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Abstract
Basement membranes are thin connective tissue structures composed of organ-specific assemblages of collagens,
laminins, proteoglycan-like perlecan, nidogens, and other components. Traditionally, basement membranes are thought
of as structures which primarily function to anchor epithelial, endothelial, or parenchymal cells to underlying connective
tissues. While this role is important, other functions such as the modulation of growth factors and cytokines that regulate
cell proliferation, migration, differentiation, and fibrosis are equally important. An example of this is the critical role of
both the epithelial basement membrane and Descemet’s basement membrane in the cornea in modulating myofibroblast
development and fibrosis, as well as myofibroblast apoptosis and the resolution of fibrosis. This article compares the
ultrastructure and functions of key basement membranes in several organs to illustrate the variability and importance of
these structures in organs that commonly develop fibrosis.
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Introduction

Basement membranes (BM) are specialized extracellular ma-
trix protein complexes found in every organ of the human
body. They have specific structures that provide adhesion for
epithelium, endothelium, or parenchymal cells and separate
them from connective tissues, nerves, and muscles. BMs de-
lineate boundaries and compartmentalize tissues in organs
while providing scaffolds that guide morphogenesis and tissue
repair. BM-mediated cell signaling events and cellular behav-
ior are altered by tissue-specific BM composition and struc-
ture. BMs are best detected with transmission electron micros-
copy (TEM) or immunohistochemical staining. The four ma-
jor components most BMs have in common are nidogens,
perlecan, laminins, and collagen type IV (Fig. 1). However,
even though there is great heterogeneity of the primary

components, other components also are commonly present
and provide specificity of function. Basement membrane
components are key players in specialized extracellular matri-
ces and changes in BM composition play significant roles in
facilitating the development of various diseases in different
organs (Kruegel and Miosge 2012).

BM proteins were first discovered in mouse yolk sac tu-
mors which produce typical extracellular matrix (ECM) pro-
teins (Chung et al. 1977; Kleinman and Martin 2005; Orkin
et al. 1977). Further analysis showed that laminins (Chung
et al. 1979; Timpl et al. 1979), nidogens (Carlin et al. 1981;
Timpl 1989), perlecan (Carlin et al. 1981), and collagen type
IV (Kleinman et al. 1982) are large multi-domain proteins that
self-polymerize, bind to other proteins to augment function
and promote stability of the tissue (Timpl and Brown 1996).

Laminins are alpha1, beta1, and gamma1 heterotrimeric
glycoproteins with more than 15 trimer combinations iden-
tified that contribute to tissue specificity of BMs (Miner and
Yurchenco 2004). The laminin nomenclature has been sim-
plified to refer to the alpha, beta, and gamma chains that
comprise a specific laminin—such as laminin 332
(Aumailley et al. 2005). Laminins initiate the BM self-
polymerization process during development, repair, and re-
generation following injury, and other BM components bind
to and assemble the mature BM (Miner and Yurchenco
2004; Smyth et al. 1999). Collagen type IV has six
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genetically differentα-chains that assemble into three linear
collagen type IV heterotrimers (Khoshnoodi et al. 2008).
The stability of the BM structure is attributable primarily
to the network formed by laminins and collagen type IV
along with other linker components (Halfter et al. 2015;
Timpl 1989; Yurchenco et al. 1986).

Nidogen-1 and nidogen-2 are sulfated monomeric glyco-
proteins (Ho et al. 2008) with the molecular mass of ~
150 kDa that specifically interact with other BM components
such as laminins and collagens to organize and stabilize the
BM. Perlecan, also known as basement membrane-specific
heparan sulfate proteoglycan core protein (HSPG) or heparan
sulfate proteoglycan 2 (HSPG2), is a large multi-domain
HSPG that also interacts with other BM components
(Hassell et al. 1980). Unlike laminin and collagen type IV,
nidogen and perlecan form irregular polymers using their mul-
tiple binding sites. They bridge these scaffolds for laminin and
collagen type IV, as well as for each other, and hence they are
called as bridging molecules (Aumailley et al. 1993; Ettner
et al. 1998; Fox et al. 1991). Complete perlecan deficiency
is lethal for mouse embryos at the mid-gestational stage
(Arikawa-Hirasawa et al. 1999; Costell et al. 1999) and the
deletion of both nidogens is prenatally lethal (Bader et al.

2005). Although nidogen-1 and nidogen-2 are present in all
tissues, nidogen-2 alone show more restricted expression pat-
terns and tissue specificity (Kimura et al. 1998). In vitro, both
proteins interact with laminins and collagen type IV and
play a critical role in assembly of the mature BM (Fox
et al. 1991; Salmivirta et al. 2002). Perlecan establishes a
high negative charge in the BM because of its three hep-
aran sulfate side chains. Therefore, perlecan plays a major
role in regulatory processes of BMs by providing a barrier
for some regulatory molecules in addition to serving as an
anchoring port and connecting bridges in BMs (Behrens
et al. 2012; Yurchenco et al. 1986).

