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Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The
purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete
interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to
humans. The review provides a thorough overview of post-ejaculation events inside the sow’s reproductive tract including
comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodol-
ogy for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic
sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human
infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human
mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new
male contraceptives.
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Introduction – domestic pig as a biomedical
model

The use of domestic pigs as a model animal for medicine/
surgery dates all the way back to ancient Greek physician-
philosopher Galen (Zuidema and Sutovsky 2019; this issue
of CTR). Physiologically and genetically, the domestic pig
bridges the gap between laboratory rodents and humans. At
the gamete level, pig spermatozoa are similar to human (e.g.,

centrosomal contribution) as well as zygotic and pre-embryo
development (timing of paternal mitophagy and major zygotic
genome activation (MZGA), sperm-zona interactions in terms
of sustained sperm binding and anti-polyspermy defense)
when compared to the rodent model (Fig. 1). Boar ejaculates
are plentiful and physiologically relevant as spermatozoa have
full contact with seminal plasma at the time of semen collec-
tion and are often collected naturally using the gloved hand
technique, without the use of electroejaculation or surgical
removal from epididymides as often done in rodents (Geisert
et al. 2019).

Domestic boars are conducive to studies that require a large
number of spermatozoa or seminal plasma as they produce
high volume ejaculates (up to 500 ml) in three distinct frac-
tions (pre-sperm, sperm-rich and post-sperm rich, with the gel
fraction intermittent through the ejaculation process). The
boar ejaculate is rich in seminal plasma produced mostly by
large vesicular (major portion) and bulbourethral (gelling por-
tion) glands with a small contribution by the prostate. Boar
ejaculates are easy to process for artificial insemination (AI),
intrauterine insemination (IUI), in vitro fertilization (IVF) and
intracytoplasmic sperm injection (ICSI). Additionally, embryo
transfer technology is already well developed and semen
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freezing and sexing technologies are feasible and likely to
improve in the future. Significant for biomarker discovery
and validation, data from single sire AI are available in boars
that can be correlated with the expression of sperm quality/
fertility biomarkers. On the female side, the acquisition of
oocytes is relatively easy in pigs as compared to other mam-
malian model species. The harvesting of gilts for meat is a
standard procedure, resulting in an excess of ovaries that are
typically discarded in industry settings. This provides an op-
portunity for researchers to gain access to many ovaries from
which oocytes may be extracted. While gilts are often not
cycling at the time of slaughter, hormones in oocyte matura-
tion media help subside this issue or cycling sow ovaries can
be requested from sow-specific slaughter times (Yuan et al.
2017). As pigs are a litter bearing species, each ovary contains
many follicles from which oocytes can be aspirated. This al-
lows researchers to conduct large-scale IVF studies with

markedly less hassle than other mammalian models provide.
It also removes the ethical dilemmas and costs associated with
using human or primate gametes outright.

The present review takes inventory of current research
using the domestic pig as a biomedical model for male fertility
research, focusing on the early events of the reproductive pro-
cess starting with semen deposition and transport in female
reproductive, through capacitation and fertilization and con-
cluding with thoughts on early zygotic development and pe-
culiarities of assisted fertilization.

Semen deposition and transport

In pigs, semen is deposited directly into the uterus of a sow
(Fig. 2a) from where it is transported through the isthmus to
ampulla through the aid of uterine peristaltic contractions (Fig.

Fig. 1 Comparative flowchart of major fertilization events during natural
and assisted (IVF, ICSI) fertilization in the domestic pig, humans and
rodents, represented by the mouse. The similarities between porcine and
human fertilization are contrasted with the mouse as a most common
animal model extrapolated to humans, without the intent to distract from
the significance and impact of rodent models. Onemajor difference between
humans and pigs on one side and rodents on the other is the lack of
physiological sperm exposure to seminal plasma in rodent studies where

semen collection is difficult and epididymal spermatozoa never exposed to
seminal plasma are used to study sperm capacitation and gamete interactions
in vitro, which do involve the seminal plasma originated sperm surface
proteins during rodent gamete interactions in situ. Also obvious is the
difference between ICSI vs. IVF and ICSI vs. natural fertilization, wherein
multiple steps of gamete transport and gamete interactions are bypassed by
direct microinjection of a single spermatozoon in the oocyte cytoplasm
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2b, b’). Sows ovulate once every 21 days and natural mating is
only allowed when a sow is in estrus (commonly referred to as
standing heat). The average duration of estrus in weaned sows
expressing estrus on day 4 has been reported to be 54 ± 15 h,
with ovulation occurring 54–86% hours after initial onset (re-
ported in Soede et al. 1994; recently reviewed in Knox 2015).
The mechanism guaranteeing that spermatozoa stay viable
with fertilization potential in the female reproductive tract by
the time of ovulation is crucial since mating can occur up to
2 days prior to ovulation. Ejaculated spermatozoa traversing
the oviduct are decelerated by the mucoidal environment and
captured by cilia epithelial cells in the isthmic region (Fig.
2c, c’), forming a functional oviductal epithelium sperm res-
ervoir (SR) (Suarez et al. 1991). The effects of oviductal se-
cretion on the reproductive process is thought to be a result of
the dynamically balanced combined action (inhibitory and
stimulatory) of multiple factors present in the oviductal lumen
at different stages of the ovulatory cycle and in the presence of
gametes or embryos; see for review Ghersevich et al. (2015).
Changes in the distribution of intraluminal mucus in the por-
cine oviductal reservoir during estrus were studied in
Johansson et al. (2000). In most mammalian species, contact
of spermatozoa with the oviduct is mediated by sperm
oviduct-binding proteins with affinity to the apical surface of
the oviduct lining epithelial cells (Suarez 1987). Binding of
spermatozoa to the oviduct is carbohydrate-mediated and
therefore, the binding molecule should have the ability to bind
to the sperm surface while having the ability to interact with
carbohydrates (Green et al. 2001). Proteins in the apical region
of the plasma membrane of the sperm head bind to the oviduct
and increase in vitro sperm survival (Fazeli et al. 2003). By

being preserved within the SR, surface-bound spermatozoa
are able to maintain their motility much better than those that
float freely in the oviductal fluid in both pig and bovine
(Fazeli et al. 1999; Gualtieri and Talevi 2000). The SR may
also serve a sperm selection function by releasing waves of the
most motile, functionally and morphologically intact sperma-
tozoa, ensuring the selection of the best quality spermatozoa
and thus lowering the probability of polyspermic fertilization
while prolonging sperm lifespan before oocyte ovulation. The
SR is also the place where sperm capacitation and hyperacti-
vation occurs (Fig. 2d, d’), which is a prerequisite for sperm
detachment from it (Suarez 1998). Although SR is assumed to
exist in the human oviduct, there is, for obvious reason, lim-
ited knowledge of how it is established and regulated. Due to
its reproductive organ size and reproductive mechanism sim-
ilarities to humans, domestic pig offers a useful animal model
to address such essential questions.

In pigs, the sperm-oviduct interactions are based on the
high affinity of spermatozoa to oligomannose-containing
binding sites, terminal mannosyl and galactosyl residues and
hybrid N-glycan types (Green et al. 2001;Wagner et al. 2002).
Themannose-binding sites are localized in the apical region of
the sperm head and are lost during capacitation (Ekhlasi-
Hundrieser et al. 2005). The main oviduct-binding protein
on the boar sperm head, AQN1, has been described
(Ekhlasi-Hundrieser et al. 2005). This spermadhesin, originat-
ing from seminal plasma, closely binds to the sperm surface
(Dostalova et al. 1994; Sanz et al. 1992). AQN1 showed a
broad carbohydrate-binding pattern as it recognizes galactose
as well as mannose structures. AQN1 inhibits in vitro sperm
binding to fallopian explants depending on its concentration

Fig. 2 Gamete transport in sow reproductive tract. Ejaculation to
fertilization: the path to fertilization in the pig. (a) Spermatozoa are acti-
vated by mixing with seminal plasma factors upon ejaculation in the
cervix. (b, b’) Spermatozoa pass through the uterine horns, aided by
peristaltic muscle contractions. (c, c’) Upon passing through the
uterotubal junction (UTJ), spermatozoa reach the oviductal sperm

reservoir (SR) where some spermatozoa are capable of binding glycans
and remain until the time of ovulation. (d, d’) Hyperactivated spermato-
zoa released from the SR in response to ovulatory cues undergo sperm
capacitation and head toward the ampulla-isthmus junction (AIJ) where
ovulated M2 oocytes are prepared for fertilization (e, e’)
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(Ekhlasi-Hundrieser et al. 2005). DQH/pB1/BSP1 is another
protein on the boar sperm head that binds to mannose
(Jelinkova et al. 2004). This surface protein localizes to the
apical part of the ejaculated sperm head where it can mediate
sperm binding to the SR (Manaskova et al. 2007). A recent
study demonstrated that porcine spermatozoa recognize car-
bohydrate structures containing Lewis X motifs with high
affinity (Silva et al. 2017). Lewis X-containing glycans are
considered to be among the most important receptors for
sperm-oviduct binding in pigs. It is a trisaccharide antigen that
interacts with glycolipids. Lewis X glycans were found in the
porcine isthmus (Machado et al. 2014). The same group tested
377 glycans, where spermatozoa showed a high affinity to
Lewis X trisaccharide and biantennary structures containing
a mannose core with 6-sialylated lactosamine (Kadirvel et al.
2012). Later, ADAM5 and MFGE8 (also referred to as
lactadherin, P47, and SED1) were identified as proteins on
the sperm head binding sulfated Lewis X (Silva et al. 2017).

