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REVIEW

Dental mesenchymal stem cells and neuro-regeneration: a focus

on spinal cord injury

®

Check for
updates

Gabriele Bonaventura' - Salvatore Incontro? - Rosario lemmolo’ - Valentina La Cognata’ - Ignazio Barbagallo? -
Erminio Costanzo? - Maria Luisa Barcellona? - Rosalia Pellitteri' - Sebastiano Cavallaro’

Received: 29 October 2018 / Accepted: 22 September 2019 /Published online: 27 November 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Regenerative medicine is a branch of translational research that aims to reestablish irreparably damaged tissues and organs by
stimulating the body’s own repair mechanisms via the implantation of stem cells differentiated into specialized cell types. A rich
source of adult stem cells is located inside the tooth and is represented by human dental pulp stem cells, or hDPSCs. These cells
are characterized by a high proliferative rate, have self-renewal and multi-lineage differentiation properties and are often used for
tissue engineering and regenerative medicine. The present review will provide an overview of hDPSCs and related features with a
special focus on their potential applications in regenerative medicine of the nervous system, such as, for example, after spinal
cord injury. Recent advances in the identification and characterization of dental stem cells and in dental tissue engineering
strategies suggest that bioengineering approaches may successfully be used to regenerate districts of the central nervous system,

previously considered irreparable.
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Introduction

Regenerative medicine combines biomedical science and en-
gineering approaches with the aim of restoring the biological
function of damaged tissues and relies on the search of tissue
sources to obtain cells useful in therapy approaches
(Rodriguez-Lozano et al. 2011; Sedgley and Botero 2012).
A useful source of stem cells is characterized by mes-
enchymal stem cells (MSCs), since these are capable of
self-renewal for a limited time in vitro. Within the vast
class of MSCs, hematopoietic stem cells have been the
best-studied and widely applied for over 40 years in clin-
ical practice creating the background for bone marrow
(BM) transplantation success (Wright et al. 2001). It has
been demonstrated that, after bone marrow and adipose
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tissue, the oral cavity represents an excellent source of
MSCs mainly localized in the periodontal ligament, dental
follicle and in the dental pulp (Xiao and Nasu 2014).

In this review, we provide an overview of oral MSCs fo-
cusing on the use of hDPSCs for future applications in neural
regeneration such as spinal cord injury repair.

Mesenchymal stem cells (MSCs): a brief
description

MSCs, also known as mesenchymal stromal cells, are classi-
fied as multipotent stem cells, due to their capability to differ-
entiate into various cellular lineages (Caplan 1991; Karaoz
et al. 2013; Kopen et al. 1999).

Although the most studied source of MSCs derive from
BM, MSCs can be extracted from a variety of tissues, includ-
ing adipose tissue, umbilical cord, blood (Koch et al. 2007;
Schuh et al. 2009), Wharton’s jelly (Wang et al. 2004), amni-
otic fluid (Roubelakis et al. 2007), skeletal muscle tissue and
periosteum (Kisiel et al. 2012), liver tissue (Najimi et al.
2017), lung tissue (Shi 2015), menstrual blood (Ren et al.
2016; Ulrich et al. 2013), gingiva and periodontal tissue
(Mrozik et al. 2010; Otabe et al. 2012).
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Different subtypes of cells have been isolated from dental
tissue (Fig. 1). Dental mesenchymal stem cells (DMSCs) can
be obtained from erupting primary teeth or extracted teeth,
making their isolation simpler and less invasive than aspira-
tion of BM-MSC:s. Interestingly, they are considered pluripo-
tent, showing peculiar characteristics related to their markers
expression (such as MYC and SOX2) and morphological as-
pects depending on the area of extraction (Yalvac et al. 2010).

Dental pulp stem cells (DPSCs)

Human dental pulp stem cells (hDPSCs) originate from ecto-
dermal cells that migrate from the neural tube into the oral
region and differentiate into mesenchymal cells (Nuti et al.
2016). The staminal feature of hDPSCs in the adult tissue is
preserved by the lack of environmental differentiation stimuli
in the dental pulp, a niche sealed by mineralized dentin
(d’Aquino et al. 2008). hDPSCs are able to maintain and re-
pair periodontal tissue, are characterized by a high prolifera-
tion rate (Nuti et al. 2016) and show plasticity in multi-lineage
differentiation. Indeed, a number of in vitro studies have de-
scribed the possibility to obtain osteoblasts-, chondrocytes-,
adipocytes-, odontoblasts-, neural- and myocytes-like cells
from hDPSCs (Bonaventura et al. 2018; Nuti et al. 2016;
Sonoda et al. 2015).