In general, BMs have at least one component from the four
major proteins and the tissue specificity depends on the dif-
ferential expression of the respective isoforms and inclusion
of other tissue-specific BM components. Thus, the main struc-
tural elements, collagen type IV and laminin form a highly-
organized network which is non-covalently interconnected by
nidogen and perlecan (Paulsson 1988; Timpl 1989; Yurchenco
et al. 1986). Laminin gamma 3 chain binds specifically to
nidogen (Gersdorff et al. 2005). In vivo, laminin is necessary
for the initial steps involved in the BM assembly (Miner and
Yurchenco 2004; Smyth et al. 1999) but the stability of the

Fig. 1 Schematic diagram of typical components found in basement
membranes, using skin as an example. A basal keratinocyte adheres to
the underlying basement membrane and dermis via the focal adhesions
that transmit mechanical force and regulatory signals that consist of
numerous interacting components such as the hemidesmosome with
bullous pemphigoid antigen (BPAG), integrin a6b4, laminin 332,
perlecan, anchoring fibrils, and dozens of other components that vary
depending on the organ and the status (homeostasis, post-injury, etc.) of

the tissues. Many of these components extend into, and are part of, the
lamina lucida of the basement membrane. The underling lamina densa of
the basement membrane is composed of collagen type IV, nidogens,
perlecan, laminin 332, that directly interact with each other, and other
components. Lamina lucida is not as wide naturally as it is drawn here
for clarity reasons. Illustration by David Schumick, BS, CMI. Reprinted
with the permission of the Cleveland Clinic Center for Medical Art &
Photography© 2018. All Rights Reserved
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entire BM is determined by the collagen type IV network
(Poschl et al. 2004) forming structured polymers (Fig. 1).
Gene deletion analysis of the several mutant phenotypes dem-
onstrate the numerous tissue-specific roles of the four major
BM components (LeBleu et al. 2007). Additional compo-
nents such as fibrillin (Tiedemann et al. 2005), collagen
type V (Bonod-Bidaud et al. 2012) and BM-associated
collagen type XV and type XVIII may also be involved
in these complexes depending on the specific tissue
(Breitkreutz et al. 2013; Miosge et al. 2003). Agrin is a
major proteoglycan component in some BMs, such as the
glomerular basement membrane (Denzer et al. 1995; Tsen
et al. 1995). Collagen type XVIII has also been found to
be BM heparan sulfate proteoglycan that is important in
retinal BM (Halfter et al. 1998; Saarela et al. 1998).

Epithelial, endothelial, and parenchymal cells adhere to the
BM via a large family of transmembrane cell adhesion pro-
teins called integrins, which are commonly tissue-specific in
distribution, and are receptors that tie the matrix to the cell’s
cytoskelatin (Boudreau and Jones 1999). There are also other
cell-associated receptors that bind BM besides integrins
(Boudreau and Jones 1999). The binding of cell surface re-
ceptors to BM proteins initiates’ intracellular signaling path-
way that influence cellular functions such as migration, pro-
liferation, differentiation, and maintenance of the BM.

BMs have many biological functions ranging from tis-
sue organization to functions as depositors for very active
molecule such as growth or differentiation factors, includ-
ing TGFβ and PDGF that can alter the cellularity and
composition of underlying tissue such as the stroma in
the cornea (Schubert and Kimura 1991; Torricelli et al.
2013b). The binding of such growth factors to BM is a
very efficient way to regulate the signaling of these growth
factors and differentiation factors that can, for example,
trigger fibrotic wound healing changes in tissues underly-
ing BMs. The following sections will highlight some of the
organ-specific structures and functions of a few BMs.

BM in cornea

In the cornea, the epithelial BM is present between the basal
epithelial cells and the underlying stroma composed primarily
of extracellular matrix and fibroblastic keratocytes (Fig. 2).
The functions of the epithelial BM include anchoring of the
epithelium to the stroma, bi-directional regulation of the pas-
sage, and therefore functions, of growth factors and cytokines
that modulate functions such as cell proliferation, migration,
and differentiation in the epithelium and stroma, as well as the
production of chemokines, metalloproteinases, and collage-
nases (Torricelli et al. 2013b). The composition of corneal
BM is different from other organ BMs due to their heteroge-
neity. Corneal epithelial BM components include laminins,

collagen type IV and other collagens, heparan sulfate proteo-
glycans, and nidogens (Tuori et al. 1996). Descemet’s mem-
brane (DM) is the basement membrane of the posterior cornea
that lies between the corneal endothelium and posterior stro-
ma. It has functions similar to the epithelial BM but contrib-
utes to the Bleaky^ barrier function of the endothelial-
Descemet’s membrane complex important to corneal function
(Murphy et al. 1984). Descemet’s membrane, in contrast to the
epithelial BM in the cornea, increases in thickness during both
prenatal development (striated BM) and post-natal during the
life of the animal by addition of non-striated, non-lamellar
extracellular matrix (Murphy et al. 1984). The structure and
function of Descemet’s layer is altered in corneal diseases
such as Fuchs’ endothelial dystrophy and bullous keratopathy
(Johnson et al. 1982; Zhang and Patel 2015).

Initially, it was reported that laminin-111 and laminin-332
were the major laminins in the epithelial BM of the human
cornea (Ljubimov et al. 1995; Tuori et al. 1996). Later, how-
ever, Filenius et al. found that the BM of human cornea con-
tain only laminin-332 and laminin-511 but not laminin-111.
Laminin-332 is produced by the epithelial cells (Filenius et al.
2001) and laminin-511 is produced by the keratocytes
(Hassell et al. 1992) and epithelial cells (Saikai and Wilson,
unpublished data, 2018). Corneal epithelial cells adhere to the
laminins in the epithelial BM through integrins. Human cor-
neal epithelial cells have been shown to express integrins
α6β4, α3β1, and α2β1 involved in these interactions
(Tervo et al. 1991; Virtanen et al. 1992). Epithelial BM con-
tains collagen type IV, as well as collagen types VII, XVII, and
XVIII (Michelacci 2003). Several investigators identified col-
lagen type IV in the epithelial BM, but some were not able to

