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Abstract Several lines of evidence implicate serotonin in the
etiology of multiple psychiatric disorders, especially mood
disorders, such as major depressive disorder (MDD) and bi-
polar disorder (BD). Much of our current understanding of
biological mechanisms underlying serotonergic alterations in
mood disorders comes from animal studies. Innovation in in-
duced pluripotent stem cell and transdifferentiation technolo-
gies for deriving neurons from adult humans has enabled the
study of disease-relevant cellular phenotypes in vitro. In this
context, human serotonergic neurons can now be generated
using three recently published methodologies. In this mini-
review, we broadly discuss evidence linking altered serotoner-
gic neurotransmission in MDD and BD and focus on recently
published methods for generating human serotonergic neu-
rons in vitro.
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Introduction

Serotonin or 5-hydroxytryptamine (5-HT) is an ancient and
evolutionarily conserved neurotransmitter known to be in-
volved in a broad range of physiological processes and behav-
iors such as cardiovascular regulation, pain sensitivity, feed-
ing, reproductive behavior, cognition, impulsivity, aggression

and mood. A large body of clinical and pre-clinical research
has implicated serotonin in the pathophysiology of multiple
psychiatric disorders and the serotonergic neurotransmitter
system is a target of several classes of therapeutic psychiatric
drugs as well as other psychotropic drugs. Despite decades of
research, our understanding of the precise roles of serotonin in
psychiatric disorders and in the mechanism of action of ther-
apeutic drugs remains largely incomplete (Albert and
Benkelfat 2013; Albert et al. 2012; Liu and Deneris 2011).
This may be partly due to the heterogeneous nature of psychi-
atric disorders and is further compounded by the complexity
of the serotonergic neurotransmitter system. A large part of
our current understanding of the cellular and molecular mech-
anisms linking serotonergic alterations to psychiatric disorders
comes from behavioral observations in transgenic animal
models, which sometimes poorly recapitulate the genetics
and the psychiatric symptomatology observed in patients
(Krishnan and Nestler 2010).

Utilizing patient-derived cells for generating disease-
relevant cell types offers a new approach for investigating
the genetic and cellular mechanisms that may play fundamen-
tal roles in psychiatric disorders (Soliman et al. 2017). Proof-
of-concept studies have revealed unexpected neural pheno-
types in studying schizophrenia, autism spectrum disorders,
bipolar disorder, William’s syndrome and Timothy syndrome
(Brennand et al. 2011; Chailangkarn et al. 2016; Marchetto
et al. 2017; Mertens et al. 2015; Pasca et al. 2011; Stern et al.
2017; Tian et al. 2014; Wen et al. 2014; Yi et al. 2016). Since
the advent of induced pluripotent stem cell (iPSC) and
transdifferentiation technologies, several research groups have
focused their efforts on developing methods for generating
disease-relevant neural subtypes in vitro (Parr et al. 2017).
We and two other groups have developed protocols for gen-
erating human serotonergic neurons in vitro (Vadodaria et al.
2016a). The field of serotonin and psychiatry is large, with
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diverse associations being drawn with major depressive dis-
order (MDD) and bipolar disorder (BD), schizophrenia and
autism spectrum disorders. In this article, we first highlight
key lines of evidence implicating serotonergic alterations in
mood disorders, focusing our discussion of clinical serotoner-
gic alterations to MDD and BD and then discuss methods for
generating human serotonergic neurons in vitro in the context
of their utility for disease modeling.

Serotonergic alterations in MDD

Characterized by the presence of an array of persistent
symptoms including low mood, anhedonia, suicidal
thoughts, lack of concentration, appetite/weight fluctuations
and sleep disturbances, MDD is the most prevalent psychi-
atric disorder in the United States with over 16 million
adults suffering in a given year (NIMH data 1 n.d.).
MDD has long been linked, at least in part, to serotonergic
alterations. Some of the first evidence leading to what came
to be known as the Bmonoamine hypothesis of depression^
came from anecdotal evidence and from pharmacological
studies that depleted or increased the concentration of brain
monoamines (Charney 1998; Mosienko et al. 2015).
Treatment with reserpine, an antihypertensive and vesicular
monoamine transporter inhibitor, precipitated depressive
symptoms (Shore et al. 1957). Similarly, dietary depletion
of tryptophan, an essential amino acid and serotonin precur-
sor, precipitated depressive symptoms in a subset of patients
with a prior history of depressive illness (Homan et al.
2015). Further, first generation antidepressant drugs such
as monoamine oxidase inhibitors and tricyclic antidepres-
sants were found to increase brain neurotransmitter levels
and second generation antidepressants such as selective se-
rotonin reuptake inhibitors (SSRIs) specifically increased
serotonin levels, supporting the idea that reduced mono-
amines, especially serotonin, might play a modulatory role
in the pathophysiology of MDD (Heninger et al. 1996).
However, despite an increase in brain serotonin levels fol-
lowing acute antidepressant administration, weeks of treat-
ment are required before therapeutic effects are seen. This
fact alone indicates that the picture of MDD pathology is
more complex than that painted by the simplistic
Bmonoamine hypothesis^ of depression (Krishnan and
Nestler 2008). Atypical antidepressants, on the other hand,
do not necessarily block the reuptake of serotonin or other
monoamines but have other targets including serotonergic
receptors. Many atypical antidepressants, including
mirtazapine, nefazodone, trazodone and vortioxetine, have
high binding affinities for serotonergic families of receptors,
notably the 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors. 5-
HT receptors are expressed in several brain regions targeted
by serotonergic neurons and also in serotonergic neurons

