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Oxygen sensing and stem cell activation in the hypoxic carotid body
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Abstract
The carotid body (CB) is the major arterial chemoreceptor responsible for the detection of acute decreases in O2 tension (hypoxia)
in arterial blood that trigger hyperventilation and sympathetic activation. The CB contains O2-sensitive glomus (chief) cells,
which respond to hypoxia with the release of transmitters to activate sensory nerve fibers impinging upon the brain respiratory
and autonomic centers. During exposure to sustained hypoxia (for weeks or months), the CB grows several-fold in size, a
response associated with acclimatization to high altitude or to medical conditions presenting hypoxemia. Here, I briefly present
recent advances on the mechanisms underlying glomus cell sensitivity to hypoxia, in particular the role of mitochondrial complex
I in acute oxygen sensing. I also summarize the properties of adult CB stem cells and of glomus cell–stem cell synapses, which
contribute to CB hypertrophy in chronic hypoxia. A note on the relationship between hypoxic CB growth and tumorigenesis is
included. Finally, the medical implications of CB pathophysiology are discussed.
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Introduction

Oxygen (O2) sensing is fundamental for life of aerobic organ-
isms and particularly for mammals, as it is necessary for their
adaptation to environments with changing O2 tension (PO2) or
pathophysiological conditions presenting a decrease in blood
PO2 (hypoxemia). Acute changes in PO2 are detected by che-
moreceptor, O2-sensitive, cells in organs of the homeostatic
O2-sensing system (Weir et al. 2005). Among these organs,
the carotid body (CB) has a special significance, as it is stra-
tegically located at the bifurcation of the carotid artery
(Fig. 1a) and functions as the main arterial chemoreceptor
activated by hypoxemia, hypercapnia (rise of blood PCO2),

acidic pH, hypoglycemia and other stimuli (see Lopez-Barneo
et al. 2016a). The CB is composed of clusters of cells
(glomeruli) in close contact with capillaries and nerve fibers.
Neuron-like glomus or type I cells (most frequently named in
the medical literature as Bchief^ cells), the most abundant in
the glomeruli, are highly dopaminergic (can be stained with
antibodies against tyrosine hydroxylase; TH) and also contain
ATP, neuropeptides and several other neurotransmitters (Fig.
1b). Upon activation, glomus cells release transmitters, which
activate afferent fibers terminating at the respiratory and auto-
nomic centers of the brainstem, thereby eliciting hyperventi-
lation and sympathetic activation (Fig. 1c). Glomus cells are
enveloped by glia-like type II, or sustentacular, cells (Fig. 1b),
which have classically been ascribed a supportive role, al-
though recent studies have unraveled their function as quies-
cent stem cells (Pardal et al. 2007; Macias et al. 2014;
Navarro-Guerrero et al. 2016). CB glomeruli are highly com-
plex structures with sophisticated autocrine and paracrine in-
teractions among the different cell classes (see Nurse 2014).

In the last decade, the CB, with a well-established role in
the regulation of respiration, has also drawn special medical
attention due to its possible contribution to the pathogenesis of
highly prevalent human diseases. Alterations of CB develop-
ment have been associated with respiratory disturbances (con-
genital central hypoventilation or sudden infant death
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syndromes) in the newborn (Cutz et al. 1997; Gauda et al.
2004; Perez and Keens 2013) and, more recently, CB over-
activation has been suggested to contribute to the exaggerated
sympathetic outflow existing in sleep apnea (Del Rio et al.
2016), cardiac failure (Marcus et al. 2014) and metabolic
(Ribeiro et al. 2013) syndromes. Indeed, CB resection has
been proposed for the treatment of refractory neurogenic hy-
pertension (McBryde et al. 2013), although this procedure
does not seem to be exempt from adverse effects (Limberg
et al. 2015). In addition to dopamine, CB glomus (chief) cells
contain high levels of glial cell line-derived neurotrophic fac-
tor (GDNF), an agent that promotes survival of central dopa-
minergic neurons (Lin et al. 1993; Hidalgo-Figueroa et al.
2012), hence CB transplantation has been suggested as a po-
tential therapeutic approach to Parkinson’s disease (Minguez-
Castellanos et al. 2007).