Dental Follicle Stem Cells
(DFSCs)

Staminal Cell Surface Neural
Markers Markers Markers
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Fig. 1 Anatomical niches of dental mesenchymal stem cells mostly used
in neuro-regenerative approaches. Classification and neurogenic
induction properties are based on the expression on their cell surface of
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hDPSCs are known to express mesenchymal- (CD13,
CD29, CD44 and CD146) (Martens et al. 2012), staminal-
(OCT3/4, NANOG and SSEA4) (Kerkis et al. 2006) and spe-
cific neuronal markers (BIII-tubulin, S100, Nestin,
Synaptophysin) (Li et al. 2019; Martens et al. 2012).
Recently, Niehage et al. (Nichage et al. 2016) identified new
hDPSC surface proteins, such as tumor necrosis factor recep-
tor superfamily proteins (CD40, CD120a, CD261, CD262,
CD264 and CD266), some integrins (alpha-4, alpha-6 and
alpha-10) and IL receptors (CD121a, CD130, CD213al,
CD217 and CDw210b).

Several soluble factors and cytokines secreted by hDPSCs,
such as transforming growth factor beta (TGF-f3), prostaglan-
din E2, interleukin-6 (IL-6) and IL-10, could be immunomod-
ulator candidates for regulation of T lymphocyte function with
a profound effect on clinical cell therapy (Demircan et al.
2011). For all these reasons, hDPSCs represent a rising can-
didate for tissue repair therapies (Sakai et al. 2012) and, in
particular, for neuro-regeneration (Fig. 2).

Stem cells from human exfoliated deciduous teeth
(SHED)

Miura et al. (Miura et al. 2003) were the first to isolate and
characterize multipotent stem cells from exfoliated deciduous

Dental Pulp (DPSCs & SHED)
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Markers Markers Markers
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neuronal markers (this figure was realized with elements from Servier
Medical Art: www.servier.fr/servier-medical-art)
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teeth (SHED) within dental pulp tissue. These particular
MSCs express Stro-1 and CD146; two early mesenchymal
markers also present in cell surfaces of BM-MSCs and
DPSCs (Fig. 1). In vitro studies showed that SHEDs are able
to differentiate into cells of osteogenic, adipogenic, myogenic
and chondrogenic lineages (Bakopoulou et al. 2011a; Kerkis
et al. 2006; Miura et al. 2003; Wang et al. 2010).

SHED are able to express some neural progenitor markers,
such as nestin and the glial marker glial fibrillary acidic pro-
tein (GFAP) at both the mRNA and protein levels (Miura et al.
2003). In vitro neural differentiation studies have also demon-
strated that this cell population differentiates into neural cells
that are able to survive for more than 10 days when
transplanted into an adult rodent brain, leading to an overex-
pression of neural markers, such as neurofilament (Miura et al.
2003). Wang et al. (Wang et al. 2010) described that SHED are
able to form in vitro neural-like spheres in a medium opti-
mized for neural stem cells and to further differentiate into
dopaminergic neurons. When differentiated into dopaminer-
gic neurons and transplantated in a rat animal model of
Parkinson’s disease, these cells partially improve motor dys-
functions (Gnanasegaran et al. 2016). A recent study reported
that SHED therapy reduces neuronal loss over time (do Couto
Nicola et al. 2017). In addition, recent reports demonstrated
that SHED-conditioned media may afford significant thera-
peutic improvements for treating autoimmune diseases, such
as multiple sclerosis (Shimojima et al. 2016).

Periodontal ligament stem cells (PDLSCs) and stem
cells from apical papilla (SCAP)

Two other cell types included in the oral cavity are the peri-
odontal ligament stem cells (PDLSCs) and the apical papilla
stem cells (SCAP), a specialized soft connective tissue that
physically sustain teeth structure by linking roots and alveolar
bone (Beertsen et al. 1997) (Fig. 1). PDLSCs, deriving from
the neural crest (Fortino et al. 2014), exhibit immunosuppres-
sive properties that are mediated by soluble factor release
(Wada et al. 2009) and are able to maintain their MSC char-
acteristics after in vivo transplantation, which highlights their
possible use in cell therapy and neurogenesis (Bueno et al.
2019; Lei et al. 2014). SCAPs have been described by
Sonoyama et al. (Sonoyama et al. 2006; Sonoyama et al.
2008) as a lineage with a higher rate of proliferation and a
propensity to osteo/odontogenic differentiation (as demon-
strated by the expression of CD24 on the cell surface)
(Bakopoulou et al. 2011b; Liu et al. 2015). However, several
studies have reported the adipogenic and neurogenic differen-
tiation capacity of SCAP (Abe et al. 2007; De Almeida et al.
2014; Sonoyama et al. 2006; Sonoyama et al. 2008). In fact,
under standard culture conditions, SCAP physiologically ex-
press neural markers (nestin, 3III-tubulin and GFAP) and,
after stimulation, produce additional neural markers such as