Additional studies aimed at finding spermatozoa-binding
proteins in the porcine oviduct focused on the unique sperm-
oviduct binding protein in pigs; a sperm-binding glycoprotein
(SBG), also known as Deleted in Malignant Brain Tumor 1
(DMBT1), isolated from oviductal epithelial cells containing
an O-linked Gal 1–3 GalNAc disaccharide (Marini and
Cabada 2003). Boar spermadhesin AQN1 recognizes galactose
in this disaccharide. Evidence that SBG/DMBT1 is a sperm-
binding partner of AQN1 was presented when SBG/DMBT1
was localized in portions of the oviductal tube where sperm
clusters have been detected (Talevi and Gualtieri 2010;
Teijeiro et al. 2008). A recent study demonstrated that the main
scavenger receptor cysteine-rich (SRCR) domain in DMBT1
promoted sperm binding to form the SR in the oviduct and this
function is probably mediated by the polypeptide itself (Roldan
et al. 2018). Additionally, annexins were isolated from porcine
oviductal cells based on their affinity for sperm membrane pro-
teins. One of the oviductal annexins reported is annexin A2
(ANXA2), localized on the apical surface of oviductal epithelial
cells. It is the major candidate as a receptor for boar spermatozoa
to form the SR, most likely through the interaction with AQN1
spermadhesin (Marini and Cabada 2003; Teijeiro et al. 2009).
ANXA2 may exist in a bound form with S100 calcium-binding
protein A10 (S100A10) as well as separately. However, this
binding distinctly differs from the biological function of
ANXA2 (Teijeiro et al. 2016). It was found that ANXA2 is
bound to S100A10 in oviducts of pigs and cows, as well as
mice, humans, cats, dogs and rabbits. In sows, it localizes in
the outer layer of the apical plasma membrane of oviductal
epithelial cells (Teijeiro et al. 2016). At least one other protein
on the apical membrane of oviductal cells that maintains the
fertilizing ability was reported. This was shown to be heat shock
70 kDa protein 8 (HSPA8), whichmediates sperm-oviduct bind-
ing (Elliott et al. 2009). The ensuing biological activity of this
protein is most likely responsible to prolong andmaintain sperm

viability in the oviduct (Fazeli et al. 2003). Unlike pigs, humans
deposit spermatozoa in the anterior vagina near the cervical
opening, as the anatomy of both male and female genitalia dif-
fers from pigs; however, transport of semen to the site of fertil-
ization is similar in these two species. For an extensive compar-
ison of gamete transport, we recommend the review by Suarez
(2015). The existence of the SR in humanswas indicated in vitro
(Kervancioglu et al. 1994;Murray and Smith 1997) and the data
are not conclusive to postulate a unified model for sperm trans-
port and storage in humans (Williams et al. 1993). Suarez (2015)
suggested that fertilization in humans is a relatively inefficient
and an unregulated process as coitus took on an additional role
of promoting long-term couple bonding.

Spermatozoa are released from the SR during sperm capac-
itation (Suarez 1998) (Fig. 2d, d’), timed to coincide with
ovulation and controlled by endocrine signals originating
from the ovulating follicle(s) and ovulation products (oocyte
cumulus complexes) of the ipsilateral ovary (Hunter 1996;
Hunter and Rodriguez-Martinez 2004). Two theories have
been considered regarding sperm release from SR: (i) by the
capacitation-induced removal of proteins from the sperm sur-
face that terminates sperm binding to oviduct cells (Topfer-
Petersen et al. 2008) and/or (ii) by cleavage of carbohydrate
residues on the epithelial surface of the oviduct through gly-
colytic enzymes present in the oviductal fluid after ovulation
(Carrasco et al. 2008). A contributing force for sperm release
is the increased frequency and amplitude of sperm flagellar
movement brought about by sperm hyperactivation (Suarez
2008, 2016). Capacitated, hyperactivated spermatozoa are
then translocated to the site of the fertilization, the ampulla
(Fig. 2e, e’). The human cervix has been hypothesized to be
the SR with no robust evidence to support it. Furthermore,
human spermatozoa may not form a distinct SR in the oviduct
(Williams et al. 1993) and spermatozoa seem to be stored for
longer periods of time purely by their deceleration by (i) ob-
stacles formed by increasing oviductal lumen complexity to-
ward the ovary, (ii) oviductal mucus (Jansen 1980) and (iii)
spermatozoa adhering with low affinity to the oviductal epi-
thelium (Pacey et al. 1995a, b). To our knowledge, there is no
conclusive research to indicate what happens to human sper-
matozoa at the time of ovulation.

Seminal plasma and acquisition of sperm
surface proteins involved in gamete transport
and fertilization

The cell-free portion of ejaculate, human and animal seminal
plasma is a complex mixture of secretions originating mainly
from the epididymis and accessory sex glands, which provides
a supportive environment for ejaculated spermatozoa (Calvete
et al. 1997). Reflective of a widespread misunderstanding of
seminal plasma is the belief that it is a relatively homogenous
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fluid, like that of blood plasma, a fluid with well-regulated
homeostasis. Contrarily, seminal plasma is anything but this,
thus referred to as seminal fluids by some (Bjorndahl and
Kvist 2003). The basic function of SP is to modulate the
post-testicular maturation process that includes an
attachment/rearrangement of the sperm surface proteins/
glycoproteins secreted throughout the male genital tract.
Sperm-binding secretory proteins have been shown to contrib-
ute to the formation of an oviductal sperm reservoir in the pig
(Petrunkina et al. 2001) as well as controlling sperm matura-
tion by inhibiting capacitation (Vadnais and Althouse 2011;
Vadnais et al. 2005; Vadnais and Roberts 2007). The SP con-
tains decapacitation factors that prevent premature acrosomal
exocytosis and the proteins that bind to the sperm surface
increase fertilization potential (Centurion et al. 2003).
Inactivation and/or removal of these factors may affect
in vivo capacitation (Calvete et al. 1997); they are also neces-
sary for events leading to successful fertilization such as
sperm-zona pellucida interactions and sperm-oocyte fusion,
as reviewed in Rodriguez-Martinez et al. (2009).
Additionally, SP has been shown to modulate the immune
response in the uteri of pigs, humans and other mammals
(Kelly and Critchley 1997; O’Leary et al. 2004; Rodriguez-
Martinez et al. 2010; Rozeboom et al. 1999; Schuberth et al.
2008; Veselsky et al. 2000) by modifying gene expression
affecting local processes of immune defense at the oviductal
sperm reservoir (Alvarez-Rodriguez et al. 2019; Sharkey et al.
2012); also reviewed in Schjenken and Robertson (2014).
Properties of seminal plasma such as the ability to maintain
uncapacitated sperm state and to immune-suppress the female
reproductive tract are widely exploited in pig semen handling/
processing, storage/extension/preservation and AI
(Rodriguez-Martinez et al. 2009; Rodríguez-Martínez and
Peña Vega 2013). Such know-how could be translated into
human reproductive medicine, to benefit intrauterine insemi-
nation, IVF and sperm prepping for intracytoplasmic sperm
injection (ICSI).