In this article, I will briefly summarize our current under-
standing of the mechanisms underlying acute O2 sensing by
CB glomus (chief) cells and their responsiveness to hypoxia. I
will also discuss the process of CB growth during sustained
hypoxia, an intriguing property that is not normally seen in
other structures of the peripheral nervous system (see,
however, Pan et al. 2016). I will describe the properties of
adult CB stem cells and the mechanisms whereby, during
exposure to hypoxia, mature O2-sensitive glomus cells induce

stem cells to proliferate and differentiate to generate new glo-
mus cells.

Mechanisms of acute O2 sensing by carotid
body chemoreceptor cells

A principal characteristic of CB chemoreceptor cells is that they
contain several classes of K+ channels, the open probability of
which is inhibited during hypoxia, thereby leading to cell depo-
larization, Ca2+ influx and transmitter release. These BO2-sensi-
tive^ K+ channels, initially identified in glomus (chief) cells,
have also been described in other preparations such as pulmonary
arterial myocytes (see Lopez-Barneo et al. 1999; Weir et al.
2005) or adrenal medulla (AM) chromaffin cells (Thompson
et al. 1997; Keating et al. 2005). In rodent glomus cells, back-
ground K+ channels (most likely Task1/Task3 heteromers) seem
to be the most important for the initiation of the hypoxic depo-
larization (Buckler et al. 2000; Kim et al. 2009), which may be
potentiated by inhibition of O2-sensitive voltage-gated K

+ chan-
nels (seeOrtega-Saenz et al. 2010). Activation of Ca2+ permeable
cationic channels has also been suggested to contribute to the
hypoxic response in glomus (Kang et al. 2014) and chromaffin
(Inoue et al. 1998) cells.

Fig. 1 Acute oxygen sensing by
carotid body glomus cells. a The
human carotid bifurcation after
removal of the fat and connective
tissues. The carotid body (CB) is
indicated by an arrow. IC internal
carotid artery. Scale bar 1 cm.
Modified from Ortega-Saenz
et al. (2013). b Schematic of the
main cellular components in the
CB glomerulus. c Hypoxic
ventilatory response in a normal
mouse. d, d’ Secretory responses
to hypoxia (PO2, ~10 mmHg) and
hypercapnia (20% CO2) of
glomus cells in slices from normal
(control) and Ndufs2-deficient
(TH-NDUFS2) mice. e, e’, f, f’
Changes in NAD(P)H
autofluorescence (e, e’) and
reactive oxygen species in cytosol
(f, f’) during exposure to hypoxia
recorded from glomus cells from
control and Ndufs2-null
(TH-NDUFS2) mice. c–f’
Modified from Fernandez-Aguera
et al. (2015)
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Although the Bmembrane model^ of chemosensory trans-
duction is generally accepted, the mechanisms whereby de-
creases in PO2 result in altered ion channel activity have been
a matter of much debate and discussion (see Peers 2015;
Nurse 2017). Several molecules that directly or indirectly
modify ion channel function have been proposed to function
as O2 sensors; however, none of them has received robust
experimental support (see Lopez-Barneo et al. 2016b). On
the other hand, as CB cells are strongly activated by cyanide
and other electron transport chain (ETC) inhibitors, a classical
view is that mitochondria have an important role in hypoxic
CB activation (Mills and Jobsis 1972; Mulligan and Lahiri
1982; Duchen and Biscoe 1992). Rotenone, a mitochondrial
complex (MC) I blocker, can selectively occlude sensitivity to
hypoxia in glomus cells without affecting responsiveness to
hypoglycemia (Garcia-Fernandez et al. 2007); therefore, a ro-
tenone binding molecule has been suggested to be essential
for acute O2 sensing (Ortega-Saenz et al. 2003; Keating et al.
2005; Thompson et al. 2007). To test this hypothesis, we gen-
erated genetically modified mice with ablation of the Ndufs2
gene, which encodes the 49-kD subunit of the ubiquinone
(CoQ)/rotenone binding site at the catalytic core of MCI.
Mice with Ndufs2 deficiency restricted to catecholaminergic
cells (TH-NDUFS2 mice) can survive 3–4 months but show a
complete abolition of the hypoxic ventilatory response with
normal responsiveness to hypercapnia (Fernandez-Aguera
et al. 2015). In agreement with this systemic phenotype,
Ndufs2-null glomus cells are insensitive to hypoxia, although
they respond normally to hypercapnia, hypoglycemia and di-
rect depolarization with high extracellular K+ (Fig. 1d, d’).
CBs from Ndufs2-deficient mice are histologically normal,
which suggests that glomus cells survive without a functional
MCI and rely on the MCII–MCIV pathway for oxidative
phosphorylation. This idea is supported by the high levels of
succinate found in the CB, in comparison with other central
and peripheral neural organs (Fernandez-Aguera et al. 2015)
and the marked cell loss in CB from MCII-deficient mice
(Diaz-Castro et al. 2012). Recently, a Bsignature gene expres-
sion profile^, characterized by high levels of pyruvate carbox-
ylase (Pcx) and of three atypical mitochondrial subunits
(Ndufa4l2, Cox4i2 and Cox8b) as well as down-regulation
of Phd3 and up-regulation of Hif2α, has been reported for
acute O2-sensing chemoreceptor cells (Gao et al. 2017). CB
cells also contain unusually high levels of biotin, the essential
cofactor of carboxylases (Ortega-Saenz et al. 2016). Taken
together, these findings suggest that specific metabolic spe-
cializations confer CB glomus cells with their special sensi-
tivity to hypoxia. The overexpression of Pcx is probably re-
quired for TCA cycle anaplerosis and the accumulation of
high levels of reduced ubiquinone (CoQH2). The presence
of the three atypical mitochondrial subunits could make cyto-
chrome c oxidase activity highly sensitive to decreases in PO2,
such that even relatively mild hypoxia would cause backup of

