomes in the central area of the GV and
manifested at least one bright DNA granule per nucleolus
(Fig. 6a). DNA content in nucleoli was also detected when
nucleoli isolated from GVs had been immunostained with
anti-dsDNA antibody (Fig. 6b). As shown in Fig. 6b, DNA
inclusions feature different patterns in different nucleoli. We
show that 5’ETS probe fluorescent signal colocalizes with
these DNA granules after DNA FISH (Fig. 6c–c”). It is note-
worthy that larger nucleoli contain two or more DNA granules
located both inside and on the surface of the nucleolus
(Fig. 6b, c).

The evidence of DNA synthesis in the nucleoli was shown
using indirect immunodetection of antibody against PCNA
DNA replication factor at all investigated stages of oocyte
growth (Fig. 7a–c). Fluorescence of the entire nucleolus is
usually detected using this antibody (Fig. 7a, c) as it was
described for the nucleoli of human tumors and various so-
matic cells (Chan et al. 1983). In any case, it appears tempting
to assume that the significant increase in the number of extra-
chromosomal nucleoli in the GV, as the oocyte grows, is re-
lated to the constant replication of nucleolar rDNA followed
by multiplication of the nucleoli. In some nucleoli, amplified
rDNA copies appear to remain inside as an active rDNA,
which increases the volume of the nucleolus. Nevertheless,
we cannot exclude the fact the larger nucleoli may originate

Fig. 1 Germinal vesicles isolated from T. scripta oocytes, lampbrush
stage. a Lampbrush chromosomes (arrows) and undifferentiated nuclear
bodies in GV, SYTOX green fluorochrome specific to DNA and RNA

nucleic acids. b–b” Nuclear bodies discriminated using immunostaining
with fibrillarin (b, green) and p80 coilin (b’, red) antibodies. b” Overlay.
Confocal maximum intensity projections. Scale bars, 10 μm

Fig. 2 Nucleoli and coilin containing bodies from a lampbrush oocyte. a
Part of the GV content: fragments of lampbrush chromosomes (gray),
extrachromosomal nucleoli (green), and round shape coilin-containing
bodies (red). Double immunostaining with fibrillarin and p80 coilin anti-
bodies. b Extrachromosomal nucleoli (green and gray) and irregular ring-
like coilin-containing bodies (red). RNA FISH of U3 snoRNA probe to
the nucleoli isolated from GV followed by immunostaining using p80
antibody. Epifluorescence microscopy. Scale bar, 10 μm
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as the result of the fusion of smaller ones. rDNA amplification
as a continuous process over an extended period of oocyte
growth appears to be essential.

Discussion

The nucleolus is the most prominent non-membrane nuclear
organelle of almost all eukaryotic cells, which arises in asso-
ciation with NOR as a result of rDNA activity during the cell
cycle interphase. Being involved in many physiological and
pathological processes, such as cell cycle control, DNA dam-
age repair, cell stress and homeostasis, and cancer diseases
(Grummt 2010, 2013; Ogawa and Baserga 2017; Penzo
et al. 2019), the nucleolus is primarily responsible for biogen-
esis of the protein synthesizing apparatus (Pederson 2011;
Dubois and Boisvert 2016). The compartmentalization of the
processes of pre-rRNA synthesis, processing and rRNA as-
sembling with ribosomal proteins defines the nucleolus struc-
ture. The nucleoli are known to be bipartite or tripartite (Thiry
and Lafontaine 2005; Lamaye et al. 2011; Thiry et al. 2011).
The latter comprise fibrillar centers (FC), each containing a
single or multiple rDNA repeats, a dense fibrillar component
(DFC) representing pre-rRNA processing zone, and a granular
component (GC) – pre-ribosome subunits formation zone. In

bipartite nucleoli, the FCs are not revealed, and active rRNA
genes are dispersed within the fibrillar component
(Hernandez-Verdun et al. 2010; Lamaye et al. 2011).

Our results seem to be relevant to data on bipartite nucleo-
lus structure in turtle somatic tissues (Thiry and Lafontaine
2005; Hernandez-Verdun et al. 2010; Lamaye et al. 2011;
Thiry et al. 2011; Bartholomé et al. 2019). We found the
extrachromosomal nucleoli in T. scripta oocytes to reveal
rDNA containing material scattered over the fibrillar compo-
nent detected by fibrillarin staining, as well as RNA-
polymerase I and U3 snoRNA unevenly distributed over the
same part of the nucleolus. Pre-rRNA transcripts were re-
vealed in the nucleoli at all studied stages of oocyte develop-
ment. All the obtained data confirm functional activity of the
nucleoli from early diplotene to the late lampbrush stage.

