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Abstract
During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and
lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial
protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the patho-
genesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil
function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis
and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils,
providing a bench-to-bedside perspective on neutrophils in critical illness.
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Introduction

Critical illness and organ dysfunction can be precipitated by a
variety of insults (sepsis, trauma, burns, ischemia-reperfusion
injury and many others) but a common feature of disease
pathogenesis is inflammation and immune-mediated patholo-
gy. Neutrophils are central players in the inflammatory path-
ogenesis of organ failure in critical illness. Armed with pow-
erful antimicrobial effector functions, neutrophils are both es-
sential guardians of host defense and dangerous mediators of
tissue damage during states of unchecked inflammation.
Abnormalities of neutrophil function have been identified in
diseases of the critically ill that predispose to immune-
mediated organ dysfunction and weaken host defenses,
resulting in susceptibility to nosocomial infections. Here, the
role of neutrophils in the pathogenesis of critical illness and
utility of targeting neutrophils therapeutically, will be
reviewed.

The function of neutrophils in critical illness

Lifespan

The number of circulating neutrophils is commonly elevated
in patients with sepsis and other states of critical illness. Sepsis
is a state of systemic inflammation, dysregulated host re-
sponse and organ dysfunction that is caused by infection
(Singer et al. 2016). In the setting of sepsis and systemic
inflammation, neutrophils are released from bone marrow as
well as intravascular stores and their survival in the blood-
stream is increased several fold (Colotta et al. 1992).
Cytokines such as TNFα, IL-1 and IL-6, as well as bacterial
products can stimulate granulopoeisis in the bone marrow
through the generation of granulocyte colony-stimulating fac-
tor (G-CSF) and granulocyte–macrophage colony-stimulating
factor (GM-CSF). Furthermore, downregulation of
chemokines responsible for retaining neutrophils in the bone
marrow (CXCL12), together with simultaneous upregulation
of chemokines that promote neutrophil egress (CXCL1), re-
sult in rapid release of neutrophils into the blood (Eash et al.
2010; Delano et al. 2011). Mediators of systemic inflamma-
tion (cytokines and bacterial products) also prolong the
lifespan of neutrophils in the circulation by inhibiting apopto-
sis (Colotta et al. 1992). During sepsis, neutrophils become
resistant to cell death as a result of downregulated expression
of pro-apoptotic caspases (Taneja et al. 2004; Guo et al. 2006).
In addition to prolonging neutrophil lifespan, reduced
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apoptosis also inhibits the homeostatic mechanisms that reg-
ulate circulating neutrophil counts, as this process is depen-
dent on negative feedback from macrophages that have
engulfed apoptotic neutrophils from the circulation (Stark
et al. 2005). Together, these mechanisms work synergistically
to increase the number of circulating neutrophils and to pro-
long their lifespan. Teleologically, it is thought that this re-
sponse has evolved to ensure adequate supply of neutrophils
to sites of infection. However, as described below, during the
extremes of critical illness, neutrophils acquire functional ab-
normalities that impair their ability to fight infection while
causing tissue injury and organ dysfunction.

Trafficking

Multiple abnormalities of neutrophil trafficking have been
identified in sepsis, burns, trauma and other diseases of the
critically ill (Dong et al. 1993; Butler et al. 2010; Phillipson
and Kubes 2011). In response to localized infections, neutro-
phils are rapidly and precisely recruited to the site of infection
where they kill pathogens and aid in tissue healing. In contrast,
a state of Bneutrophil paralysis^ is observed during sepsis, in
which trafficking to infected tissues is impaired as a result of
altered adhesion molecule expression and chemotaxis signal-
ing (Heit et al. 2002; Alves-Filho et al. 2010). Instead, neutro-
phils are re-directed to the microvasculature of internal organs
including the lung, liver and kidneys, resulting in neutrophil-
mediated organ damage (Phillipson and Kubes 2011). The
molecular mechanisms that mediate these abnormalities of
neutrophil trafficking during sepsis (and other states of critical
illness) have been recently reviewed by others (Phillipson and
Kubes 2011; Kolaczkowska and Kubes 2013; Sônego et al.
2016). Overall, this state of Bneutrophil paralysis^ acquired
during sepsis results in immune-mediated organ damage as
neutrophils are inappropriately sequestered within internal or-
gans (e.g., acute lung injury, acute kidney injury, acute hepatic
dysfunction). The reasons for this trafficking behavior are