Fig. 2 Transmission electron micrograph from central rabbit cornea of
the epithelial basement membrane (EBM) at ×36,000 magnification. In
the cornea, the EBM functions to adhere basal epithelial cells (e) to the
underlying stroma and to modulate growth factor-mediated
communications between the epithelium and the keratocytes within the
stroma (S). As artifacts of fixation, the lamina lucida (arrows) and lamina
densa (arrowhead) can be seen. Although this morphology is an artifact of
fixation, it signifies the presence of a mature BM. The regular packing of
the collagen fibrils, visible as uniform diameter circles, in the stroma
contributes to corneal transparency
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identify this molecule in the BM of the central cornea in some
species (Cameron et al. 1991). Collagen type IV is known to
be present in the human corneal BM as early as 8 weeks of
gestation and throughout life (Ben-Zvi et al. 1986). After injury,
collagen type IV is present in the re-synthesized BM and it is
involved in the binding of the basal surface of the epithelial
cells to the BM. In vitro, collagen type IV has been shown to
promote migration and adhesion of corneal epithelial cells
(Cameron et al. 1991). Thus, collagen type IV is one of the
native components in BM involved in the development, main-
tenance, and wound healing process in the cornea. Collagen
type XVII and α6β4 integrin are present in the hemi-desmo-
somes, the stud-like structures present in basal corneal epithe-
lial cells that adhere the epithelium to the underlying stroma via
anchoring fibrils (Gipson et al. 1988). In vitro, it has been
shown that collagen type XVII interacts with the β3 chain of
the laminin-332 to support cell binding (Torricelli et al. 2013a).

Collagen type XVIII is the only known BM component
with heparan sulfate glycosaminoglycan side chains (Dong
et al. 2003). In cornea, collagen type XVIII is localized in
the epithelial BM and Descemet membrane (Lin et al. 2001).
Knockout of collagen type XVIII does not result in a known
corneal phenotype but is known to cause other eye abnormal-
ities (Fukai et al. 2002; Maatta et al. 2007), including pigment
granule release, massive disorganization of retinal pigment
epithelium, and photoreceptor and iris abnormalities
(Marneros et al. 2004; Marneros and Olsen 2003). In humans
with Knobloch syndrome, a rare disorder with retinal degen-
eration and high myopia, have mutations in the gene encoding
the α1 chain or deficiency of collagen type XVIII (Menzel
et al. 2004; Nystrom et al. 2017; Suzuki et al. 2002).

Perlecan is a key component of the corneal epithelial BM
which interacts with other basement membrane components to
establish the epithelial barrier function and epithelial morphol-
ogy. A thinner corneal epithelium and microphthalmos were
observed in perlecan-deficient mice (Inomata et al. 2012).
Pseudomonas aeruginosa is a bacterium that can produce cor-
neal ulcers and perlecan is known to serve as a binding site for
these bacteria. Chen and Hazlett (2001) showed that anti-
perlecan antibody can decrease binding of P. aeruginosa to
corneal epithelial cells in the human cornea. After epithelial
scrape injury in humans that damages the corneal epithelial
basement membrane, stromal keratocytes were shown to pro-
duce high levels of perlecan and nidogen-2 and, therefore, con-
tribute to epithelial BM regeneration (Torricelli et al. 2015).

Nidogens are present in the epithelial BM, stroma, and
Descemet’s membrane of the cornea. Nidogen-1 and
nidogen-2 bind to various BM-associated proteins and they
are known to be a connecting element between laminin and
the collagen network in BM (Kabosova et al. 2007).
Keratocytes and myofibroblasts have been shown to produce
nidogen-1 and nidogen-2 in vitro (Santhanam et al. 2015). In
nidogen-1 knockout mice, minimal pathological changes were

observed in the anterior segment of the eye, including the
epithelial BM (May 2012). These changes were not seen in
the nidogen-2 knockout mice (May 2012).

In addition to epithelial BM, cornea possesses another
basement membrane called Descemet’s membrane (DM) that
lies between the corneal endothelium and posterior stroma
(Fig. 3) that participates in the Bleaky barrier function^ of
the corneal endothelium (Zhang and Patel 2015; Kapoor
et al. 1986). For example, the endothelial-DM complex allows
critical nutrients to pass into the stroma but restricts the pas-
sage of transforming growth factor beta from the aqueous
humor into the stroma in the absence of endothelial-DM injury
(Marino et al. 2017a). The thickness of DM increases with
age, with it having approximately 3 μm of thickness in chil-
dren and 10 um in adults (Chi et al. 1958; Johnson et al. 1982).
DM is composed of two layers: an anterior banded layer
which is composed of collagen lamellae and proteoglycans
and a posterior non-banded layer which is continually