Exploration into the functional organization and dynamics
of extrachromosomal structures in T. scripta GVs have made
the concept of rDNA amplification during oogenesis in some
of Sauropsida more evidence-based. Although there are no
available data related to the beginning of rRNA zygotic syn-
thesis in reptilian embryogenesis, we can assume that similar-
ly to Xenopus (Davidson 1986) and chicken (Zagris et al.
1998), the embryonic genome activation in reptilians should
happen somewhat about the period of middle blastula–
gastrula formation. It is notable that in Xenopus oocytes,

Fig. 3 Nucleoli in T. scripta oocytes at the successive stages of oocyte
growth. a Early diplotene oocytes (arrowheads) in the germinal bed area
of the ovary: single nucleoli (red) in the nuclei. b Pre-lampbrush oocyte:
several nucleoli (red) in the GV. c Lampbrush oocyte nucleus: the

nucleoli (red) on the periphery of the nucleus. RNA FISH using 5’ETS
probe on cryosections, counterstaining with DAPI (gray).
Epifluorescence microscopy. Scale bars, 10 μm

Fig. 4 Extrachromosomal nucleoli manually dissected from the T. scripta GV. Immunostaining with anti-fibrillarin antibodies (a), counterstaining with
DAPI (a’) and merge (a”). Scale bars, 10 μm
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maternal rRNAs are stored as unprocessed pre-rRNA
(Verheggen et al. 1998, 2000). It can be assumed that the
labeling pattern of the T. scripta nucleolus with RNA FISH
using the 5’ETS probe is due to the same oocyte feature.
Anyway, NOR rDNA amplification and functioning of nu-
merous extrachromosomal nucleoli in T. scripta oogenesis
are definitely of a great importance for the maternal rRNA
stockpiling and its endogenic source.

It seems reasonable to approach the consideration of the
phenomenon of NOR ribosomal gene amplification in terms
of versatility of nucleolar amplification strategies and the evo-
lutionary aspect. In amphibian oogenesis the rDNA amplifi-
cation process starts in oogonia. rDNA synthesis evolves
slowly until the pachytene stage. Then, very intensive rDNA
synthesis at pachytene stage leads to formation of the “nuclear
cap” of DNA (Gall 1968; Macgregor 1968; Perkowska et al.
1968; Gall and Pardue 1969; Ficq and Brachet 1971; Coggins
and Gall 1972). About 11 rounds of rDNA synthesis are esti-
mated to be involved in the production of the final number of

NOR copies in X. laevis (Perkowska et al. 1968; Coggins and
Gall 1972). DNA synthesis ceases completely at the early
diplotene stage and rDNA copies disperse around the nuclear
envelope to form the extrachromosomal nucleoli. The same
process appears to take place in fish oogenesis (Raikova
1976). In reptilians, we obviously have quite a different pat-
tern of rRNA gene amplification. All data indicate absence of
rDNA extra synthesis and “nuclear cap” formation in early
meiotic oocytes. Contrarily, the smallest diplotene oocytes
feature a single true nucleolus, which is undoubtedly related
to a single NOR located in chromosome 14 (Cleiton and
Giuliano-Caetano 2008). The number of nucleoli increases
with oocyte growth and varies between 300 and 400 at the
lampbrush stage. We can confidently suggest that continuous
multiplication of functionally active nucleoli occurs during
oocyte growth from the early diplotene stage up to
vitellogenesis.

In Sauropsida, that includes birds and reptiles, NOR func-
tionality during oogenesis can vary fundamentally at the level

Fig. 6 rDNA detection in extrachromosomal nucleoli. a GV manually
dissected from lampbrush stage oocyte: lampbrush bivalents and DNA
granules stained with dsDNA-specific fluorochrome SYBR Green. b
Extrachromosomal nucleoli manually dissected from the GV of
lampbrush stage oocyte: DNA granules (arrows) detected using anti-
dsDNA antibody, counterstaining with DAPI (gray). c Cryosection

through the nuclear periphery of the lampbrush stage oocyte: extrachro-
mosomal nucleoli after DNA FISH of 5’ETS probe (c) followed by im-
munostaining using anti-dsDNA antibody (c’), manifest a full overlay of
fluorescent signals in DNA granules (arrow) (c”). Confocal laser scan-
ning (a, c) and epifluorescence (b) microscopy. Scale bars, 10 μm

Fig. 5 RNA-polymerase I detection within nucleoli in T. scripta GV. a–
a” Cryosection of the ovary fragment: pre-lampbrush oocyte and small
early diplotene oocyte (arrowhead) in germinal bed. Double

immunostaining with fibrillarin (a) and RNA-polymerase I (a’) antibod-
ies. a” Overlay, DAPI channel (gray) is added. Epifluorescence micros-
copy. Scale bars, 10 μm
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of classes, orders or even families regardless of their evolu-
tionary proximity. Among reptilian Sauropsida, a high level of
rDNA amplification could be apparently expected in all
Testudines and Crocodilia (Guraya 1989; Callebaut et al.
1997; Uribe and Guillette 2000; Moore et al. 2008; Pérez-
Bermúdez et al. 2012; this research). At a lower level, rDNA
amplification occurs in oocytes of only some of the represen-
tatives of Squamata, such as Bipes genus from Bipedidae,
Amphisbaenia (Macgregor and Klosterman 1979) and
Podarcis sicula from Lacertidae, Lepidosauria (Motta et al.
1991). Absence of rDNA amplification and the peculiar pat-
tern of nucleolar dynamics in oocytes of a vast majority of
lizards and other Squamata appear to be similar to those in
birds (Koshel et al. 2016; Davidian et al. 2017).