incompletely understood and may represent a clever immune
evasion mechanism by bacteria to misdirect neutrophils away
from foci of infection. Alternatively, there is evolving evi-
dence that this may be a coordinated host defense mechanism
to position neutrophils within the body’s most dense micro-
vascular beds to protect against blood-borne dissemination of
bacteria during severe infection (McDonald et al. 2012; Yipp
et al. 2017).

Effector functions

Neutrophils are armed with a powerful arsenal of weapons
designed to capture and kill invading microbes. However,
when these weapons are unleashed in an overabundant or
indiscrimatory manner, they can cause collateral damage to
cells and tissues of the host (Fig. 1). Furthermore, defective
neutrophil function in critically ill patients also increases the
risk of nosocomial infections. Studies to date have identified
multiple abnormalities of neutrophil effector functions during
critical illness.

Phagocytosis Variability exists in published reports of the ef-
fects of critical illness on the ability of neutrophils to phago-
cytose bacteria, with some studies finding impaired phagocy-
tosis while others finding no difference from healthy controls.
Much of the observed variability likely stems from differences
in the neutrophil populations being studied, as it is now known
that neutrophils exist in a variety of phenotypically unique
subsets (Kolaczkowska and Kubes 2013; Tak et al. 2017).
For example, circulating neutrophils from patients with septic
shock were able to engulf bacteria in quantities that were no
different from healthy patient neutrophils (Demaret et al.
2015). In contrast, peritoneal neutrophils from septic mice
displayed profound defects in phagocytosis (Chiswick et al.
2015). These findings may reflect the phenotypic difference
between unique populations of neutrophils found in these dif-
ferent compartments (Kolaczkowska and Kubes 2013; Tak

Fig. 1 Pathological neutrophil
effector mechanisms in critical
illness. Multiple neutrophil
effector mechanisms contribute to
tissue damage and organ
dysfunction during critical illness
including neutrophil extracellular
traps (NETs), neutrophil
proteases, reactive oxygen species
(ROS) and phagocytosis. See text
for details
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et al. 2017). Lastly, in addition to abnormalities of phagocy-
tosis, studies have reported defects in phagosome maturation
and intracellular killing during sepsis (Chiswick et al. 2015;
Leliefeld et al. 2016).

Reactive oxygen species Oxidative killing mechanisms repre-
sent an essential component of the anti-microbial armamen-
tarium. During critical illness, uncontrolled reactive oxygen
species (ROS) produced by neutrophil oxidative bursts results
in damage to cell membranes and organelles, causing struc-
tural and metabolic dysfunction that predisposes to cell death
(Mittal et al. 2014). Neutrophils from patients with trauma,
burns, ARDS, sepsis, acute liver failure and others have been
shown to produce abnormal levels of ROS compared to neu-
trophils from healthy controls (Simms and D’Amico 1991;
Santos et al. 2012; Liao et al. 2013; Taylor et al. 2013).
Furthermore, hyperactive ROS production by neutrophils
was associated with an increased risk of death in sepsis
(Santos et al. 2012). Therefore, uncontrolled ROS production
by neutrophils is thought to represent a central mechanism of
cellular toxicity and organ dysfunction in critical illness
(Brown et al. 2006).