Extensive proteomic studies of SP proteins with interspe-
cies comparisons have been performed (De Lazari et al. 2019;
Druart et al. 2013; Gonzalez-Cadavid et al. 2014; Perez-Patino
et al. 2016a; Perez-Patino et al. 2016b). Identified proteins
range from various hormones, enzymes, proteinase inhibitors
and growth factors to proteins and glycoproteins with various
function. Furthermore, the effects of SP composition on sperm
fertilization capacity varies depending on the fertility of indi-
vidual animals (De Lazari et al. 2019; Gonzalez-Cadavid et al.
2014). The most extensive proteomic study to date (Perez-
Patino et al. 2016b) identified 536 proteins in boar SP, 409
of them annotated in S. scrofa taxonomy, with only 20 specif-
ically implicated in reproductive processes. The nature of in-
volvement of the majority of SP proteins in reproduction thus
remains unclear, in animals and in humans. An electrophoretic
profile of boar seminal plasma revealed the predominance of

proteins (85.3%) with MW below 25 kDa with a high pre-
dominance of fibronectin and spermadhesins (AQN1, AQN3,
AWN, PSPI and PSPII) (Druart et al. 2013). This is in accor-
dance with another study (Gonzalez-Cadavid et al. 2014)
where spermadhesins represented at least 45.28% of the total
intensity of all spots. Only a limited number of studies have
focused on the human seminal plasma proteome, with a total
of 2064 non-redundant proteins identified. For a thorough
review of the human seminal plasma proteome, we recom-
mend the following reviews Gilany et al. (2015) and Jodar
et al. (2017). Alterations of semen proteome including sperm
and seminal plasma proteins from asthenozoospermic, oligo-
zoospermic and teratozoospermic patients were noted, com-
pared to normozoospermic individuals (Jodar et al. 2017),
which could be targeted for the discovery of sub-/in-fertility
biomarkers (Bieniek et al. 2016; Drabovich et al. 2014).

Many SP proteins have been studied extensively and their
function established. Spermadhesins, a group of glycoproteins
of 12–16 kDa, predominate in boar SP. Spermadhesins, as
well as protein containing fibronectin type II (Fn2) domains,
DQH sperm surface protein/binder of sperm 1 (BSP1), are
adhesive proteins that bind to the surface of boar sperm during
ejaculation. All spermadhesins with BSP1 and their structures,
biochemical features and binding properties were character-
ized and are reviewed in detail (Jonakova et al. 2007; 2010;
Jonakova and Ticha 2004; Topfer-Petersen et al. 1998).
Posttranslational modifications, such as glycosylation, deter-
mine the variety of functional properties of boar
spermadhesins (Calvete et al. 1995). Collectively, AQN1,
AQN3 and AWN are heparin-binding proteins that form the
base sperm-coating layer (mostly AWN and AQN3) covering
predominantly the acrosomal region of the sperm head (Fig. 2)
to which other spermadhesins aggregate thus forming outer
layers. Their function is to stabilize the membrane covering
the acrosome and to participate in the formation of
the oviductal sperm reservoir (mainly AQN1) (Ekhlasi-
Hundrieser et al. 2005; Liberda et al. 2006). Most AQN and
AWN spermadhesins adsorbed onto ejaculated spermatozoa
are released from the sperm surface during capacitation
(Fig. 3), indicating that a large subpopulation of each boar
spermadhesin is loosely associated to the sperm surface and
functions as decapacitation factors (Dostalova et al. 1994).
This removal event is essential for detachment of spermatozoa
from the oviductal epithelium. A sperm-oocyte binding test
and other experimental data demonstrated that intact AQN1,
AWN and DQH proteins on the sperm surface are required for
the primary binding of spermatozoa to the zona pellucida (ZP)
(Dostalova et al. 1995; Ensslin et al. 1995; Manaskova and
Jonakova 2008; Manaskova et al. 2000; Rodriguez-Martinez
et al. 1998; Veselsky et al. 1992, 1999). PSP-I and II are the
major SP proteins (more than 50% of all proteins), forming
heparin-non-binding heterodimers of glycosylated
spermadhesins (Calvete et al. 1995; Manaskova et al. 2000),
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Fig. 3 Image-based flow cytometric measurements of spermadhesin
AQN1shedding during sperm in vitro capacitation (IVC) under protea-
some permissive/inhibiting conditions (100 μM MG132) and vehicle
control (0.2% EtOH), marrying fluorometry with epifluorescence imag-
ing of AQN1 localization in the ejaculated and capacitated spermatozoa.
Spermatozoa were fixed with acetone and labeled with green fluorescent
peanut agglutinin (PNA) lectin to monitor acrosomal integrity (a), red
fluorescent rabbit polyclonal anti-AQN1antibody (Jonakova et al. 1998)
to monitor AQN1 shedding from the sperm during IVC (b) and blue
fluorescent DNA stain 4′,6-diamidino-2-phenylindole (DAPI) applied
for normalization purpose (c). Representative images of ejaculated (d),
capacitated–non-inhibited (d’), as well as proteasomally inhibited (d”),

spermatozoa including vehicle control (d”’) are presented below fluores-
cence histograms. A mask is shown in the brightfield image of
the ejaculated spermatozoon (d) that was utilized to calculate fluorescence
intensities of AQN1. From epifluorescence images, one can see the shed-
ding of AQN1 from the acrosomal region, which participates in
the formation of the oviductal epithelium sperm reservoir (prior to capac-
itation) and ZP interaction after capacitation, also represented by the
lower intensity peak in histogram b. Proteasomal inhibition had no effect
on this shedding event as we reported previously (Zigo et al. 2019a).
AQN1 is also localized to the connecting piece and flagellum, however,
functions of AQN1 in these regions remains to be elucidated. Every flow
cytometric run represents 10,000 DAPI-defined sperm events
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the pro-inflammatory and immune-stimulatory activity of
which is believed to modulate immune response in the uterus
(O’Leary et al. 2004; Rodriguez-Martinez et al. 2010;
Rozeboom et al. 1999). Furthermore, it has been reported that
the addition of spermadhesins PSP-I/PSP-II to sperm medium
results in an incremental, concentration-dependent increase of
sperm viability/longevity, implying potential use for sperm
preservation in reproductive technology (Centurion et al.
2003). Similar to pigs, ten most abundant human SP proteins
represent > 80% of human SP proteome (Drabovich et al.
2014), including semenogelins I and II (accounting for up to
30% of total SP proteome), fibronectin, kallikrein-like prote-
ase, lactoferrin, laminin and serum albumin (Pilch and Mann
2006). The BSP1 homolog (BSPH1) was described in humans
(Plante et al. 2014), solely expressed in epididymal tissue; it
shares many biochemical and functional features with
angulates’ BSPs secreted by seminal vesicles.

Under physiological conditions, boar seminal plasma pro-
teins form variable aggregates (homo- and hetero-oligomers),
differing in relative molecular mass, ratio of individual
spermadhesins and DQH/BSP1 (most abundant proteins of
boar SP) and in their interactive properties (Calvete et al.
1997; Jelinkova et al. 2003; Jonakova et al. 2000; Manaskova
et al. 2000, 2003). Such aggregates are formed and bound to the
sperm surface during ejaculation. The interaction of aggregated
forms with polysaccharides of glycosaminoglycans of oviduc-
tal epithelial cells occurs leading up to sperm capacitation. The
aggregates of DQH, AQN and AWN proteins interact with
cholesterol and may be important acceptors of cholesterol re-
leased from the spermatozoa’s membrane during capacitation.
It is apparent that SP interactions with spermatozoa could be
beneficial in the short term for normal maintenance of sperm
viability after ejaculation/semen deposition (decapacitating fac-
tors) but detrimental in the long-term condition of semen pres-
ervation (cholesterol extraction from sperm plasmamembrane).
The PSP spermadhesins are present in boar seminal plasma as a
heterodimer complex (PSP I/PSP II). Very little is known about
the fate of spermadhesins after sperm capacitation. We know
that AQN1 with adhered SPINK2 (Davidova et al. 2009,
Jonakova et al. 1992) is ubiquitinated. Furthermore, AQN1
and SPINK2 interact with ubiquitin C terminal hydrolase
UCHL3 and with the PSMD8 and PSMD4 subunits of the
19S regulatory complex of sperm proteasome. This suggests
that the activity and turnover of these seminal plasma proteins
may be controlled by the ubiquitin-proteasome system (UPS)
(Yi et al. 2007, 2010a, b). Recently, we demonstrated that UPS
is involved in seminal plasma protein de-aggregation during
in vitro capacitation by targeting and degrading DQH/BSP1,
which is the major component of high-molecular aggregates
(Zigo et al. 2019a). It is also known that proteasomes in both
the human and boar spermatozoa become activated/
phosphorylated during sperm capacitation (Morales et al.
2007; Zigo et al. 2018).