According to the recent phylogeny data (Chiari et al. 2012;
Crawford et al. 2012, 2015; Liu et al. 2017), birds and crocodiles
belong to a common clade Archosauria. Phylogenetically, turtles
are much closer to Archosauria rather than to Squamata, and
togetherwithArchosauria are further included into a higher taxon
Archelosauria. The latter evolved separately from Squamata and
other reptiles (Lepidosauria). Based on the above, we can as-
sume, actually following H. Macgregor (1982), that, since
rDNA amplification occurs during oogenesis similarly in all am-
phibians, it is arguable that the first Sauropsida, like their ances-
tors, could have inherited and retained this feature (Fig. 8).
Indeed, among representatives of the evolutionarily ancient
branch Archelosauria (turtles and Archosauria) that formed at
the beginning of the Triassic period, the phenomenon of rDNA
amplification is rather common and, apparently, affects represen-
tatives of the entire orders Testudines and Crocodilia. Another
point is that their rDNAamplification strategy differs from that of
amphibians. The amplification phenomenon was also observed
in some primitive Squamata (suborder Amphisbaenia), which
form an evolutionarily distant from Archelosauria branch of
Sauropsida. At the same time, among young, evolutionarily pro-
gressive taxa both in the Archelosauria branch (the entire Aves

class) and the Squamata (probably the vast majority of the
Serpentes and Lacertilia suborders), rDNA amplification does
not occur during oogenesis. It is replaced by a more complex
process of ribosome accumulation involving the biosynthetic
potential of the follicular cells that source the necessary amount
of rRNA to the ooplasm. Notably, there is a difference between
the ways of follicular donation in birds and lizards mentioned
above.

The problem deserving attention concerns the significant
diversity of the rDNA amplification methods and of the ways
of extrachromosomal nucleoli formation among different or-
ganisms. The nuclear cap of rDNA during the pachytene stage
in amphibians and fish, and the progressive nucleoli reproduc-
tion during oocyte growth in the turtle are the brightest in-
stances of different amplification strategies in vertebrates
(Fig. 8).

The same applies to the method of delivering material from
follicular cells to the ooplasm: intercellular bridges in repre-
sentatives of Squamata vs the transosomes in birds and, prob-
ably, some turtles (Rahil and Narbaitz 1973). The phenomena
determining the diversity of the ways of ribosomal gene am-
plification is a matter of fundamental importance. The ques-
tion whether and how the way of nucleolar amplification may
affect oocyte maturation remains open.

Concluding remarks

The experimental data obtained here confirm the amplification
of ribosomal RNA genes in turtle oocytes, show the specific
way of forming extrachromosomal nucleoli in their GVs, and
allow us to make a series of evolutionary generalizations
based on our own data and available publications. In line with
Herbert Macgregor views (Macgregor 1982), we can suggest
that rDNA amplification and nucleolus formation during oo-
genesis in reptiles is an ancient primitive mechanism of

Fig. 7 DNA replication evidence in nucleoli at the successive stages of
T. scripta oocyte growth. a Germinal bed zone fragment: small oocytes
(arrows), presumably at the early diplotene stage. b Pre-lampbrush stage
oocyte: extrachromosomal nucleoli of different sizes. c Nucleoli

manually isolated from the lampbrush stage oocyte. a, c Indirect immu-
nostaining using anti-PCNA antibody (green). b Overlay of PCNA
(green) and DAPI (gray). Epifluorescence microscopy. Scale bar, a
10 μm; b 20 μm; c 10 μm

860 Cell Tissue Res (2021) 383:853–864



ribosome production increasing inherited by reptiles from am-
phibian ancestors. In the process of evolution, this strategy is
replaced bymore efficient mechanisms in various phylogenet-
ic lines of reptiles based on the use of somatic cells surround-
ing the oocyte as donors. Remarkably, this transition occurs
independently in the distant evolutionary lines of Squamata
and Archosauria and is associated with the development of
large, evolutionarily plastic, and widespread taxa (such as
Aves and Lacertilia). Integration of the existing and new data
on the features of rDNA amplification in reptile oocytes dem-
onstrates the existence of a clear macroevolutionary trend in
oocyte strategies related to stockpiling of an increased rRNA
reserve. The reasons for the diversity of ways to amplify ribo-
somal genes (the nuclear rDNA cap at the pachytene stage vs
continuous nucleolar reproduction in growing oocytes) re-
main unclear.
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