electrons in the ETC and a further increase in the CoQH2/CoQ
ratio, thereby leading to reactive oxygen species (ROS) and
NADH production in MCI. This comprehensive model of
acute O2 sensing fits well with recent experiments showing
reversible increases in mitochondrial ROS and NADH, which
can modulate membrane ion channels-, during hypoxia and
the disappearance of both signals in Ndufs2-deficient glomus
cells (Fig. 1e, e’, f, f’) (Fernandez-Aguera et al. 2015). In
addition, responsiveness to acute hypoxia in glomus cells is
abolished by pharmacological and genetic inhibition of succi-
nate dehydrogenase (Gao et al. 2017). Moreover, increases in
mitochondrial ROS have also been associated with acute hyp-
oxic pulmonary vasoconstriction (HPV) (Waypa et al. 2001)
and ablation of the Cox4i2 subunit inhibits acute HPV and
activation by hypoxia of single pulmonary artery smoothmus-
cle cells (Sommer et al. 2017).

Carotid body growth in chronic hypoxia, stem
cells and tumorigenesis

In addition to its function as an acute O2 sensor, the CB plays a
fundamental role in acclimatization to sustained (chronic)
hypoxia (see Joseph and Pequignot 2009). The CB has a high
level of plasticity and in individuals living at high altitude with
low atmospheric pressure or in patients suffering cardiopul-
monary diseases who present with hypoxemia, it can grow to
several-fold its normal size. This response, unusual for a neu-
ronal organ, is characterized by angiogenesis and enlargement
of the neural parenchyma, which leads to augmentation of the
excitatory electrical signals that act on the brainstem respira-
tory center to produce hyperventilation. During acclimatiza-
tion to hypoxia, the CB-mediated constant hyperventilation
prevents an excessive fall in arterial PO2, while other mecha-
nisms trigger angiogenesis and red blood cell proliferation to
increase O2 supply to the tissues.