Proteases Activated neutrophils release serine proteases that
cause tissue injury via multiple mechanisms. First, neutrophil
proteases can cause direct cytotoxicity to host cells (Korkmaz
et al. 2010). Furthermore, the release of neutrophil elastase,
cathepsin G and proteinase-3 from activated neutrophils exac-
erbates local and systemic inflammatory responses through
amplification of cytokine production and signaling, as well
as effects on adhesion molecule and chemoattractant function
in leukocyte recruitment (Pham 2006). Neutrophil proteases
can also activate the coagulation and complement systems,
both of which fuel the pathogenesis of sepsis and other states
of critical illness (Massberg et al. 2010; Kolev et al. 2014).
Lastly, neutrophil proteases are essential components of neu-
trophil extracellular traps (NETs), contributing to both produc-
tion and antimicrobial function of NETs (Papayannopoulos
et al. 2010).

Neutrophil extracellular traps High levels of NETs have been
identified in the bloodstream and tissues of patients with sep-
sis and trauma (Liu et al. 2014; Itagaki et al. 2015; Czaikoski
et al. 2016). In sepsis, NETs protect against bacterial dissem-
ination by capturing and clearing bacteria from the blood-
stream (McDonald et al. 2012). However, NETs also cause
pathology through their ability to induce cellular injury and
microvascular dysfunction. Studies of animal models of sepsis
have shown that NET constituents such as histones and neu-
trophil serine proteases are cytotoxic to host cells and that
inhibiting NETs (or neutralization of histones) results in de-
creased organ damage and improved survival (Xu et al. 2009;
McDonald et al. 2012; Martinod et al. 2015; Czaikoski et al.

2016). More recently, NETs were identified as a key precipi-
tant of disseminated intravascular coagulation in sepsis, lead-
ing to widespread microvascular hypoperfusion and multi-
organ dysfunction (Yang et al. 2017; Delabranche et al.
2017; McDonald et al. 2017). Overall, NETs are perhaps the
most potent and destructive effector mechanism produced by
neutrophils, whichmakes them attractive therapeutic targets in
sepsis and other diseases (see below).

Neutrophils as a biomarker in critical illness

Neutrophils have been attractive targets for biomarker investiga-
tions in critical illness. Avariety of neutrophil characteristics have
been studied and used clinically to aid in diagnosis, monitoring
and prognostication in various diseases of the critically ill.

Circulating neutrophil countsOne of the most commonly test-
ed biomarkers in critically ill patients is the total white-blood
cell (or leukocyte) count. The majority of circulating leuko-
cytes are neutrophils and their abundance and maturation state
(i.e., the presence of immature band cells) serve as a markers
of systemic inflammation (see above). In fact, leukocyte
counts and the degree of bandemia are criteria for the diagno-
sis of the systemic inflammatory response syndrome (SIRS),
which, until recently (Singer et al. 2016), was essential for the
diagnosis of sepsis. However, neutrophil and total leukocyte
counts only serve as adjuncts in the assessment of critically ill
patients, because they lack sufficient sensitivity and specific-
ity to serve as accurate diagnostic biomarkers in critical illness
(Mare et al. 2015; Kaukonen et al. 2015).

CD64 The Fcγ receptor 1, CD64, mediates phagocytosis of
opsonized bacteria by neutrophils. Surface expression of
CD64 on neutrophils is upregulated 10-fold in response to
pro-inflammatory stimuli such as cytokines and bacterial
products. As such, quantitative analysis of CD64 expression
on neutrophils has been investigated as a diagnostic biomarker
for the early recognition of sepsis. High levels of CD64 ex-
pression have been shown to distinguish bacterial from viral
infections with a specificity of up to 91% (Leino et al. 1997;
Cid et al. 2010; Li et al. 2013; Dimoula et al. 2014). CD64
expression also carries prognostic significance in sepsis, as
high levels of neutrophil CD64 are associated with an in-
creased risk of in-hospital and 28-day mortality (Livaditi
et al. 2006; Dimoula et al. 2014). Despite these promising
data, the practicality of measuring neutrophil CD64 expres-
sion by flow-cytometry is limited in routine clinical practice
and therefore has not been adopted into widespread use.