NeuN, medium chain neurofilaments, neuron-specific enolase
and glial markers CNPase (Sonoyama et al. 2008).
Furthermore, it has been demonstrated that SCAP, seeded onto
a synthetic scaffold, when transplanted into immunocompro-
mised mice, produce regeneration of vascularized pulp-like
tissue and the formation of dentin-like mineral structures
(Huang et al. 2009).

Dental follicle stem cells (DFSCs)

DFSCs were isolated for the first time in 2005 from dental
follicles, an ecto-mesenchymal-derived connective tissue
(Morsczeck et al. 2005; Zeichner-David et al. 2003). Several
studies have demonstrated that hDFSCs have the capacity to
differentiate into multiple cell lineages such as osteoblastic,
adipogenic and neurogenic lineages (Yao et al. 2008). In ad-
dition, since they can be easily obtained during various surgi-
cal procedures, hDFSCs represent a good alternative source of
MSC suitable for regenerative purposes in cell therapy.

Regenerative effects of DPSCs
in neurodegenerative conditions

Despite the fact that BMSCs are the most used MSCs for
treating a large range of diseases, they possess several disad-
vantages linked to bone marrow isolation and lower prolifer-
ation rates (Huang et al. 2008; Stenderup et al. 2003). Dental
stem cells show MSC-like properties and possess neural char-
acteristics thanks to their origin from the neural crest, their
neural marker expression and their ability to secrete neuro-
trophic factors (Kiraly et al. 2011; Nosrat et al. 2001, 2004).
In particular, different studies have confirmed the enormous
potential of DPSCs as sources of neuro-regenerative factors.
For example, the use of new technologies made possible the
differentiation of DPSCs into retinal ganglion-like cells in a
three-dimensional network resembling the natural environ-
ment of retinal cells. These studies proposed DPSCs as can-
didates for glaucoma treatment and retinal degenerative dis-
cases (Bray et al. 2014; Roozafzoon et al. 2015).

A specific interest regards the capacity of DPSC to differ-
entiate into oligodendrocytes using a medium enriched in
Olig2 factor. Surprisingly, DPSC-derived oligodendrocytes
significantly increased the in vivo myelination of peripheral
nerves, suggesting the potential use of DPSCs in the cure of
myelin-related diseases (Askari et al. 2014). Furthermore, re-
cent discoveries on new factors that induce oligodendrocytes
proliferation (Alvarez-Saavedra et al. 2016) extend the possi-
bilities of using DPSCs as a source of myelin. Finally, a recent
study reported that DPSC transplantation exerts a neurotroph-
ic effect onto Schwann cells, contributing to peripheral nerve
regeneration (Yamamoto et al. 2016). DPSCs can also be used
as a source of neurotrophic factors, Af3-degrading enzyme
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<« Fig. 2 Neuro-regeneration through DPSCs. DPSCs can be easily isolated
from adult deciduous teeth. Given their neurogenic induction properties,
DPSCs can be in vitro differentiated into mature neurons or different glial
cells, such as Schwann cells or oligodendrocytes. These cells can be
implanted into CNS to revert neurodegeneration by replacing dead
neurons, promoting myelination, or secreting anti-inflammatory
chemokines and neurotrophic factors (this figure was realized with
elements from Servier Medical Art: www.servier.fr/servier-medical-art)

(such as neprisilyn—NEP) and antiapoptotic factors, rendering
DPSCs as promising candidates for secretome-based therapy
in neurodegenerative diseases (Gnanasegaran et al. 2017,
Mita et al. 2015; Wang et al. 2017).

All together, these results indicate that hDPSCs may pro-
mote regeneration of damaged neuron cells in disease models
and serve as a useful cell source for the treatment of neurode-
generative diseases (Ullah et al. 2017; Yang et al. 2017) (Fig. 2).