Although CB growth is a well-known classic response to
hypoxia (Fig. 2a, a’) (Arias-Stella and Valcarcel 1976;
McGregor et al. 1984) the underlying mechanisms have
remained largely unstudied. Using genetic markers, we have
shown that, as suggested before (Le Douarin 1986; Kameda
2005), the two main cell types in the CB (glomus, type I or
chief cells and type II or sustentacular cells) derive from neu-
ral crest precursors (Pardal et al. 2007). In normoxic condi-
tions, type II cells, which can be stained with antibodies
against the glial fibrillary acidic protein (GFAP), are arranged
with large processes enveloping glomus cells. However, in
response to hypoxia, the GFAP staining progressively disap-
pears in parallel with the appearance of proliferating nestin+
progenitors and new blood vessels, suggesting a change of
phenotype in type II cells (Pardal et al. 2007). Although a
population of TH+ CB cells can undergo mitosis (Paciga
et al. 1999; Chen et al. 2007; Pardal et al. 2007), in vivo cell
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fate mapping experiments have shown that the nestin+-posi-
tive progenitors and many TH+ glomus cells newly generated
during exposure of mice to chronic hypoxia derive from
GFAP+ cells (Pardal et al. 2007). The CB contains a popula-
tion of cells (~1% of the total cell number in CBs from rats or
mice) that, once dispersed, behave as self-renewing
multipotent stem cells able to form clonal colonies
(neurospheres), composed of a core of proliferating nestin+
progenitors, which in a few days give rise to the appearance of
blebs formed by differentiating TH+ cells budding out from
the neurosphere (Fig. 2b–b^, c–c^). In rat preparations, the
blebs (clusters of TH+ cell) can grow for several weeks in
culture to reach the size of an entire CB. For unknown reasons,
in preparations of mouse or human CB, this Bregenerative
potential^ is, however, much smaller than in the rat (Ortega-
Saenz et al. 2013; own unpublished observations). Newly
generated glomus cells in vitro have a significant population
of voltage-gated Ca2+ and K+ channels, numerous catechol-
aminergic secretory vesicles, which are released in response to
hypoxia or hypoglycemia (Fig. 2d–e’) and high levels of
GDNF (Fig. 2f). In addition to neuronal O2-sensitive glomus

cells, CB stem cells can also give rise to actin-positive smooth
muscle cells, a typical neural crest derivative, as well as endo-
thelial cells (Pardal et al. 2007; Navarro-Guerrero et al. 2016;
Annese et al. 2017). Therefore, the CB is a neurogenic niche
in the peripheral nervous system, which shares many of the
properties of neurogenic centers in the mammalian brain: the
subventricular zone (SVZ) and the dentate gyrus (DG) of the
hippocampus (see Kriegstein and Alvarez-Buylla 2009). In all
these cases, quiescent stem cells with a glia-like phenotype
can be activated to become proliferative nestin+ intermediate
progenitors, which can eventually differentiate into
neuroblasts and other cell types (Kokovay and Temple
2007). Multipotent glia-like stem cells have also been found
in the adrenal medulla, where they seem to be able to generate
new chromaffin cells and contribute to the plasticity of this
organ (Rubin de Celis et al. 2015).

A question of interest is whether the proliferative potential
of the CB is associa ted with the appearance of
chemodectomas, a tumor subtype, which belongs to the group
of paragangliomas affecting the peripheral nervous system.
CB paragangliomas are mostly benign and have histological

Fig. 2 Carotid body stem cells. a, a’ Histological sections of carotid
bodies from normal mouse and after exposure to hypoxia (10% O2) for
3 weeks. Scale bar 50 μm. b–b^ A stem cell colony illustrating the
formation of a typical clonal CB neurosphere. Scale bar 50 μm. c–c^
Time course of rat CB neurosphere formation in vitro. Note the formation
of the neurosphere core containing nestin+ progenitors and the
subsequent appearance of blebs of TH+ glomus cells. Scale bar 50 μm.

d A bleb of TH+ cells detached from a rat CB neurosphere. The carbon
fiber electrode placed near the bleb was used to record the cellular
secretory responses to hypoxia and hypoglycemia (e, e’). Scale bar
20 μm. f GDNF mRNA expression in rat CB and CB-derived
neurospheres (NS). Note that GDNF is not expressed in the superior
cervical ganglion (SCG). Modified from Pardal et al. (2007)
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features that resemble those observed in the CB of individuals
subjected to chronic hypoxemia (Heath et al. 1982; Arias-
Stella and Valcarcel 1976; Kliewer et al. 1989). In addition,
the incidence of CB tumors increases in high-altitude residents
(Saldana et al. 1973; Arias-Stella and Bustos 1976; Astrom
et al. 2003). There are regional variations in the prevalence of
paragangliomas at high altitudes (e.g., extremely high in
Mexico, probably much lower in the US Rocky Mountain
states and in the Himalayas), which may result from regional
differences in the prevalence of occult mutations of hereditary
susceptibility genes (Cerecer-Gil et al. 2010). However, the
relationship between CB tumorigenesis and the activity of the
CB neurogenic niche has not been established. Mutations in
the membrane anchoring subunit D of mitochondrial succi-
nate dehydrogenase (SdhD) are the most frequent cause of
congenital CB paraganglioma (Rustin et al. 2002; Baysal
2008). Affected individuals are heterozygous (contain a nor-
mal and a mutated allele) and the tumor appears after the loss
of the normal allele (loss of heterozygosity) (Habano et al.
2003; Maier et al. 1999). Biallelic deletion of the succinate
dehydrogenase subunits studied so far (SdhB and SdhD) are
lethal at embryonic stages and heterozygous SdhD-deficient
(+/−) mice up to 2 years of age do not develop tumors or any
other obvious pathology, although they seem to have subtle
CB alterations (Piruat et al. 2004). Moreover, conditional ab-
lation of the Sdhd alleles in catecholaminergic cells of mice
result in a marked cell loss in the CB, AM and superior cer-
vical ganglion (SCG), as well as in mesencephalic dopaminer-
gic neurons (Diaz-Castro et al. 2012). Therefore, it seems that
SdhD ablation in mice, which can cause succinate accumula-
tion, prolyl hydroxylase (PHD) inhibition and hypoxia induc-
ible factor (HIF) stabilization (Selak et al. 2005; Millan-Ucles
et al. 2014), is not sufficient to induce paragangliomas. A
Bmultiple-hit^ hypothesis and differential chromosomal ar-
rangement have been suggested to explain the differences be-
tween CB tumorigenesis in humans and mice (Millan-Ucles
et al. 2014). In any case, the data available do not support a
direct relationship between the mechanism of hypoxic CB
hypertrophy and the appearance of paragangliomas, which
are tumors that can affect not only the CB but also tissues,
such as the AM, without a hypertrophy response to hypoxia.