Triggering receptor expressed on myeloid cells 1 TREM-1 is
a surface molecule of the immunoglobulin superfamily that is
expressed in both membrane-bound and soluble forms by
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neutrophils and other myeloid cells. Functionally, membrane-
bound TREM-1 amplifies inflammatory responses to bacterial
and fungal products (Bouchon et al. 2001). In contrast, soluble
TREM-1 acts in an inhibitory fashion by scavenging ligands
and antagonizing the activity of membrane-bound TREM-1
(Baruah et al. 2015). Expression levels of both membrane-
bound and soluble TREM-1 are dramatically upregulated in
response to microbial products. As a diagnostic biomarker,
expression levels of TREM-1 can help distinguish infection/
sepsis from other causes of SIRS, to help rapidly identify
patients who will benefit from early antibiotic administration
and source control measures. In patients with suspected pneu-
monia, detection of sTREM-1 in bronchoalvelar lavage fluid
identified bacterial and fungal pneumonia with a sensitivity
and specificity of 98% and 90%, respectively (Gibot et al.
2004). However, in patients presenting with positive SIRS
criteria, high plasma sTREM-1 levels identified infectious eti-
ologies with a modest accuracy (sensitivity and specificity of
79% and 80%, respectively) (Wu et al. 2012). Therefore, al-
though initially promising, assays of sTREM-1 have not been
adopted into widespread clinical use.

Cell-free DNA Circulating levels of cfDNA can be readily de-
tected in plasma samples using PCR-based methods or spec-
trophotometric assays. There is an expanding literature on the
utility of cfDNA as a diagnostic and prognostic biomarker in
sepsis, burns and trauma. Multiple studies have identified as-
sociations between high levels of plasma cfDNA and organ
dysfunction, ICU-acquired complications and mortality
(Jacobs and Wong 2016). It has been hypothesized that neu-
trophils may represent an important source of cfDNA in crit-
ically ill patients through the release of NETs. However, stud-
ies suggesting that NETs are the source of cfDNA have largely
relied on methodologies that do not discriminate sufficiently
between NETs and other possible sources of extracellular
DNA (e.g., necrosis and apoptosis of other cell types)
(Margraf et al. 2008). The identification of NETs as a source
of cfDNA requires intricate assays that detect complexes
formed by DNA and neutrophil proteins (e.g. ,DNA-MPO,
DNA-citrullinated H3) and studies using such robust assays
are lacking in critically ill populations (Kessenbrock et al.
2009; Caudrillier et al. 2012; Thålin et al. 2017). Therefore,
while cfDNA has certainly proven a useful biomarker in mul-
tiple diseases of the critically ill, there are insufficient data to
consider this a neutrophil-based biomarker.

Therapeutic manipulation of neutrophils
in critical illness

Neutrophils are the targets (directly and indirectly) of a num-
ber of treatment strategies that have been trialed in critically ill
patients (Table 1). In this section, the biological rational and Ta
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clinical effectiveness of various therapeutic strategies to ma-
nipulate neutrophil function will be reviewed.

Steroids

Corticosteroid therapy induces widespread anti-inflammatory
effects, ranging from inhibition of inflammatory mediators
(pro-inflammatory cytokines, iNOS and NO production and
lipid mediators) to direct modulation of immune cell function.
The administration of systemic glucocorticoids increases cir-
culating neutrophil counts through at least three mechanisms:
(1) demargination of intravascular neutrophils, (2) increased
release from bone marrow and (3) decreased neutrophil apo-
ptosis leading to prolonged survival (Fay et al. 2016; Cain and
Cidlowski 2017). However, corticosteroids also blunt neutro-
phil function at sites of inflammation. When administered at
high doses, corticosteroids impair neutrophil trafficking
through both reduced responsiveness to chemoattractants
and downregulation of adhesion molecule expression (Jilma
et al. 1997; Cain and Cidlowski 2017). Furthermore,
supraphysiological doses of steroids decrease oxidative bursts
and impair phagocytosis and other effector mechanisms
(Kaufmann et al. 2008). Aside from neutrophils, corticoste-
roids have also been shown to impart broad-spectrum im-
mune-suppressing effects on almost all immune cells (Cain
and Cidlowski 2017). Despite the long history and extensive
study of corticosteroids in septic shock and other diseases in
the ICU, the mechanisms underlying the immunomodulatory
properties of steroids remain incompletely understood, largely
due to the immense complexity of biological activity.