Sperm capacitation

Although spermatozoa acquire the potential to fertilize an oo-
cyte within the epididymides, the expression of this functional
competence is suppressed until after ejaculation and sperm
detachment from the oviductal sperm reservoir. Spermatozoa
must first spend a period of time within the female reproduc-
tive tract before acquiring the competency to fertilize, a pro-
cess that is collectively termed capacitation (Austin 1951;
Chang 1951), during which they undergo a series of biochem-
ical and biophysical changes. These changes include (i) sur-
face properties, such as peripheral membrane protein desorp-
tion, integral plasma membrane redistribution; (ii) plasma
membrane properties, such as lipid composition and trans-
membrane phospholipid asymmetry, lateral diffusion of phos-
pholipids, loss of cholesterol and reorganization of detergent-
resistant domains; (iii) accelerated metabolism; (iv) internal
pH and cytosolic activities of calcium and other ions; (v) a
strong hyperpolarization of membrane potential; (vii) altered
cyclic nucleotide metabolism; and (viii) protein phosphoryla-
tion through regulation of both protein kinases and phospha-
tases (Florman and Fissore 2015). These events take place
independently, in a compartmentalized manner in both the
sperm head and flagellum. Capacitated spermatozoa express
at least three of the following features: (i) hyperactivated mo-
tility of the flagellum, (ii) signal transduction regulation
allowing spermatozoa to respond to chemoattractant and (iii)
the ability to interact with an oocyte and undergo acrosomal
exocytosis.

The purpose of this section is to focus on the aspects of
capacitation that were described in pigs rather than to give an
in-detail review of sperm capacitation. For a comprehensive
review of sperm capacitation in mammals including mice, pigs,
bulls, rams, stallions and humans, we recommend the following
reviews; Aitken and Nixon (2013), Bailey (2010), Buffone
et al. (2014), Florman and Fissore (2015) Gadella and Boerke
(2016), Gangwar and Atreja (2015), Gervasi and Visconti
(2016) Harayama (2018), Ickowicz et al. (2012), Leemans
et al. (2019), Puga Molina et al. (2018), Santi et al. (2013),
Visconti and Florman (2010) and Visconti et al. (2011).

Capacitation is linked with the functional reprogramming
of spermatozoa within the female reproductive tract over a
period of at least 3–4 h (Hunter and Rodriguez-Martinez
2004). However, spermatozoa may begin to capacitate as soon
as they are mixed with seminal plasma containing HCO3

− by
direct stimulation of soluble adenylyl cyclase ADCY 10
(a.k.a. sAC or SACY) (Okamura et al. 1985). Capacitation
is generally believed to initiate with cholesterol efflux from
the plasma membrane (PM) (Davis 1981) and the loss of de-
capacitation factors from the PM surface (Fraser 1984).
However, the literature is ambiguous whether these events
happen concomitantly or one is a consequence of the other.
It was shown that the addition of de-capacitating factors can
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partially reverse capacitation and render spermatozoa incapa-
ble of recognizing and fertilizing an oocyte, at least in mice
(Fraser et al. 1990). These factors originate in the epididymi-
des and accessory sex glands and their removal from non-
capacitated spermatozoa results in a rapid increase in their
fertilizing ability (Fraser 1984). In pigs, discussed above,
these were found to be spermadhesins, reviewed in
Jonakova et al. (2010) and binder of sperm proteins (BSPs),
reviewed in Plante et al. (2016), while in humans, these are
considered to be semenogelins and their degradation products,
including seminal plasma motility inhibitor (Yamasaki et al.
2017) and intrinsic platelet-activating factor acetylhydrolase
(Zhu et al. 2006). Another powerful de-capacitation factor in
both pig and human semen is cholesterol (Cross 1998; Davis
1981). The ubiquitin-proteasome system plays a key role in
sperm capacitation (for review see Kerns et al. 2016).
Relatedly, we recently reported that the UPS plays a role in
spermadhesins and DQH/BSP1 de-aggregation during boar
sperm capacitation as an important step of the detachment of
spermatozoa from the oviductal epithelium (Zigo et al. 2019a)
as well as other proteins’ compartmentalization such as
lactadherin MFGE8, disintegrin ADAM5 and acrosomal ma-
trix protein ACRBP (Zigo et al. 2019b). Cholesterol efflux
from the plasma membrane has also been correlated with an
influx of bicarbonate ions, the activation of ADC 10 and a rise
in intracellular Ca2+ into the spermatozoon (Flesch and
Gadella 2000; Gadella et al. 2008). Besides its key role in
the initiation of critical signal transduction cascades, the bicar-
bonate ion plays a direct role in sperm surface remodeling via
stimulation of phospholipid scramblase activity (Gadella and
Harrison 2000, 2002). These functional membrane changes
allow for lipid raft reorganization at the apical ridge regions
of sperm head (Boerke et al. 2008; van Gestel et al. 2005) that
were found to possess ZP-binding complexes (van Gestel
et al. 2007). The same group showed a redistribution of phos-
pholipids to play a role in the formation of SNARE complexes
that allow for close apposition and docking of the PM and
outer acrosomal membrane (OAM), important for acrosomal
exocytosis (Tsai et al. 2010, 2012).

Hyperactivated motility is a consequence of capacitation,
enabling spermatozoa to detach from the oviductal epithelium,
migrate through the viscous lumen of the oviduct and pene-
trate through the cumulus cell layer and ZP. Quiescent epidid-
ymal spermatozoa upon contact with seminal plasma start
expressing symmetrical, low amplitude flagellar beating also
known as “pro-hook” or “non-full” type hyperactivation.
During capacitation, they start to express asymmetrical,
high-amplitude beating also known as “anti-hook” or “full
type” hyperactivation (Chang and Suarez 2011; Harayama
et al. 2012). The onset of sperm hyperactivation is associated
with an influx of Ca2+ ions into the sperm tail cytosol (Suarez
et al. 1992, 1993), shown to stimulate the cAMP pathway and
activate protein kinase A (PKA), resulting in protein tyrosine

phosphorylation of target proteins in the tail connecting prin-
cipal pieces (Harayama 2003; Harayama et al. 2004, 2012;
Harayama and Nakamura 2008). The calcium/calmodulin
pathway was proposed as another signaling pathway regulat-
ing sperm motility (Hurtado de Llera et al. 2014) and these
two pathways seem to be mutually independent (Litvin et al.
2003). It was shown that the MAPK pathway and ROS regu-
lation of capacitation also occur in pig spermatozoa (Awda
and Buhr 2010). For a more in-detail overview of signal trans-
duction pathways in the pig, we recommend a review by
Hurtado de Llera et al. (2016). Irrespective of signal transduc-
tion pathways, targets of protein tyrosine phosphorylation in
ejaculated boar spermatozoa have been reported (Dube et al.
2005; Flesch et al. 1999; Katoh et al. 2014; Tardif et al. 2001,
2003) and their number is limited when compared to mouse
spermatozoa (Visconti et al. 1995).

In vivo capacitation conditions may be easily mimicked
in vitro and, as obvious from the previous text, three compo-
nents are vital for capacitation-supporting media: HCO3

−,
Ca2+ and a cholesterol acceptor such as bovine serum albumin
(Flesch and Gadella 2000; Tardif et al. 2003). It was previous-
ly shown that hyperactivation can be induced highly and syn-
chronously in laboratory animals such as mouse and hamster
by simple incubation in this capacitation-supporting medium
(Chang and Suarez 2011; Li et al. 2015; Suzuki et al. 2010;
Tateno et al. 2013). In contrast, hyperactivation of boar sper-
matozoa is difficult to induce in the same medium (Harayama
2013; Harayama et al. 2012; Katoh et al. 2014). This suggests
that parts of the cAMP/protein phosphorylation signaling
pathways are more suppressed in boar ejaculated spermatozoa
than in mouse and hamster epididymal spermatozoa. Instead,
replacement of HCO3

− with a cAMP analog cBiMPS and
supplementation of protein phosphatase 1 and 2A inhibitors,
greatly improve the capacity of a capacitation-supporting me-
dium to induce hyperactivation of boar ejaculated spermato-
zoa (Harayama et al. 2012). Spermatozoa capacitate in vitro in
an unregulated manner, which can lead to “over-capacitation”
resulting in spontaneous acrosomal exocytosis that is undesir-
able for AI. Several molecules such as fertilization promoting
peptide, adenosine, calcitonin and adrenaline found in SP
have been shown to have capacitation-regulating effects
(Fraser 2008). These molecules initially accelerate capacita-
tion but then inhibit acrosome loss, thus maintaining sperm
fertilization potential.