Fig. 3 Rabbit cornea Descemet’s basement membrane at ×12,600
magnification. Notice the impressive thickness (greater than 6 μm) of
Descemet’s basement membrane (DM) in a rabbit only 14 weeks old.
Descemet’s basement membrane continues to increase in thickness
throughout life. Descemet’s basement membrane provides adhesion for
the monolayered corneal endothelial cells (e) that modulate corneal
hydration critical to corneal transparency, allows passage of nutrients
from the aqueous humor into the stroma, and modulates the passage of
TGFβ from the aqueous humor into the corneal stroma that would drive
keratocyte differentiation into myofibroblasts and trigger fibrosis. S is the
stroma that makes up greater than 90% of the corneal thickness. A stromal
fibroblastic cell referred to as a Bkeratocyte^ is indicated by the arrow
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synthesized and thickens over decades (Kefalides et al. 1976).
Freeze-fracture, deep-etch replica method has clearly showed
that the lattice of the DM is constructed of mainly four com-
ponents (Sawada 1982): (1) round densities forming the nodes
of the lattice, (2) rod-like structures connecting the nodes, (3)
fine filaments two-dimensionally distributed in the interstices,
and (4) amorphous materials. Biochemical studies of DM re-
vealed similarities with other BM in major molecular compo-
nents, including collagen type IV, fibronectin, laminins, and
heparan sulfate proteoglycan (Carlson et al. 1981; Kefalides
and Denduchis 1969) and nidogens (Medeiros et al. 2018). In
contrast to other BMs, collagen type VIII is a major constituent
in DM, which forms ladder-like structure visible with electron
microscopy (Labermeier and Kenney 1983). The finding that
corneal endothelial cells in vitro synthesized collagen type VIII
supports the presence of type VIII collagen in DM (Benya and
Padilla 1986; Sage et al. 1981). Collagen type VIII is a hetero-
trimer composed of two distinct alpha chains, α1 and α2, each
with molecular weight of about 60,000 Da (Benya and Padilla
1986; Shuttleworth 1997). The hexagonal lattice structure cre-
ates a matrix that can resist compression andmaintains the open
porous structure that allows nutrients to pass in to stroma
(Shuttleworth 1997), an important function of the Descemet’s
membrane-endothelial complex. Fuchs’ endothelial corneal
dystrophy (FECD) has typical pathological changes that in-
clude progressive loss of endothelial cells, thickening of the
DM, and deposition of anomalous extracellular matrix in the
form of guttae (Chi et al. 1958). FECD is likely a group of
genetic disorders affecting the corneal endothelium and DM.

BM in skin

Skin consists of two compartments, epidermis and dermis
(Fig. 4). Epidermis serves as the first line of defense be-
tween the external environment and the animal’s internal
organs, and it is connected to the dermis compartment by
the BM (Breitkreutz et al. 2013). Apart from structural
properties, the BM controls keratinocyte adhesion, traffic
of cells, and diffusion of molecules such as growth factors
and cytokines, including keratinocyte and platelet-derived
growth factor, that regulate both keratinocyte and dermal
fibroblast functions through regulation of activation and
release (Breitkreutz et al. 2013). In addition, BM plays an
important role during the remodeling process after injury
and damage to BM by cancer leads to cell activation in the
stroma (Mueller and Fusenig 2004).

Skin BM components, such as perlecan, collagen types
IV and VII, are produced by dermal fibroblasts and epider-
mal keratinocytes. Other components, like laminin-511 and
laminin-332, are primarily synthesized by keratinocytes,
although the main source of nidogens is thought to be der-
mal fibroblasts (Bechtel et al. 2012; Fleischmajer et al.

1995). Additionally, dermal fibroblasts transiently synthe-
size laminin-211 during wound healing in adult skin
(Sugawara et al. 2008).

The upper layer epidermis is connected to the BM by
hemidesmosomes containing plectin and bullous pemphigoid
antigen 1 (BPAG1) proteins (Sterk et al. 2000). These proteins
are linked to alpha 6/beta 4 (Sonnenberg et al. 1991), CD151
(Sterk et al. 2002), and collagen type XVII (Qiao et al. 2009).
Integrin alpha6/beta 4 also binds to laminin-332, the only
integrin associated with keratins (Aumailley et al. 2005).
The BM is connected to the dermis beneath by loop structures
of collagen type VII and anchoring fibrils. Also, anchoring
fibril-collagen type VII tightly binds to collagen types I and
III fibrils in the dermis (Villone et al. 2008). Together, these
bridges are essential to maintenance of the structural and func-
tional integrity of skin. Defects in the skin BM or BM-
associated molecules is often associated with severe or lethal
disease (Sterk et al. 2002; Aumailley et al. 2005).

Mice lacking nidogen-1 and nidogen-2 live to birth and
have skin that appear grossly normal (Bader et al. 2005).
But the ultrastructure of the skin reveals abnormal basal
cells with micro-blistering, microvascular aberrations, BM
duplications, and leakiness of small vessels (Mirancea
et al. 2007). These mice die from lung and heart abnor-
malities that are directly related to BM defects, but kidney
BMs appear normal (Bader et al. 2005).

Co-cultures of epidermal keratinocytes and dermal fibro-
blasts have been investigated extensively to study on skin
physiology and repair. However, these approaches have major
drawbacks that limit communications between two cell types
that occur in vivo. Therefore, organotypic co-cultures have
been used to provide a better understanding of cellular inter-
actions and BM generation in skin (Fleischmajer et al. 1995;

Fig. 4 Transmission electron micrograph of rabbit inner thigh skin
basement membrane (BM) at ×40,000magnification. The overlying basal
keratinocyte adheres to the dermis (D) via the basement membrane (BM)
composed of lamina lucida (arrows) and lamina densa (arrowhead). The
BM in skin also regulates growth factor-mediated interactions between
the epithelium and skin fibroblasts in the dermis. Note that the basal
epithelial cell membrane in skin is much more prominent than in the
cornea
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Smola et al. 1998). Thus, in these models, normal epidermal
phenotype and BM structure is generated with cells from dif-
ferent sources and with several combinations of epithelial and
fibroblastic cells. For example, normal BM structure and epi-
dermal phenotype, including hair follicles, can be generated in
organotypic co-culture (Limat et al. 1996; Stark et al. 1999).
These systems serve as alternative approaches to study the
functions of mutated BM components (Di Nunzio et al.
2008; Fritsch et al. 2009; Murauer et al. 2011).