Clinically, the role of corticosteroids in critical illnesses like
sepsis is an ongoing area of research. Available evidence from
large randomized controlled trials has revealed that corticoste-
roids decrease markers of systemic inflammation and reduce
the duration of shock (vasopressor dependency) in patients
with sepsis but do not improve survival (Sprung et al. 2008;
Gibbison et al. 2017).

Immunotherapy

Awide range of immunomodulatory therapies have been stud-
ied in critically ill patients, primarily those with septic shock
(Gotts and Matthay 2016). While many of these therapies
indirectly affect neutrophil function, two of the more promis-
ing immunotherapies, G-CSF and GM-CSF, directly target
neutrophil biology. G-CSF is a cytokine that promotes matu-
ration and release of neutrophils from the bone marrow, as
well as activation of the neutrophil effector mechanism.
Recombinant human G-CSF has been used for years in the
field of oncology to prevent and treat chemotherapy-induced
neutropenia (Hartmann et al. 1997). In patients with sepsis, G-
CSF increases the number of circulating neutrophils, aug-
ments neutrophil responsiveness to endotoxin and cytokines

and primes neutrophil effector functions, as well as additional
effects on monocytes, dendritic cells and lymphocytes (Flohé
et al. 1999). However, the cumulative data available from
multiple randomized controlled trials suggest that G-CSF does
not improve outcomes (organ dysfunction scores, length of
stay, duration of mechanical ventilation, or changes in 28-
day mortality) in patients with sepsis (Bo et al. 2011).

Another attractive target for neutrophil immunotherapy in
sepsis and other critical illnesses is GM-CSF. Administration
of recombinant GM-CSF promotes the proliferation and re-
lease of myeloid cells from the bone marrow and activates
circulating neutrophils, monocytes/macrophages and dendrit-
ic cells (Mathias et al. 2015). Given its pleiotropic effects,
multiple studies have tested the hypothesis that GM-CSF
may reverse the Bimmunoparalysis^ that is observed in many
septic patients, including augmentation of neutrophil function.
A number of small clinical trials have observed increased
levels of circulating neutrophils and enhanced neutrophil ef-
fector functions in septic patients treated with GM-CSF but
have found mixed results in terms of clinical outcomes
(Mathias et al. 2015). The most promising results were ob-
served in patients with sepsis and biomarkers of established
Bimmunoparalysis^ (low HLA-DR expression on mono-
cytes), where GM-CSF was shown to reverse sepsis-induced
immunosuppression and reduce organ failure (Meisel et al.
2009). Given these promising preliminary results, a larger trial
is underway to further investigate the utility of GM-CSF for
immunomodulation in septic patients with low mHLA-DR
expression (NCT-02361528, clinicaltrials.gov).

Anti-adhesion molecule therapy

Given that neutrophils must transit out of the circulation and
into tissues in order to mediate tissue damage (Kolaczkowska
and Kubes 2013), investigators have tested the effects of
blocking neutrophil adhesion molecules to prevent organ dys-
function and death in critically ill patients. Therapies aimed at
blocking the rolling phase of neutrophil recruitment have
shown mixed results. An early pilot trial of anti-E-selectin
monoclonal antibody (CY1787) in patients with septic shock
reported a small signal towards reduced organ dysfunction
and shock (Friedman et al. 1996). In contrast, a study in septic
baboons found that anti-E- and L-selectin antibodies caused
harm (worsening shock, organ failure and increased mortality)
(Carraway et al. 1998). Similarly, blocking the adhesion phase
of neutrophil recruitment using antibodies against integrins
(e.g,. CD18) or their ligands (ICAM-1) also resulted in in-
creased mortality (Welty-Wolf et al. 2001). Overall, these ear-
ly trials of anti-adhesion molecule therapy suggested that
blocking cell recruitment may actually be harmful in critically
ill patients with sepsis.