Previous markers of sperm capacitation have included hy-
peractivation, Ca2+ influx, protein tyrosine phosphorylation,
change in plasma membrane integrity and acrosomal modifi-
cations and exocytosis. Recently, we described the importance
of Zn2+ efflux for the spermatozoa to gain fertilization com-
petency (Kerns et al. 2018a). This is marked by four distinct
zinc localization patterns (zinc signatures) that are associated
with key markers of sperm capacitation (hyperactivation,
change in plasma membrane integrity, acrosomal
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Fig. 4 Summary of porcine gamete structure and early sperm-oocyte inter-
actions. (a) Initial gamete contact occurs between the sperm acrosome and
oocyte zona pellucida, upon which the sperm acrosome undergoes exocy-
tosis, commonly referred to as the acrosome reaction. At this time, the
major sperm head (equatorial segment, post-acrosomal sheath) and tail
structures (centriole, mitochondrial sheath, principal piece) remain intact,
although they have already been primed during sperm capacitation to fa-
cilitate the subsequent fertilization events. Similarly, the oocyte is quiescent,
having reached cell cycle arrest at the metaphase of the second meiotic
division. Cortical granules are primed for exocytosis near the inner face

of the oolemma and the oocyte chromosomes are arranged in a metaphase
plate anchored by the meiotic spindle. (b) The boar sperm mitochondrial
sheath is highlighted by immunolabeling of PACRG protein (red).
The acrosome is labeled green with lectin PNA and sperm DNA is coun-
terstained blue with DAPI. (c) Following acrosomal exocytosis, the sper-
matozoa remain motile in order to penetrate the zona pellucida, digesting a
fertilization slit in it. (d) Zona pellucida (red, anti-ZPC antibody labeling)
bound spermatozoa at the onset of acrosomal exocytosis (green, lectin
PNA). Blue DNA is counterstained by DAPI
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modification, ability to detect the oocyte, bind to ZP and un-
dergo acrosomal exocytosis). For further review of zinc’s role
in sperm capacitation, see the review by Kerns et al. (2018b).

Zona pellucida binding and associated sperm
surface molecules

Sperm interactions with the oocyte ZP (Fig. 4) include several
phases such as loose attachment to the ZP glycoproteins, pri-
mary binding of spermatozoa to the ZP, induction of the acro-
somal exocytosis by the ZP, secondary binding of spermato-
zoa to the ZP and final penetration through the ZP
(Yanagimachi 1994). Binding of spermatozoa to the glycopro-
tein coat is a receptor-mediated event that involves sperm
surface protein interactions with the complementary ZP
glycoconjugates. A number of identified sperm receptors pos-
sess a lectin-like affinity for a specific sugar residue on ZP that
is responsible for the primary binding. Carbohydrate struc-
tures on ZP3 that mediate primary sperm-ZP interaction are
well documented in the mice model (McLeskey et al. 1998;
Ryu and Lee 2017; Suarez 1996; Topfer-Petersen 1999).
Spermatozoa bind to O-linked oligosaccharides of ZP3 by
their acrosomal region of the plasma membrane, causing ag-
gregation of male cell receptor molecules to ZP3 and initiation
of acrosomal exocytosis in mice (Reid et al. 2011).

Mammalian ZP glycoproteins are coded by three genes,
namely ZPA, ZPB and ZPC (Harris et al. 1994). Due to the
fact that the sequencing of ZP genes was done much later than
the ZP glycoproteins were described (Bleil and Wassarman
1980), this caused confusion in nomenclature as more than
three ZP proteins were detected by electrophoretic analysis
in pig (Menino and Wright 1979). The following nomencla-
ture of porcine ZP (pZP) glycoproteins can be found in the
older literature: pZP1/PZPL (90 kDa, ZPA), pZP3α (55 kDa,
ZPB), pZP3β (55 kDa, ZPC), while proteins designated pZP2
(65 kDa) and pZP4 (25 kDa) are in fact proteolytic products of
PZPL (Hedrick and Wardrip 1986, 1987; Nakano et al. 1987;
Wardrip and Hedrick 1985; Yurewicz et al. 1987). The over-
view of the ZP glycoprotein HUGO nomenclature for mouse,
human, pig and bovine is presented in Table 1. Two names for
ZP glycoproteins are used interchangeably: ZPA or ZP2, ZPB
or ZP1 and ZPC or ZP3; however, this nomenclature has
become questionable when a paralogue to mouse ZP1 was
identified in humans as ZP4 (Hughes and Barratt 1999). A
thorough phylogenic analysis (Spargo and Hope 2003) pro-
poses a unified system of nomenclature for the ZP gene family
that removes ambiguities. In this regard, pigs are similar to
humans in which four genetically distinct ZP proteins exist.
The primary sperm receptor activity in pig has beenmapped to
O- and N-linked glycans on PZP3β (ZPC), a binding homo-
log of mouse ZP3 (Topfer-Petersen et al. 1993; Yonezawa
et al. 1995; Yurewicz et al. 1991). The tri- and tetra-Ta
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antennary N-glycans localized in the N-terminal region of
PZP3α (ZPB) mediate the sperm binding to the ZP whereas
the structurally identical tri- and tetra-antennary N-glycans of
ZP3β (ZPC) appear to play no role in gamete recognition
(Kudo et al. 1998; Yonezawa et al. 1999). It was proposed
that both β-galactosyl and α-mannosyl residues of porcine
ZP are involved in sperm binding (Song et al. 2007;
Yonezawa et al. 2005). Additionally, the increasing sialylation
and sulfation of ZP during maturation of the porcine oocyte is
indispensable for the sperm-ZP binding, induction of acroso-
mal exocytosis and sperm-zona penetration (Lay et al. 2011).

Sperm molecules involved in the primary ZP binding are
localized to the apical region of the capacitated, acrosome-
intact sperm head; while the ones involved in secondary ZP
binding are localized to the inner acrosomal membrane (IAM)
and/or acrosomal matrix. The main candidates responsible for
the sperm-ZP binding in the pig model are AWN, AQN1 and
AQN3 spermadhesins (Calvete et al. 1997; Dostalova et al.
1995; Ensslin et al. 1995; Jonakova et al. 1991, 1998;
Petrunkina et al. 2000; Topfer-Petersen et al. 1998; van Gestel
et al. 2007), which belong to the heparin-binding protein group
(Jonakova et al. 1998). These three spermadhesins identically
bind to Galβ(1–3)-GalNAc and Ga1β(1–4)-GlcNAc carbohy-
drate structures of ZP glycoproteins (Topfer-Petersen et al.
1998); AQN1 binds to the plasma membrane by an indirect
lipid-binding mechanism. AWN and AQN3 stabilize the plas-
ma membrane over the acrosomal cap and the majority are
released from the surface during capacitation, while the few
retained spermadhesins are thought to play a role in gamete
recognition and binding (Dostalova et al. 1994). DQH/pB1/
BPS1 is another seminal plasma protein described as a sperm-
ZP receptor (Jonakova et al. 1998; Manaskova et al. 2007).
DQH is homologous to BSPs that are abundantly present in
bull seminal plasma (Calvete et al. 1997).

Sperm-borne primary ZP receptors that have been studied
in detail are as follows: ZAN/zonadhesin (Bi et al. 2003;
Hardy and Garbers 1995; Hickox et al. 2001; Lea et al.
2001), a major sperm membrane protein with the ZP binding
ability; B4GALT1/β-1,4-galactosyltransferase/EC:2.4.1.22
(Larson and Miller 1997; Rebeiz and Miller 1999), the first
described primary ZP binding receptor; ACRBP/SP32 (van
Gestel et al. 2007); hyaluronidase/PH-20/SPAM1/
EC:3.2.1.35 (Yoon et al. 2014); and angiotensin-converting
enzyme/ACE/EC:3.4.15.1 (Williams et al. 1992; Zigo et al.
2013). Sperm primary ZP binding receptor glycan that is in-
troduced to the sperm surface during epididymal transit is α-
D-mannosidase that was also shown to be the primary ZP
receptor in mice (Cornwall et al. 1991); however, speculations
abound whether it can serve the same purpose in pig (Jin et al.
1999; Kuno et al. 2000; Okamura et al. 1995). Some primary
ZP binding receptors like arylsulphatase A/ARSA/P68/
SLIP1/EC:3.1.6.8 (Carmona et al. 2002; Tanphaichitr et al.
1998) and MFGE8/SED1/P47/lactadherin (Ensslin et al.