Transplantation models offer other strategies to study
the regeneration of skin and BM in mice. Cultured mouse
keratinocytes regain full differentiated function, including
the production of BM, when transplanted on the backs of
C3H mice (Breitkreutz et al. 1984). Similarly, HaCat cells
or keratinocytes from human skin transplanted on nude
mice generate normal epidermal tissue and BMs when
examined with immunohistochemistry for BM compo-
nents and ultrastructure examined with TEM. In these
studies, the first BM component to appear is laminin-
332, followed by nidogens, laminin-511, and collagen
type IV (Breitkreutz et al. 1997, 1998).

Skin BMs from histological specimens, transplantation
models, and organotypic co-cultures appear structurally and
functionally the closest in morphology to corneal epithelial
BM (compared to other imaged organs), although at high
magnification after identical fixation and processing, a differ-
ence in morphology appears obvious and could relate to trans-
parency in the cornea (compare Figs. 2, 3, 4).

There are a number of skin disorders associated with skin
blistering, including epidermolysis bullosa affecting at least
18 genes associated with the epithelial basement membrane
(EBM) and adhesion to the EBM (Uitto et al. 2017), pemphi-
gus, and bullous pemphigoid (Hammers and Stanley 2016).
Pemphigus and bullous pemphigoid are auto-antibody-
mediated blistering diseases of the skin. In pemphigus,
keratinocytes in epidermis and mucous membranes lose cell-
cell adhesion, and in pemphigoid, the basal keratinocytes lose
adhesion to their basement membrane. Detailed discussion of
these disorders is beyond the scope of this review, but they
have been instrumental in understanding the specific functions
of many BM components.

BM in kidney

The glomerular basement membrane (GBM) lies between
the glomerular endothelial cells and the podocytes (Fig. 5)
and functions in the removal of waste and other molecules
from blood plasma into the urine without the release of
other plasma components such as albumin. The
podocytes, which adhere to the GBM, play an active role
in preventing plasma proteins from entering the urinary
ultrafiltrate by providing a barrier comprising filtration

slits between the podocyte foot processes (Fig. 5)
(Reiser and Altintas 2016). Unlike other BMs, the GBM
is unusually thick and composed primarily of collagen
type IV and laminins (Timpl 1989). Mutations in these
components cause filtration defects and result in severe
renal disease (Miner 2012). Agrin is the major heparan
sulfate proteoglycan in GBM (Timpl 1989). This structure
allows the passage of plasma water and small waste sol-
utes but limits the flow of large plasma proteins such as
albumin. Defects in one of these layers will result in high
levels of albumin in the urine.

In adult GBM, laminin-521 is the major laminin. During
GBM formation and maturation, however, laminins go
through a transition from laminin-111 to laminin-511 and
then to laminin-521 (Miner et al. 1997; Miner and Sanes
1994) and genetic defects in this transition results in GBM
breakdown. For example, in mice, a mutation in laminin
α5 inhibits the laminin-111 to laminin-511 transition and
results in the failure of glomerular vascularization (Miner
and Li 2000). Mutation in laminin β2 in humans or in mice
results in a congenital nephrotic syndrome with neurolog-
ical manifestations and it is known as Pierson syndrome (in
humans) (Matejas et al. 2010).

Collagen type IV plays a critical role in BM stability
(Poschl et al. 2004). Collagen also undergo developmental
transitions in GBM during glomerulogenesis. Initially,
GBM contains an α1/α2 network but when the glomeru-
lar capillaries begin to function, the podocytes secrete
α3α4α5 trimers. Then, these components polymerize to
form a collagen type IV network characteristic of the fully
mature GBM (Abrahamson 2009). Mutations in genes
encoding any one of the collagen chains can cause defects
in the GBM resulting in mild to severe disease. For ex-
ample, Bthin basement membrane disease^ has been found

Fig. 5 Transmission electron micrograph of glomerular basement
membrane (BM) in rabbit kidney at ×45,000 magnification. The BM that
functions in the excretion of waste molecules from capillaries into the
urine is a Bdouble^ BM that provides adhesion of capillary endothelial
cells (endo) with fenestrations (arrowheads) on one side and podocyte
foot plates (PFP) of podocytes on the other
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in 40 to 50% of patients having mutations in COL4A3 or
COL4A4, which encode the α3 and α4 chains of collagen
type IV, respectively (Voskarides et al. 2007). Alport syn-
drome is a severe basement membrane disease, which
eventually leads to kidney failure along with deafness
and ocular abnormalities. The X-linked form is the most
common version of Alport syndrome and it is caused by
mutations in COL4A5 encoding the α5 chain of collagen
type IV (Heidet et al. 2000).

In mice, deletion of both nidogen-1 and nidogen-2 genes
results in perinatal lethality. Nidogen-1 binds to both laminins
and collagen type IV and, therefore, is an important compo-
nent for BM formation. However, BM can form in the absence
of both nidogens and the GBM can appear ultrastructurally
normal. However, renal dysgenesis or hydronephrosis can be
noted in the fully developed kidney (Bechtel et al. 2012;
Miosge et al. 2002). The absence of one or both nidogens does
not alter basement membrane composition in adult murine
kidney (Gersdorff et al. 2007).