Stem cell activation in the hypoxic carotid
body

A simple model of the hypoxic CB growth postulated that
activation of progenitor cell proliferation by lowering PO2

was due to inhibition of PHDs and stabilization of HIF
(Pardal et al. 2007; Kokovay and Temple 2007), as it is known
that HIF up-regulation can induce proliferation in several cell
types. However, we found that hypoxia-induced CB
hypertrophy in vivo is not mimicked by the systemic

administration of dimethyloxalylglycine, although this drug
(a potent PHD inhibitor) is able to induce HIF-dependent re-
sponses, such as red blood cell proliferation and the up-
regulation of Vegf mRNA expression in the brain. In agree-
ment with these observations, it has also been shown that the
size of the core of CB neurospheres in vitro (an indication of
the proliferation of CB progenitors) is unaltered by exposure
to PO2 as low as 1% (Platero-Luengo et al. 2014). These
results indicated that, as it occurs in other multipotent stem
cells (Ezashi et al. 2005; Mohyeldin et al. 2010) and neural
progenitors (d’Anglemont de Tassigny et al. 2015), CB stem
cells are not intrinsically sensitive to hypoxia as they mainly
rely on a non-oxidative metabolism. Moreover, the data also
suggested that activation of hypoxic CB stem cells in vivo
depends on the presence of the O2-sensitive glomus cells. In
support of this concept, ultrastructural studies have demon-
strated the existence of numerous synaptic-like contacts be-
tween O2-sensitive glomus cells and type II (stem) cells
(Fig. 3a–c). In vitro and in vivo studies have also shown that
CB stem cells are induced to proliferate by endothelin 1 (ET-
1) released from glomus cells and that type II cells contain
ET-1 receptors (Platero-Luengo et al. 2014). Therefore, it
seems that the O2-sensitive glomus cells function as presyn-
aptic elements in two types of synapses: (1) Bchemosensory
synapses^, formed between glomus cells and afferent sensory
fibers, involved in acute O2 sensing as well as other sensory
functions of the CB and (2) Bchemoproliferative synapses^
formed between glomus and stem cells, which trigger CB
hypertrophy during exposure to hypoxia (Fig. 3d) (Platero-
Luengo et al. 2014). In the context of the current discussion,
it is relevant to recall that synapses (both chemical and elec-
trical) may also occur between pairs of adjacent glomus cells
(see Nurse 2014). Although HIF induction in stem cells is not
sufficient to trigger CB growth in hypoxia, the PHD–HIF
pathway is necessary for normal CB plas t ic i ty.
Overexpression of HIF2α induces CB hypertrophy (Macias
et al. 2014) and inducible down-regulation of the HIF2α gene
reduces CB cell proliferation during sustained hypoxia
(Hodson et al. 2016).