Clinical development of DPSCs in neuro-regeneration

The most promising clinical applications of DPSCs involve
the correction of metabolic diseases and treatment of liver
diseases with high mortality rates, such as cirrhosis and hepa-
tocellular carcinoma (Ishkitiev et al. 2010; Ohkoshi et al.
2017). Furthermore, DPSCs have become the preferred alter-
native to harvesting stem cells during hepatic transplantation
(Leietal. 2014). When DPSCs are cultured on hydrogels, they
can spontaneously differentiate into both odontogenic and os-
teogenic phenotypes (Ishkitiev et al. 2010).

Immortalization and neural differentiation of DPSCs are
now a reality. Recent studies (Urraca et al. 2015) have dem-
onstrated that DPSCs transplanted in vivo present even more
stable characteristics than the cells differentiated in vitro (Lei
et al. 2014). These findings make dental tissue-derived stem
cells an excellent pre-clinical model in cell therapy and tissue
engineering studies.

The efficacy of DPSCs in pre-clinical studies is based on
two different mechanisms: neuro-regeneration and neuropro-
tection (Mita et al. 2015). DPSCs showed remarkable tissue
regenerative capability after spinal cord injury through their
immunomodulatory, differentiation and protection capacity
(do Couto Nicola et al. 2017; Yang et al. 2017). Additional
progress in their clinical neuro-regeneration application is rep-
resented by the ability of DPSCs to repair peripheral nerve
injury (Ullah et al. 2017).

Currently, the gold standard treatment for peripheral nerve
injury is nerve grafting but this technique has several disad-
vantages, such as donor site morbidity (Sultan et al. 2019).
Independent studies have demonstrated that DPSCs amelio-
rate peripheral nerve injuries, such as sciatic nerve injury
(Kolar et al. 2017; Yamamoto et al. 2016) and multiple scle-
rosis (Shimojima et al. 2016). More recently, DPSCs signifi-
cantly ameliorated the motor defects in a cerebellar ataxia
animal model (Aliaghaei et al. 2019).

Dental mesenchymal stem cells (DPSCs) and spinal
cord injury

Spinal cord injury (SCI) is characterized by the loss of neu-
ronal cells as a consequence of a physical trauma, due to
inflammatory responses triggered by the mechanical trauma
(Ahmed et al. 2016; Crowe et al. 1997; Schwab and
Bartholdi 1996; Thuret et al. 2006). DMSC-based therapies
have shown promising results in SCI treatment (Wang et al.
2017). DPSC can be differentiated into Schwann-like glial
cells, becoming able to secrete neurotrophic factors (NTF)
and promote survival and neurite outgrowth (Choo et al.
2008). However, many difficulties still exist in the use of
DMSCs for SCI regeneration, such as the low rate of cell
engraftment and survival after transplantation. In order to
overcome these issues, engineered 3D scaffolds have been
proposed for DMSCs delivery after SCI, which may provide
a surrounding environment conferring a mechanical support
to promote cell adhesion, migration and in vivo differentia-
tion (Mead et al. 2017). In this regard, different in vivo
studies have highlighted the significant impact of DMSCs
as a promising strategy for neuronal repair, functional re-
covery and tissue regeneration after SCI. A preliminary
study in animal models of SCI demonstrated the therapeutic
potential of DPSCs through a paracrine-mediated mecha-
nism that promotes axon regeneration and survival of en-
dogenous neurons and glia within and around the lesion site
(Martens et al. 2014). Transplanted neural induced SHED in
a rat SCI site is known to improve locomotion (Taghipour
et al. 2011). Some authors administered neural-
differentiated DPSCs combined with a chitosan scaffold
into a chronic contusive SCI rat model (Zhang et al.
2016). In this DPSC-/chitosan scaffold-treated group, a
greater amount of BDNF, GDNF, b-NGF and NT3 was
found in the site of lesion and was responsible for hind limb
locomotor recovery. Recently, a thermosensitive heparin-
poloxamer (HP) hydrogel containing DPSCs and bFGF
was used as an optimal combination of scaffold, cell and
growth factors for neuronal regeneration as well as func-
tional recovery after SCI (Luo et al. 2018).

Conclusion

Since DPSCs are widely available and easily accessible, they
represent an alternative to traditional therapies in the manage-
ment of neurological disorders, including SCI. DPSCs hold sev-
eral advantages over BM-MSCs, such as less invasive isolation
and superior ex vivo proliferation. However, several aspects of
these stem cells still need to be fully investigated, such as their
differentiation potential into the cells of interest, their ability to
produce and secrete neurotrophic factors, their homing proper-
ties and their immune response modulatory abilities.
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