Agrin is the major heparan sulfate proteoglycan of the
GBM (Groffen et al. 1998; Timpl 1989). As a heparan sulfate
proteoglycan, and also due to the presence of sulfated glycos-
aminoglycan side chains, agrin has a high net negative charge.
All BM, and particularly the GBM, have a net negative
charge. Perlecan and agrin are thought to be the most impor-
tant contributors to this negative charge (Kanwar et al. 2007).
It is thought that the net negative charge of the GBM is crucial
for function, including the filtration of molecules by the glo-
merulus. Thus, studies show that molecules that are positively
charged cross the filtration barrier more easily than the neutral
molecules, which in turn cross more easily than the negatively
charged molecules. For example, plasma albumin, which is
negatively charged, is repelled by the GBM. Defects in GBM
allow albumin to pass the filtration barrier and results in high
albumin content in urine. However, selective knockout of
agrin had no effect on the glomerular filtration barrier in one
study (Harvey et al. 2007).

There are a number of diseases that affect the glomerular
BM. In mature GBM, the major collagen type IV molecule is
the alpha-3 alpha-4 alpha-5 isoform, associated with laminin-
521 (alpha-5 beta-2 gamma-1), nidogen and agrin heparan
sulfate proteoglycans. Several hereditary glomerular diseases
are linked to structural anomalies of GBM tissue-specific
components; for example, the alpha-3 alpha-4 alpha-5 isoform
of collagen type IV in Alport syndrome and thin basement
membrane nephropathy (benign familial hematuria), and lam-
inin in Pierson syndrome (Gubler 2008). Tumor necrosis
factor-α has been shown to drive Alport glomerulosclerosis
in mice by promoting podocyte apoptosis (Ryu et al. 2012).
Another example is the Goodpasture’s antigen associated with
Goodpasture’s syndrome that is the NC1 domain of the alpha-
3 chain of collagen type IV found in the glomerular BM
(Derry and Pusey 1994).

BM in lung

The BMs of the alveolus functions in cell adhesion for alveo-
lar epithelial and endothelial cells, to facilitate gas exchange
between the alveolar space and the alveolar capillaries (West
and Mathieu-Costello 1999), to regulate cytokine and growth
factor functions, and other alveolar cellular processes in the
lung (Sannes and Wang 1997). The polarity of the lung is
maintained by the BMs and they act as physical barriers be-
tween epithelium, endothelium and mesenchymal tissues.

Pulmonary alveoli have been shown to have a thinner
side and a thicker side (Vaccaro and Brody 1981; Weibel
1973). The thinner side consists of alveolar epithelium and
capillary endothelium separated only by a common fused
BM that is thought to facilitate gas exchange. The thicker
side consists of alveolar epithelium and capillary endothe-
lium, each with their respective BMs (alveolar BM (Fig. 6)
and capillary BM, respectively) separated by connective
tissues within the interstitial space (Vaccaro and Brody
1981; Weibel 1973). These two lung BMs appear to have
similar ultrastructure when examined with standard TEM
techniques. However, staining with ruthenium red demon-
strated that the two lung BMs have different ultrastructural
characteristics and that the type and distribution of proteo-
glycans differs between alveolar BM and capillary BM
(Vaccaro and Brody 1981). Otherwise, the component dif-
ferences between these BMs have not been fully character-
ized. The integrity of the BMs maintains the normal lung
architecture and the alveolar BM is crucial for restoration

Fig. 6 Transmission electron micrograph of alveolar basement
membrane (BM) of rabbit lung at ×46,000. Shown is the Bthicker side^
of the alveolus where the alveolar BM and capillary BM are separated by
an interstitial space containing collagen fibrils and other extracellular
matrix materials. The alveolar epithelial (AE) type 1 cell rests on the
BM with lamina lucida (arrows) and lamina densa (arrowhead). On the
Bthinner side^ of the alveolus (not shown) the alveolar BM and capillary
BM fuse, at least focally, to form a single BM separating alveolar
epithelial type 1 cells and capillary endothelial cells—a BM
morphological variation that is thought to facilitate gas exchange between
the alveolar space and the alveolar capillaries (Vaccaro and Brody 1981)
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of alveolar epithelial homoeostasis following lung injury
(Strieter and Mehrad 2009).

Loss of alveolar BM/capillary BM integrity has been ob-
served in idiopathic pulmonary fibrosis (IPF) (Chen et al.
2016). Mechanisms underlying this disruption have not been
well defined. Specific alveolar BM components have been
described, including the Goodpasture’s antigen associated
with Goodpasture’s syndrome that is the NC1 domain of the
alpha-3 chain of collagen type IV, which is also found in the
glomerular BM (Derry and Pusey 1994). The absence of the
basement membrane component nidogen-2, but not of
nidogen-1, has been shown to result in increased lung metas-
tases in mice (Mokkapati et al. 2012).

BM in the liver

BMs are found in blood and lymphatic vessels and around
the bile ducts in human liver (Hahn et al. 1980;Mak andMei
2017). Their presence in the tubular regions, particularly
between sinusoids lining cells and hepatocytes, is still con-
troversial (Schaffner and Poper 1963). Lack of a typical BM
in the perisinusoidal space in normal liver (Fig. 7) is thought
to allow the intimate contact between blood and parenchy-
mal cells necessary for normal hepatocyte function.
However, the appearance of a continuous perisinusoidal
BM in experimental liver injury and in human liver fibrosis
has been reported (Bucher 1963; Mak andMei 2017). These

disease-related changes may severely restrict the normal
functions of the liver.