Regulation of neural stem cell activation by the mature
cells is a phenomenon not only seen in the CB but it has also
been reported to occur in the central neurogenic niches (see
Pardal and Lopez-Barneo 2016). In the SVZ, there are
astrocyte-like neural stem cells (NSCs) that, upon activation,
are converted into rapidly proliferating intermediate progeni-
tors, which in turn give rise to neuroblasts that migrate to the
olfactory bulb (Kriegstein and Alvarez-Buylla 2009). NSCs in
the SVZ can also generate oligodendrocyte precursors and
striatal neurons (Nait-Oumesmar et al. 2007; Kernie and
Parent 2010). The basal area of the SVZ is innervated by
axonal branches of neighboring dopaminergic fibers, which
release transmitters detected as spillover byNSCs (Baker et al.
2004; Hoglinger et al. 2004). Serotonergic fibers originated in
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the raphe nuclei also innervate the SVZ and form synaptic-like
contacts with apical processes of NSCs (Tong et al. 2014).
Both of these transmitters, as well as GABA released from
neuroblasts, can regulate NSC quiescence. In all mammals
studied, including man, there are NSCs in the DG of the hip-
pocampus, which, like their counterpart in the SVZ, can also
generate neuroblasts which mature and integrate into the gran-
ule cell layer. The innervation by glutamatergic and serotoner-
gic fibers has been reported to modulate NSC maturation or
proliferation in hippocampal DG (Deisseroth et al. 2004;
Brezun and Daszuta 2000). In addition to long-distance inner-
vation, local release of GABA by hippocampal interneurons
has been shown to regulate DG NSCs’ quiescence and neural
maturation (Song et al. 2012).

Concluding remarks

The molecular mechanisms underlying the detection of acute
changes in O2 tension by CB glomus (chief) cells have
remained elusive for decades; however, our understanding of
this process has recently advanced significantly thanks to the
use of gene profiling techniques and genetically modified an-
imal models. Glomus cells do not appear to posses a specific
O2 sensor but their responsiveness to acute hypoxia seems to

depend on metabolic and biophysical properties, which result
from the regulated expression of a mix of genes encoding
mitochondrial subunits, metabolic enzymes and ion channels.
On the other hand, the cellular mechanisms responsible for
CB hypertrophy in chronic hypoxia, a response associated
with adaptation/survival in high altitude and cardiorespiratory
pathologies limiting gas exchange in the lungs, have also been
identified. The CB contains a population of adult neural crest-
derived multipotent stem cells, which are quiescent in
normoxic conditions but are activated by hypoxia to produce
new glomus cells as well as smooth muscle and endothelial
cells. The CB behaves as a germinal niche in the adult periph-
eral nervous system, which shares many properties with neu-
rogenic centers existing in the mammalian brain. Activation of
CB stem cells during hypoxia requires stimulation of the O2-
sensitive glomus cells and the release of transmitters, which
induce stem cell proliferation and differentiation.
Ultrastructural studies indicate that mature glomus cells and
stem cells establish numerous chemical synapses
(Bchemoproliferative synapses^) that work in parallel with
those existing between glomus cells and afferent nerve fibers
(Bchemosensory synapses^) (see Nurse 2014; Platero-Luengo
et al. 2014). Understanding CB function in acute and chronic
hypoxia has direct medical impact. It may help to combat
respiratory depression, a frequent pathology generated during

Fig. 3 Glomus cell–stem cell
synapse. a Ultrastructure of a
carotid body glomerulus with
indication of glomus (type I, red)
and type II (stem, blue) cells.
Scale bar 5 μm. b High-
magnification photograph
showing the ultrastructure of a
glomus cell (type I, uncolored)
surrounded by processes of type
II cells (blue) or nearby type I
cells (red). Numerous dense-core
secretory vesicles in type I cells
are located in front of the type II
cell membrane. Scale bar 2 μm. c
High-magnification photograph
of a glomus cell (type I)–stem cell
(type II) synapse. Note the dense
core vesicles (arrowhead) near
the type I (presynaptic)
membrane, the synaptic cleft and
a bundle of intermediate filaments
characteristic of type II cells
(asterisk). Scale bar 0.2 μm. d
Scheme illustrating the
Bchemosensory^ and
Bchemoproliferative^ CB
synapses. See text for details.
Modified from Platero-Luengo
et al. (2014)
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anesthesia or opioid overdose, as well as the CB-mediated
exaggerated sympathetic outflow that exists in highly preva-
lent disorders, such as cardiac failure or sleep apnea.
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