1998; Petrunkina et al. 2003; van Gestel et al. 2007; Zigo
et al. 2015) are expressed in both the testis and epididymis.
Multiple proteins with ZP binding affinity were reported in
pigs (van Gestel et al. 2007) such as ADAM2/fertilin β/PH-
30, DCXR/L-xylulose reductase/dicarbonyl reductase/
EC:1.1.1.10/P26h/P34H/P31m, KCNC4/potassium voltage-
gated channel subfamily C member 4, PTPN13/protein tyro-
sine phosphatase non-receptor type 13, PRDX5/
Peroxiredoxin-5; furthermore, ADAM3 (Kim et al. 2009),
ADAM20-like and ADAM5 (Mori et al. 2012), PKDREJ
(Zigo et al. 2013), RAB2A (Zigo et al. 2015) and an
uncharacterized, non-annotated adhesion protein z/APz
(Peterson and Hunt 1989; Zayas-Perez et al. 2005). These,
however, need to be studied further to elucidate their function.
With the identification of multiple ZP binding receptors, the
assumption that the sperm ZP receptor was a single molecule
was disproved.Multiple studies involvingKOmice for certain
ZP binding receptors were unable to obtain infertile offspring,
suggesting a redundant function of these receptors. Newer
evidence shows that these receptors associate together in
high-molecular (0.75–1.3 MDa) multi-protein complexes
and thus mediating the interaction with the ZP (Kongmanas
et al. 2015; Redgrove et al. 2011). Intriguingly, these com-
plexes in both species prominently feature proteasomes, also
known to accelerate their enzymatic activities at capacitation
(Kerns et al. 2016; Zapata-Carmona et al. 2019), perhaps in
preparation for sperm-zona binging and zona penetration.
Other components of these complexes, implicated in sperm-
oocyte interaction include chaperones, cytoskeletal proteins,
epididymal fluid/seminal plasma proteins and various en-
zymes (Kongmanas et al. 2015; Redgrove et al. 2011).

The most frequently studied secondary ZP binding receptor
in pig is a fucose-binding protein (Topfer-Petersen et al. 1985)
that was subsequently N-terminal sequenced as ACR/acrosin/
EC 3.4.21.10 (Topfer-Petersen and Henschen 1987) and later
shown to play the function of a secondary ZP binding receptor
(Tesarik et al. 1988; Topfer-Petersen and Calvete 1995). We
recently reported acrosin on the boar sperm surface that may
have a mediator function in primary sperm-zona binding (Zigo
et al. 2013, 2015). Another well-documented protein is zona
pellucida binding protein (ZPBP a.k.a. ZPBP1/Sp38/IAM38)
(Mori et al. 1993, 1995; Zigo et al. 2013; Tardif et al. 2010;
Zigo et al. 2013; Yu et al. 2006). Proteins with known intra-
acrosomal localization with ZP binding affinity are sperm acro-
somal protein SP-10 (ACRV1/ASPX) (Herr et al. 1990) that was
shown to be involved in secondary ZP-binding affinity at least in
bovine (Coonrod et al. 1996); and ZAN. Interestingly, ZANwas
initially thought to be participating in the secondary ZP-binding
due to its intra-acrosomal localization (Tanphaichitr et al. 2007);
however, it was later shown that a portion is translocated to the
sperm surface during sperm capacitation (Tardif and Cormier
2011). ZAN may thus serve a dual purpose. Other intra-
acrosomal proteins were reported on the surface of capacitated
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spermatozoa in boar as well as in other species (Kongmanas
et al. 2015; Zigo et al. 2013; Tanphaichitr et al. 2015; Zigo
et al. 2013; Wassarman 2009). Altogether, the sperm surface
protein complexes implicated in early steps of porcine fertiliza-
tion share similarities with those of human spermatozoa.

Fertilization

It was long believed that only capacitated, acrosome-intact
spermatozoa can bind to ZP of an oocyte, undergo acrosomal
exocytosis and penetrate ZP. This model has been challenged
in mice where spermatozoa that seemingly already underwent
acrosomal exocytosis were reaching ZP (Hino et al. 2016; Jin
et al. 2011; La Spina et al. 2016; Muro et al. 2016). A similar
observation was made in the pig (Mattioli et al. 1998).
Furthermore, mouse acrosome-exocytosed spermatozoa re-
covered from the perivitelline space were able to fertilize other
oocytes (Inoue et al. 2011). Irrespective of the place of acro-
somal exocytosis, the inner acrosomal membrane on the
sperm head becomes exposed and able to bind to the ZP, also
known as secondary ZP binding. Furthermore, acrosomal pro-
teases implicated in sperm penetration through ZP, such as the

26S proteasome and matrix metalloproteinase MMP2 remain
associated with IAM after acrosomal exocytosis (Ferrer et al.
2012; Yi et al. 2010b; Zimmerman et al. 2011). After the
passage through the ZP (Fig. 5), this region closely associates
with the oolemma prior to fusion (Huang and Yanagimachi
1985). However, it is the sperm head equatorial segment and
later the posterior head regions that closely adhere to and fuse
with the oolemma (Myles et al. 1987; Yanagimachi 1994).
Oolemma fuses with the sperm equatorial segment rather than
with the inner acrosomal membrane and the spermatozoon is
completely engulfed by the oocyte (Moore and Bedford 1983;
Shalgi and Phillips 1980).

Binding of the spermatozoon to the oolemma is mediated
by adhesion molecules that are localized to the equatorial seg-
ment. Four boar sperm plasma membrane proteins (62, 39, 27
and 7 kDa estimated molecular mass) have been suggested as
the predominant binders of the porcine oolemma (Ash et al.
1995; Berger et al. 2011). Another study showed significantly
greater relative binding of the porcine oocyte plasma mem-
brane to the 14- and 10-kD porcine sperm plasma membrane
proteins (Sartini and Berger 2000). Members of the ADAM
(“a disintegrin and a metalloprotease”) family proteins on
spermatozoa and integrin α6β1 receptors on the oocyte were

Fig. 5 Oocyte activation. (a) Once the sperm head reaches the
perivitelline space between the zona and the oolemma (1), its equatorial
segment adheres to and fuses with the oolemma, at which time the sperm
tail movement ceases. Upon sperm-oocyte plasma membrane fusion (2),
the post-acrosomal sheath of the sperm head releases the oocyte activat-
ing factors that utilize oocyte’s intrinsic calcium signaling pathways to
trigger the reactivation of the oocyte meiotic cycle and activate oocyte
anti-polyspermy defense by zona pellucida modification through cortical

granule exocytosis (cortical reaction and zona hardening) and zinc ion
release (the zinc spark). (b-d) Signaling proteinWBP2NL (red), a putative
component of the sperm-borne oocyte activating factor (SOAF) is
immunolabeled in the intact post-acrosomal sheaths of boar spermatozoa
(d) and during the early (e) and late (f) stages of SOAF release, coinciding
with the onset of sperm chromatin decondensation and formation of the
nascent paternal pronucleus
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implicated as the adhesion partners in mice (McLeskey et al.
1998; Snell and White 1996; Wassarman 1999). Two mouse-
sperm ADAM protein complexes, the heterodimers fertilin-α
(ADAM1)/fertilin-β (ADAM2) and ADAM1/cyritestin
(ADAM3) interact with integrin in the oolemma through their
disintegrin domains (Blobel 1999; Primakoff andMyles 2000;
Schlondorff and Blobel 1999). In the ADAM1/ADAM2 com-
plex, the function of fertilin-β is to support sperm-oolemma
binding, whereas fertilin-α has been implicated in the subse-
quent fusion step of sperm and oocyte (Bigler et al. 1997;
Huovila et al. 1996; Wassarman 1999). Findings support that
ADAM1/ADAM2 and ADAM1/ADAM3 complexes are not
essential in the gamete-fusion pathway (Frayne and Hall
1999; Kim et al. 2006). The expression of porcine fertilin-β
(ADAM2) is limited to the testis (Day et al. 2003). The study
of Fabrega et al. (Fabrega et al. 2011) described proteolytic
processing for boar sperm ADAM1 occurring mainly in the
testis and in addition throughout the caput epididymis for
ADAM2. Immunolocalization of ADAM1 showed that
fertilin-βmigrates from the acrosomal region to the acrosomal
ridge during the sperm transit throughout the epididymis
(Fabrega et al. 2011) and may suggest that fertilins are rather
involved in the primary binding to the ZP as is the case of
porcine ADAM2 (van Gestel et al. 2007). CRISP (cysteine-
rich secretory proteins) family proteins, originating in the ep-
ididymis, are other adhesion/fusion proteins. The first reported
CRISP1, also referred to as DE, was found to initially associ-
ate with the dorsal region of the rat sperm head, with subse-
quent migration to the equatorial segment upon acrosomal
exocytosis (Ellerman et al. 2002) with the posterior region
of the sperm head localized in other mammals. The majority
of DE is lost during capacitation; however, the remaining DE
is involved in gamete fusion rather than adhesion (Cohen et al.
2000). A human orthologue has also been reported (Cohen
et al. 2001). In the pig, CRISP-1 has been found to express
in the epididymis and CRISP2 in testicular tissue (Vadnais
et al. 2008), however, sperm localization of CRISP proteins
has not been reported yet.