The failure of these early studies to show a reduction in
organ damage and mortality may have been due to a limited
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appreciation of the intricacies of leukocyte trafficking and the
widespread immunological effects of blocking adhesion mol-
ecules. We now know that adhesion molecules are involved in
multiple aspects of immune function (lymphocyte activation,
complement and coagulation, platelet function, etc.) and
therefore broad-spectrum anti-adhesion therapies may have
had unintended consequences in these early studies.
Furthermore, early studies failed to appreciate that leukocyte
recruitment occurs in an organ-specific manner, involving
unique combinations of adhesion molecules and chemokines
(Kolaczkowska and Kubes 2013). A greater appreciation of
these intricacies of leukocyte trafficking has enabled the de-
velopment of second-generation anti-adhesion molecule ther-
apies for the treatment of organ-specific diseases like psoria-
sis, inflammatory bowel disease and multiple sclerosis (Ley
et al. 2016).

Overall, the complex multi-organ involvement of critical
illness makes anti-adhesion molecule therapy difficult to im-
plement in a safe and targeted manner. However, therapeutic
inhibition of adhesion molecules may yet prove beneficial to
combat other aspects of critical illness pathogenesis. For ex-
ample, anti-adhesion molecule therapy is used to disrupt plate-
let adhesion and aggregation in thrombotic diseases like acute
coronary syndrome and stroke (Capodanno et al. 2013). In
animal models of sepsis, blocking adhesion molecules that
mediate platelet––neutrophil interactions reduced markers of
organ dysfunction (McDonald et al. 2012; Rossaint and
Zarbock 2015). Therefore, targeting the pathological effects
of platelets and thrombosis with anti-adhesion molecule ther-
apy remains an active area of research in multiple diseases of
the critically ill.

Extracorporeal therapies

An extreme approach to mitigating the potentially harmful ef-
fects of neutrophils in critical illness is to remove them from the
circulation. Extracorporeal leukocyte removal by apheresis is
not commonly used for therapeutic purposes, aside from rare
conditions caused by hyperleukocytosis (e.g., leukostasis in
acute leukemia and pertussis-associated hyperleukocytosis).
Experimental use of extracorporeal leukofiltration during car-
diopulmonary bypass decreased SIRS markers (TNFa and oth-
er cytokines), improved renal function and reduced inflamma-
tory lung pathology in patients undergoing cardiac surgery
(Treacher et al. 2001; Kiliç et al. 2009). However, there are very
limited data on the efficacy and safety of extracorporeal neutro-
phil removal in the treatment of critical illness.

Other forms of extracorporeal treatments have been studied
extensively (e.g., hemodialysis, hemoperfusion, extracorpore-
al endotoxin removal, extracorporeal membrane oxygena-
tion). These modalities have widespread effects on physiology
and host defense aside from neutrophil function and therefore
are beyond the scope of this review.

Granulocyte transfusions

As outlined above, neutrophil dysfunction (neutropenia or de-
fects in effector mechanisms) leads to an increased risk of
infections and exacerbation of critical illness. Therefore, some
have hypothesized that administration of normal donor
granulocytes may benefit selected populations of critically ill
patients with neutrophil dysfunction. While uncommon in
routine clinical practice, granulocyte transfusions have been
utilized with some success in patients with refractory neutro-
penia and difficult-to-treat infections (Alavi et al. 1977; Price
et al. 2015). Within pediatric intensive care units, granulocyte
transfusions have been used to support neutrophil counts in
septic neonates (Mohan and Brocklehurst 2003). Neonates
possess immature granulopoeisis mechanisms and are there-
fore highly susceptible to severe neutropenia during sepsis.
However, insufficient evidence exists to support a clinical
benefit of granulocyte transfusion in neonates with sepsis
(Mohan and Brocklehurst 2003).