Thus, liver hepatocytes lack the typical electron-dense
structure of BM in other organs and contains non-BM constit-
uents such as collagen type I and fibronectin, in addition to
some typical BM constituents (Martinez-Hernandez and
Amenta 1995; Matsumoto et al. 1999). Sinusoidal endothelial
cells in liver can secrete collagen type IV, laminin, nidogen,
and perlecan (Wells 2008). Collagen type IV, laminin, and
perlecan are also produced by perisinusoidal hepatic stellate
cells (HSCs) (Wells 2008). In the portal tracts, biliary epithe-
lial cells are the principal cells producing collagen type IV,
laminin, and perlecan, while portal fibroblasts and
myofibroblasts, when generated, also contribute to their pro-
duction. Expression of collagen type IV along with increased
deposition of laminin in the space of Disse results in the for-
mation of a perisinusoidal BM in liver fibrosis (Mak et al.
2013). Laminin expression is not detected in the parenchyma
of normal human liver, only in liver fibrogenesis, where β2
laminin chain may be deposited in the space Disse, along with
collagen type IVand perlecan, forming a continuous basement
membrane beneath the endothelium of liver sinusoids (Mak
and Mei 2017).

BM in other organs

Most other organs in a human or animal, including brain,
heart, gut (with variation in the different segments of the small

Fig. 7 Transmission electron micrograph of rabbit liver hepatocyte,
sinusoids and spaces of Disse at ×30,000 magnification. Hepatocytes
are organized into plates separated by the space of Disse (D) from
vascular channels termed sinusoids. Hepatocyte processes (arrowheads)
extend into the space of Disse. Sinusoids have a discontinuous,

fenestrated endothelial cell lining. Of note, there is no basement
membrane between either hepatocytes or endothelial cells and the space
of Disse—allowing direct cellular contact that is thought to facilitate
hepatocyte functions such as detoxification, modification, and excretion
of exogenous and endogenous substances
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intestine and the large intestine), pancreas, gall bladder, and
testis, have BMs that are similar in overall composition to
those that have been described for cornea, skin, lung, and
kidney, but with tissue-specific alterations in BM components
that facilitate the specific functions of these organs. A specific
description of the differences in BM composition between
these many different organs is beyond the scope of this review.

EBM injury, regeneration and fibrosis
in different organs

Corneal EBM injury and regeneration, and its relationship
to organ fibrosis, is one of the best-characterized systems.
Whether the injured cornea heals with transparency or with
fibrosis and transparency depends on the type and level of
injury (Torricelli et al. 2013b). Corneal stromal keratocytes
are fibroblastic cells that are normally relatively quiescent
and function to maintain the precise structure of the stromal
extracellular matrix associated with transparency
(Chaurasia et al. 2009; Hassell and Birk 2010; Ishizaki
et al. 1993; Jester et al. 1995, 1999; Kaur et al. 2009).
Corneal injuries Bactivate^ keratocytes at the site of injury
and in the proximate stroma to Bcorneal fibroblasts^ that
participate in the healing response and can differentiate into
myofibroblasts when exposed to sustained transforming
growth factor β1 or β2 (Jester et al. 1987; Kaur et al.
2009; Wilson 2012). In vitro cell culture experiments have
identified several key growth factors such as TGFβ1,
TGFβ2, and PDGF that play critical roles in mediating
keratocyte differentiation to wound healing corneal fibro-
blast and myofibroblast phenotypes (Jester et al. 1987,
2002; Tuli et al. 2006; Wilson 2012). In addition, after cor-
neal injury, bone marrow-derived fibrocytes penetrate the
corneal stroma and differentiate into myofibroblasts when
TGFβ and PDGF are present in the stroma at sufficient and
sustained levels (Barbosa et al. 2010). It has been well doc-
umented that these key growth factors are produced in high
levels by corneal epithelial cells but their penetration into
the stroma is negligible when the EBM is intact (Fini 1999;
Torricelli et al. 2013b; Wilson 2012). The corneal epitheli-
um, like other epithelial layers in animals, is continuously
subjected to physical, chemical, and biological insults. If an
insult is sufficiently severe, the EBM is also injured,
allowing the penetration of pro-fibrotic TGFβ, PDGF, and
possibly other growth factors and cytokines, into the corneal
stroma to initiate the development of corneal fibroblasts and
myofibroblasts from local (keratocyte) and bone marrow-
derived (fibrocyte) precursors (Torricelli et al. 2013b;
Wilson 2012). If the EBM is promptly repaired, for exam-
ple, after most simple corneal abrasions, the penetration of
TGFβ and PDGF into the stroma is consequently cut off and
the developing myofibroblast precursors undergo IL-1-