While oolemma integrins and sperm disintegrins may play
a supporting role in sperm-oolemma adhesion within the
oolemma’s tetraspanin web (Sutovsky 2009), the only gene
ablation-proven protein-protein interaction essential for
sperm-oolemma adhesion is between sperm head IZUMO1
(OBF13) and oolemma IZUMO1R (JUNO/FOLR4), a mech-
anism that is likely conserved in all mammals, including
humans and pigs (Bianchi et al. 2014; Chalbi et al. 2014).
IZUMO1 is a testis-specific member of the immunoglobulin
superfamily (IgSF), firstly reported by Inoue et al. (2005) in
mouse and later shown to be present in humans and pigs
(Hayasaka et al. 2007; Kim et al. 2013). Tanihara et al.
(2014) suggested that functional exposure of IZUMO by por-
cine spermatozoa after their acrosomal exocytosis and passage
through the ZP may result in the acceleration of sperm

incorporation in the ooplasm. Furthermore, the molecular ar-
chitecture of the IZUMO1-JUNO fertilization complex ap-
proximates interaction between the two molecules during
gamete adhesion (Aydin et al. 2016). The deletion of
IZUMO1 gene results in infertile male offspring; however,
the precise function is still to be determined. Similar to
IZUMO, SPACA6 gene encodes a immunoglobulin-like pro-
tein and the disruption of this gene causes a fertilization block
associated with a failure of gametes fusion (Lorenzetti et al.
2014). The binding on the oolemma partner is not known for
SPACA6. The IZUMO binding partner CD9 belongs to the
tetraspanin family. At fertilization, CD9 associates with
IZUMO1, as well as with a subset of β1 integrins, including
integrinα6β1 (Hemler 1998; Porter andHogg 1998). Oocytes
of mice with a targeted disruption of the CD9 gene rarely
fused with wild-type spermatozoa and are subfertile (Miyado
et al. 2000). Furthermore, double-ablated mice lacking CD9
and related CD81 tetraspanins are completely infertile
(Rubinstein et al. 2006). The importance of CD9 in the mouse
sperm-oocyte interaction is clearly established, while the exact
function(s) still needs to be determined (Evans 2012). CD9
together with CD81 localize to the oolemma and membrane
and vesicles in the perivitelline space of porcine oocytes and
embryos and may likely participate in membrane reorganiza-
tion facilitating the protein-protein interactions and protein
network interaction resulting in successful fertilization
(Jankovicova et al. 2019). Anti-CD9 antibody-treated porcine
oocytes showed reduced sperm binding to oolemma and
sperm incorporation (Li et al. 2004). Integrins alphaV and
beta1 were suggested to be the gamete adhesion molecules
in the pig as well, as the antibody to an extracellular domain
of the beta1 integrin subunit reduced pig sperm-oocyte bind-
ing (Linfor and Berger 2000).

Oocyte activation and anti-polyspermy
defense

While the essential role of JUNO-IZUMO binding in sperm-
oolemma adhesion is now well established, the molecule in-
volved in the actual fusion between plasma membranes of the
respective gametes are yet to be discovered and few candi-
dates have been proposed (Sutovsky 2009). Significantly
more progress has been made in the study of sperm factors
causing oocyte activation. Upon sperm-oolemma fusion, the
post-acrosomal perinuclear theca quickly dissolves in the
ooplasm (Fig. 5), releasing signaling proteins collectively
termed SOAF, for the sperm-borne oocyte activating factor(s)
(reviewed in Oko et al. 2017). These factors, studied in detail
in the pig and to a lesser extent in human spermatozoa, directly
or indirectly induce phospholipase/inositol-3-phosphate-de-
pendent oscillatory release of calcium from the oocyte endo-
plasmic reticulum, acting as second messenger, to trigger a
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multi-pronged signaling cascade that forces the completion of
oocyte meiosis, expulsion of the second polar body, activation
of anti-polyspermy defense, induction of pronuclear

development and formation of the zygotic centrosome.
These early events culminate in pronuclear apposition, zygotic
DNA replication and first embryo cleavage. The mingling of
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chromosomes (syngamy) is generally considered as the end of
fertilization and the beginning of embryonic development
(Yanagimachi 1994). At present, the preferred SOAF mole-
cule is the sperm-borne, albeit not germline-specific, phospho-
lipase PLCZ1 (Saunders et al. 2002). The alternative or per-
haps complementary SOAF factor is the male germline/
spermatid specific WW-domain signaling protein WBP2NL
(alias PAWP; Wu et al. 2007). Though the sperm content of
these respective proteins consistently correlates with fertility
in men (e.g., Azad et al. 2018; Tavalaee et al. 2017), genetic
ablation of neither Plcz1 nor Wbp2nl renders male mice
completely infertile (Hachem et al. 2017). A possibility of
cross-compensation has been discussed, affirmed by increased
Wbp2nl gene expression in Plcz1 null mice (Hachem et al.
2017; Nozawa et al. 2018). Furthermore, somatic homolog
WBP2, present in mouse but not in phylogenetically higher
mammalian spermatozoa, could compensate for lack of
WBP2NL in the null spermatozoa (Hamilton et al. 2018).

Multiple lines of anti-polyspermy defense are triggered by
oocyte activation to prevent embryo-lethal polyspermy.
Depolarization of oolemma occurs instantly after binding of
a spermatozoon to the oolemma thus preventing polyspermic
fertilization, also known as the primary/fast block to
polyspermy in invertebrates (Jaffe and Gould 1985) but little
is known about such event in mammals. The aspects of oocyte
activation are directly or indirectly dependent upon a Ca2+-
driven signaling pathway and downstream regulation of spe-
cific protein kinase activities (Florman and Ducibella 2006).
The induction of cortical granules exocytosis is the result of
the Ca2+-driven signaling pathway. These lysosome-like or-
ganelles cause hardening of the ZP after their exocytosis, as
they secrete the zona-cleaving protease ovastacin (Burkart
et al. 2012). The ZP becomes modified rendering it imperme-
able to other spermatozoa also known as the secondary/slow
block to polyspermy (Yanagimachi 1994). Post-fertilization
shedding of JUNO from oolemma, discovered in the mouse
(Bianchi et al. 2014), is yet to be examined as a possible anti-
polyspermy contributor in pig and human oocytes. Recently,
we suggested that there might be yet another possible

mechanism to prevent polyspermy – through the zinc shield
(Kerns et al. 2018a, b; Sutovsky et al. 2019) generated by the
oocyte activation-induced zinc spark (Duncan et al. 2016; Que
et al. 2017), which, based on our studies of zinc release during
sperm capacitation (Kerns et al. 2018a), could at least tempo-
rarily decapacitate accessory spermatozoa in the perivitelline
space or on the zona surface.

Post-fertilization sperm mitophagy
and zygotic development

Mitochondrial inheritance has been explored using many dif-
ferent animal models including C. elegans (Sato and Sato
2011), Drosophila (Politi et al. 2014; Wolff and Gemmell
2013), mice (Rojansky et al. 2016; Shitara et al. 2000,
2001), bovine (Sutovsky et al. 1996, 2003) and porcine
(Song et al. 2016; Sutovsky et al. 2003, 2004). Though all
these models have their advantages and disadvantages, the
porcine model and porcine IVF system have some unique
features that set it apart as an ideal model animal for the study
of mitochondrial inheritance and furthermore, connecting
those discoveries to human health and fertility outcomes.

Specifically, the porcine IVF system further sets itself apart
because of the timing of post-fertilization sperm mitophagy in
pigs that occurs very early in the porcine zygote (Fig. 6), at one-
cell stage, as compared to the 2–4 cell stage in rodents, rumi-
nants, and primates (Sutovsky et al. 2003, 2004; Zuidema and
Sutovsky 2019). This rapid post-fertilization sperm mitophagy
is a result of an interplay between VCP protein-dependent dis-
location and proteasomal degradation of mitochondrial mem-
brane proteins and bulk digestion of the weakened sperm mi-
tochondrial ghosts by ubiquitin-dependent autophagy/
mitophagy (Song et al. 2016). Consequently, we do not have
to worry about interfering with ubiquitin-regulated elements of
cell cycle machinery during the first embryo mitosis, which is
affected by the treatments targeting sperm mitophagy such as
proteasomal inhibition, lysosome quenching and blocking of
autophagy (Glotzer et al. 1991; Song et al. 2016). This allows
us to probe and interpret post-fertilization sperm mitophagy
without compromising early fertilization/zygotic development
events. In the context of human health, such animal model
exploration is likely to be reinvigorated with the recently dis-
covered evidence of multi-generational, familial biparental mi-
tochondrial inheritance in humans (Luo et al. 2018), a phenom-
enon that previously has only been documented in one other
human case (Schwartz and Vissing 2002). This discovery has
implications for human health regarding heteroplasmy and mi-
tochondrial diseases but it also may have implications within
our livestock species, as well as, wild animal species. A deeper
understanding of how biparental mitochondrial inheritance is
enforced, in the pig model will help to breach the gaps between
humans and less suitable animal models.