Anti-effector mechanism therapies

Neutrophil elastase inhibitors Inhibitors of neutrophil elastase
have been most extensively studied in acute respiratory dis-
tress syndrome (ARDS). Animal models of acute lung injury
have consistently demonstrated a pathological role for neutro-
phil elastase and inhibitors of neutrophil elastase are protec-
tive in models of acute lung injury caused by a variety of
insults (Grommes and Soehnlein 2011). Based on the strength
of these pre-clinical data, neutrophil elastase inhibition has
been studied in patients with ARDS. A recent meta-analysis
of 8 randomized controlled trials reported a small improve-
ment in lung function in patients treated with sivelestat (small-
molecule NE inhibitor) but no improvement in mortality or
duration of mechanical ventilation (Iwata et al. 2010). As
such, NE inhibitors are not routinely employed in the man-
agement of ARDS in North America and Europe.

Anti-oxidant therapy As described above, neutrophils are a
major source of ROS during systemic inflammatory diseases.
Oxidative stress contributes to mitochondrial and cellular dys-
function and, thus, is an attractive therapeutic target. The most
extensively studied anti-oxidant therapy is N-acetylcysteine
(NAC), which scavenges ROS and promotes replenishment
of intracellular glutathione stores. Multiple randomized con-
trolled trials have been conducted comparing NAC versus
placebo in patients with sepsis, multi-organ failure and
ARDS but none have demonstrated a meaningful benefit to
patient outcomes (Vincent et al. 2002). Therefore, NAC use is
limited in the ICU to a select number of conditions where its
anti-oxidant effects have proven beneficial, including acute
acetaminophen overdose and non-acetaminophen-related
acute liver failure (Darweesh et al. 2017).
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Anti-oxidant vitamins and mineral supplementation
have also been investigated in critically ill patients.
For example, selenium is an essential co-factor in the
normal function glutathione peroxidase, a powerful in-
tracellular ROS scavenger. Other vitamins and trace
minerals, such as zinc, beta-carotene, vitamin E and
vitamin C, also possess anti-oxidant activity in vivo.
However, a large randomized controlled trial of 1223
critically ill patients with multi-organ failure on me-
chanical ventilation showed no differences in mortality
or organ failure scores between patients treated with
an anti-oxidant cocktail (selenium, zinc, beta-carotene,
and vitamins E and C) or placebo (Heyland et al.
2013).

Anti-NETs therapy Overexuberant release of NETs during sepsis
and other systemic inflammatory diseases contributes to a wide
variety of pathological processes, including cell and tissue dam-
age, intravascular coagulation and microvascular dysfunction
(Clark et al. 2007; McDonald et al. 2012, 2017; Martinod et al.
2015; Czaikoski et al. 2016). A number of anti-NETs therapies
have been shown to improve organ function and survival in septic
animals, including intravenous DNase infusions, antibodies/
inhibitors against components of NETs (histones, proteases) and
inhibitors of peptidylarginine deiminase 4 (PAD4, an enzyme
required for NETs production) (McDonald et al. 2012, 2017;
Martinod et al. 2015; Czaikoski et al. 2016). To date, there have
been no human trials of anti-NET therapies. Given the promising
pre-clinical data from animal models, human studies are eagerly
awaited.

Conclusions and future perspectives

As both pivotal guardians of host defense and dangerous
mediators of organ damage, neutrophils represent a true
paradox in sepsis and other critical illnesses. The ideal
therapeutic tool would enable selective inhibition of path-
ological neutrophil functions without impairing host de-
fense and tissue repair; however, no such agent has been
discovered to date. Furthermore, the tremendous heteroge-
neity amongst critically ill patients makes it difficult to
identify individuals that may respond to targeted immuno-
modulatory therapies. The future success of immunomod-
ulatory therapies in diseases like sepsis will undoubtedly
require a Bpersonalized medicine^ approach to clinical trial
design, using biomarkers and other phenotyping tools to
identify patients with pathology that is amenable to
targeted therapy. Fortunately, our expanding understanding
of the molecular mechanisms of neutrophil function, as
well as their roles in the pathogenesis of critical illness,
continues to move us closer to this goal.
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