mediated apoptosis (Kaur et al. 2009) before they become
mature vimentin+ alpha-smooth muscle actin+ desmin+
myofibroblasts (that secrete large amounts disordered extra-
cellular matrix) (Chaurasia et al. 2009), keratocytes repop-
ulate the anterior stroma and transparency of the corneal
stroma is maintained (Fig. 8a–c). If, however, repair of the
EBM is sufficiently delayed, then TGFβ and PDGF contin-
ue to penetrate the stroma at high levels, resulting in the
development of large numbers of stromal myofibroblasts,
and the prodigious amounts disordered extracellular matrix
they produce, results in fibrosis and loss of transparency that
is crucial for corneal function (Fig. 8d–f) (Torricelli et al.
2013b; Wilson 2012). Delayed regeneration of EBM can
result from mechanical factors such as corneal stromal sur-
face irregularity produced by injury, surgery, infection, or
disease (Netto et al. 2006). Another mechanism for delayed
EBM regeneration, however, is likely insufficient stromal
keratocyte contributions of basement membrane compo-
nents needed for full restoration of EBM structure and func-
tion (Santhanam et al. 2015, 2017; Torricelli et al. 2015).
Thus, keratocytes produce laminins, nidogen-1, nidogen-2,
perlecan, and possibly other EBM components. The work-
ing hypothesis is that after corneal injury, the healed corneal
epithelium lays down a self-polymerizing laminin nascent
EBM and that this layer produces a barrier to the penetration
of more posterior EBM components that must be provided,
at least in part, by keratocytes (Santhanam et al. 2017;
Wilson et al. 2017). If the original injury is sufficiently se-
vere, resulting in substantial loss of adjacent keratocytes by
apoptosis and/or necrosis (Marino et al. 2017a; Mohan et al.
2003; Wilson et al. 1996) and, therefore, there are dimin-
ished keratocyte contributions of components to EBM re-
pair, then defective regeneration of the EBM promotes the
development and persistence of myofibroblasts via ongoing
penetration of TGFβ and PDGF into the stroma. These per-
sistent myofibroblasts produce the fibrosis in the anterior
subepithelial stroma. After a period of time, importantly
without recurrent injury and typically measured for the cor-
nea in many months to years, the normal mature EBM may
be regenerated—likely via keratocyte penetration of the lay-
er of myofibroblasts and their disordered extracellular ma-
trix—where the keratocytes coordinate with the overlying
epithelium to facilitate EBM regeneration. Once the EBM is
fully repaired, myofibroblasts, deprived of their ongoing
source of TGFβ, undergo apoptosis (Wilson et al. 2007).
Subsequently, the anterior stroma is repopulated by
keratocytes, which remove and reorganize the disordered
extracellular matrix and restore corneal stromal transparen-
cy (Marino et al. 2017b; Wilson et al. 2017).

The importance of the coordination and interplay be-
tween the epithelial cells, stromal cells, bone marrow-
derived cells, and the EBM in modulating transparency
and fibrosis in the cornea at every stage of the corneal
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wound healing process, as well as in homeostasis in the
normal uninjured cornea is remarkable and likely relevant
to the interactions between epithelial cells, parenchymal
cells, fibroblasts, endothelial cells, bone marrow-derived
cells, and basement membranes that occur in other organs
during homeostasis in normal tissues, and after injuries in
which fibrosis may occur. Fibroblasts and other non-
epithelial and non-parenchymal cells have been shown to
produce basement membrane components in many other
organs (El Ghalbzouri et al. 2005; El Ghalbzouri and
Ponec 2004; Fleischmajer et al. 1995; Fox et al. 1991;
Furuyama et al. 1997; Marinkovich et al. 1993; Simon-
Assmann et al . 1998; Smola et al . 1998). Thus,
keratinocyte-fibroblast interactions have been shown to
be important in basement membrane generation in
organotypic skin cultures (Smola et al. 1998). Similarly,

assembly of the alveolar basement membrane after lung
injury is likely orchestrated by cooperation between alve-
olar epithelial cells and pulmonary fibroblasts (Furuyama
et al. 1997). In addition, fibrosis has been shown to resolve
in other organs after removal of sources of chronic injury.
For example, bleomycin-induced lung fibrosis in mice can
reverse spontaneously after removal of the inciting agent
(Cabrera et al. 2013; Lawson et al. 2005; Li et al. 2011). In
humans, skin fibrosis associated with systemic sclerosis
can at least partially resolve following neutralization of
the antifibrinolytic function of plasminogen activator in-
hibitor 1 (Lemaire et al. 2016). Further research should
be directed at fully understanding these critical cellular
and extracellular matrix interactions that likely lie at the
core of the development and resolution of fibrotic diseases
that occur in many organs.

Fig. 8 Regenerative vs. fibrotic repair of the rabbit cornea after injury. At
1 month after minor injuries to the rabbit cornea, such as epithelial
abrasion or − 4.5 diopter photorefractive keratectomy (PRK) that is
shown (a–c), in which the EBM and a small amount of the anterior stroma
is ablated with the excimer laser and relatively few stromal keratocytes
die by apoptosis or necrosis, transmission electron microscopy (TEM)
shows that the EBM regenerates normally (a ×22,000 mag., arrows are
lamina lucida and arrowheads are lamina densa), keratocytes repopulate
the anterior stroma (b ×400 mag., arrows) and few, and in this case no,
myofibroblasts are detected by staining for the alpha-smoothmuscle actin
(SMA) myofibroblast marker (b ×400 mag. showing DAPI stained
keratocytes in the stroma (s). The cornea overlying the pupil (arrows) is
transparent and iris details are clear when photographed with a slit lamp at
1 month after − 4.5D PRK (c ×20 mag.). After a more severe injury (such
as high correction − 9 diopter PRK) (d–f), the EBM is not regenerated at

1 month after surgery and no lamina lucida or lamina densa is detected (d
×22,000 mag., arrows note no EBM beneath the epithelium) and
myofibroblasts (arrowheads) with large amounts of rough endoplasmic
reticulum fill the anterior stroma of the cornea. d The disorganization of
the collagen in the stroma surrounding the myofibroblasts compared to a,
where the collagen fibrils are uniform diameter and regularly packed—an
important contributor to the transparency of the normal corneal stroma.
After this level of injury (e ×400 mag.) the anterior stroma beneath the
epithelium (the ongoing source of TGFβ that penetrates the stroma to
maintain the viability of the myofibroblasts in the absence of normal
EBM) has a layer of SMA+ myofibroblasts (arrows). A slit lamp
photograph of the cornea at 1 month after surgery shows fibrosis (f ×20
mag., arrows delineate area of fibrosis that is also called haze) in the area
of the previous PRK surgery. e = epithelium and s = stroma (a–e)
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