Fig. 6 Pronuclear development and sperm mitophagy. (a) Following
sperm incorporation in the ooplasm (1), the tail is excised from the head
(2), which starts to unravel and form the paternal pronucleus (3a) con-
comitantly with the completion of oocyte meiosis and formation of the
nascent maternal pronucleus (3b). Head-tail excision enables the release
of the sperm-borne centriole and consequent formation of the zygotic
centrosome and sperm aster. (b–d) Blue DNA labeling (DAPI) reveals
the progression of the sperm nucleus decondensation early after sperm
incorporation. (e) Pronuclei are brought to apposition by sperm aster
microtubules (1) as the process of paternal and maternal DNA replication
commences. Simultaneously, the zygotic centrosome duplicates (2) and
migrates to form the poles of the future mitotic spindle. Meanwhile, the
sperm mitochondrial sheath and other tail structures are degraded (3). (f, g)
DNA labeling shows the progression of pronuclear apposition while the red
MitoTracker labeling highlights the progressive deterioration of the sperm
mitochondrial sheath, the early stage of which is already visible in panel d

R
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Parallel to the onset of sperm mitophagy, the porcine sperm
head with hypercondensed, protamine-packaged DNA has to
be unraveled to promote paternal pronucleus development
(see Fig. 6a–d). Protamines are specialized, arginine-rich male
germline proteins that replace histones during spermatid elon-
gation in the testis (Balhorn 2007); held together by disulfide
bonds and zinc bridges, making the sperm nucleus a highly
stable and sperm DNA transcriptionally silent until after fer-
tilization (Bjorndahl and Kvist 2010). Pig spermatozoa are
naturally resilient to DNA decondensation as shown by Lee
et al. (2003) where the failure of paternal pronucleus forma-
tion was the major cause for the failure of fertilization in acti-
vated ICSI zygotes. Intact or partially decondensed sperm
heads were found in unfertilized oocytes and pre-blastocyst
embryos. Such a feature can be related to relatively high boar
sperm chromatin integrity determined by sperm chromatin
structure assay (SCSA) as the percentage DNA fragmentation
index (%DFI). Multiple studies have shown the statistical
threshold of 2–6%DFI to have a significant negative effect
on the farrowing rate and average number of total pigs born;
such DNA fragmentation levels might probably be the lowest
of domestic animals and humans (Boe-Hansen et al. 2008;
Didion et al. 2009; Martinez 2005; Rybar et al. 2004;
Waberski et al. 2002). The sperm head is stabilized in these
ways to prevent DNA damage during storage and sperm trans-
port via the male and female reproductive tracts. Such stabili-
zation must be removed after fertilization through zinc bridge
removal (Bjorndahl and Kvist 2010) and disulfide bond re-
duction mediated by oocyte glutathione (Perreault et al. 1984;
Sutovsky and Schatten 1997) and by the sperm perinuclear
theca-released glutathione-S-transferase GSTO2 (Hamilton
et al. 2019). Once the sperm chromatin begins to unravel,
the protamines that provided the highly condensed structure
are replaced by histones (Kopecny and Pavlok 1975). The
chromatin recondenses around these new histones (Borsuk
and Manka 1988; Wright and Longo 1988) and a second
decondensation process takes place. The male/paternal pronu-
cleus then takes form. This process must occur in order to
make the paternal chromatin permissive to DNA replication
and transcription and compatible with the oocyte chromatin
(Adenot et al. 1991; McLay and Clarke 2003). The paternal
and maternal pronuclei can then undergo the process of appo-
sition, aided by the sperm-released centriole-turned zygotic
centrosome (see Fig. 6e–g). This event is a prelude to synga-
my (maternal and paternal genetic mixing) and starts the pro-
cess of mitosis and embryogenesis (Sun and Nagai 2003).
Human and porcine zygotes seem to undergo these ge-
nomic processes in a similar timeframe (Mao et al.
2018). Additionally, human and porcine embryos reach
the blastocyst stage within a similar timeframe, at which
point the difference between the two species begins to
increase with more dramatic differences in implantation and
placental development. However, as far as early embryonic

development is involved, humans and pigs seem to share
many conserved processes.

Pig as a model for assisted reproductive
therapy

A wide-scale of assisted reproductive technologies has been
developed in the domestic pig, both for production and re-
search. Many, if not most are relevant to human-assisted repro-
ductive therapy (ART) and have been used to better understand
and safeguard clinical procedures such as IVF, ICSI and in vitro
embryo culture. Gene editing by CRISPR/Cas9 has also taken
root in pig research laboratories (Mao et al. 2018; Ryu and Lee
2017; Whitworth et al. 2014). The ease of gamete acquisition,
as well as the physiological and genomic similarities between
pigs (Archibald et al. 2010; Day 2000) and humans make the
porcine biomedical model continue to grow in popularity. This
is especially true in the realm of ART and the study of early
fertilization events, including mitochondrial inheritance studies
in which oocytes can be preinjected with antibodies or non-
permeant inhibitors of autophagic events (Song et al. 2016).
Contrary to human fertilization, IVF in the pig has had issues
with high polyspermy, which can be mitigated by optimization
of sperm concentration, fertilization media/conditions and ad-
dition of the recombinant homologs of the polyspermy mitigat-
ing factor naturally present in female oviductal fluid such as
osteopontin (Hao et al. 2006) or ubiquitin C-terminal hydro-
lases UCHL1 and UCHL3 (Mtango et al. 2011; Yi et al. 2007).
Intracytoplasmic sperm injection (ICSI) in the domestic pig is
complicated by high disulfide bond crosslinking of sperm head
structures, which can be disrupted by piezo drill actuated ICSI
or relieved by the addition of culture media components
supporting glutathione synthesis during oocyte maturation
(Katayama et al. 2005, 2007). Both approaches promote sperm
nucleus conversion into the paternal pronucleus once the intact
(i.e., fully covered) sperm head is deposited into the ooplasm by
microinjection. While there is no evidence as of now for ICSI
promoting heteroplasmy in mammals, it is possible that skip-
ping sperm head and tail (including midpiece with mitochon-
drial sheath) demembranation that occurs at sperm-oolemma
fusion during natural fertilization could impede timely recogni-
tion and disposal of paternal mitochondria after ICSI. Recent
studies in fish suggest this could indeed be happening in verte-
brate zygotes (Peng et al. 2018).

Conclusions and perspectives
and implications for human and animal
medicine

Domestic pig use in biomedical research will likely continue
to increase, using both wild-type and transgenic pigs.
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Transgenic pig models specifically designed for the study of
male fertility could be developed. There is already the pig
model of cystic fibrosis (CF), which replicates human pa-
tients’ male-infertile phenotype by the KO of the CF-
transmembrane receptor (CFTR), with male pigs being infer-
tile due to CF-associated absence of the vas deferens. Of note,
such infertile phenotypes, or other clinical symptoms of CF,
are not observed in a similarly engineered mouse model. Also,
CFTR is expressed by the animal (PS, unpublished) and hu-
man spermatozoa (Yefimova et al. 2019). Another model use-
ful for the study of sperm function and fertilization has been
our own GFP-proteasome pig (Miles et al. 2013), allowing us
to identify a number of proteasome-interacting sperm proteins
including seminal plasma proteins discussed in the present
review. With regard to seminal plasma, new methods for the
management of sperm capacitation, viability and fertilizing
potential after semen collection, developed for boar, could
translate into improved protocols for human sperm processing
prior to IUI, IVF and ICSI.Work onmitochondrial inheritance
is significant for livestock fitness and productivity while hav-
ing implications for human medicine. New documented cases
of paternal heteroplasmy support the link with mitochondrial
disease in humans. Although the notion of paternal mtDNA
leakage in humans and the chimpanzee population has been
around since the 1990s, patients with mitochondrial disease
are not routinely or even occasionally, screened for it. What is
the true incidence of it in human populations and if it is prev-
alent, is it the root cause of certain mitochondrial diseases?
Could this be managed in human ART, wherein the prevalent
ICSI-sperm injection method might delay mitophagy by in-
troducing a spermatozoon with intact membranes (they are
removed as the spermatozoon enters the oocyte during natural
fertilization process)? How about the practice of oocyte reju-
venation by mitochondrial donation in female infertility pa-
tients of advanced reproductive age? Those and other ques-
tions can be answered with the help of relevant large animal
models such as the domestic pig.
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