themselves, suggesting that atypical antidepressants may
mediate their therapeutic effects by modulating serotonergic
neurotransmission in target brain regions, as well as in the
raphe itself (Artigas 2013). Although inconsistent in the
directionality of change, sets of positron emission tomogra-
phy (PET) imaging studies have shown alterations in 5-
HT1A receptors, 5-HT2A receptors and the serotonin trans-
porter levels in the hippocampus, amygdala, midbrain,
brainstem and multiple cortical regions (Fujita et al. 2000;
Lin et al. 2014). A set of studies on small cohorts of un-
medicated MDD patients showed decreased 5-HT1A recep-
tor binding in several brain regions, including the
mesiotemporal cortex, dorsolateral prefrontal cortex, amyg-
dala, hippocampus and decreased 5-HT2A receptor binding
in the temporal, parietal, prefrontal and cingulate cortex of
patients (Bhagwagar et al. 2004; Hirvonen et al. 2008).
Another set of imaging studies showed lower serotonin
transporter binding in the brainstem, midbrain, and amyg-
dala and higher serotonin transporter binding in the thala-
mus, insular cortex and striatum (Lin et al. 2014).

Although a study of monozygotic twins with MDD showed
only modest concordance (~40%), genetic epidemiological
studies and their meta-analyses suggest that the familial nature
of major depression has a genetic basis (Flint et al. 2008).
Genome-wide association studies have implicated the serotonin
transporter gene (5-HTT) and serotonergic receptor genes (5-
HT1, 5-HT2, 5-HT3) in MDD. One study showed that off-
spring with high familial risk of depression were nearly four
times more likely to be homozygous for the short allele at 5-
HTT promoter-linked polymorphism (5HTTLPR) (Talati et al.
2015). Interestingly, the short allele at the 5-HTTLPR was also
found to be associated with increased cortical thickness in in-
dividuals with high familial risk for depression as found in an
MRI study (Bansal et al. 2016). Another study ofmore than 100
depressed patients revealed an association of the short allele of
5HTTLPR with dysphoria and an association of the 5-HT2A
receptor (1438G/A) polymorphism with vegetative symptoms
in MDD, suggesting that specific polymorphisms may be asso-
ciated with discrete symptom clusters in MDD (Kamata et al.
2011). However, MDD genetics have been notoriously difficult
to dissect and a lack of replication across different patient co-
horts highlights the heterogeneity of the disorder and its diver-
gent genetic architecture (Flint and Kendler 2014; Major
Depressive Disorder Working Group of the Psychiatric GC
et al. 2013). Nevertheless, meta-analysis studies using data
from large and varied patient cohorts suggest that overall,
MDD genetic studies maybe statistically underpowered (Flint
and Kendler 2014). Future studies would certainly benefit from
patient stratification based on additional criteria (Ostergaard
et al. 2015); for instance, drug response profiles (Ji et al.
2013), age (Power, et al. 2017), or fMRI-based neurophysio-
logical subtypes (Drysdale et al. 2017) and higher numbers of
patient within subgroups (Bigdeli et al. 2017; Hek et al. 2013).
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Although BD, formerly known as manic depressive illness,
diagnostically frequently overlaps with depression, BD has
been found to be highly heritable with a number of genomic
risk loci shared with schizophrenia and autism spectrum dis-
orders (Panchision 2016). In the next section, we discuss ge-
netic data and pharmacological and imaging studies that link
serotonergic alterations with BD.

Serotonergic alterations in BD

Affecting 2–3% of the population, BD is characterized by
distinct changes in mood states, energy and activity levels.
Individuals with BD experience periods of mild/severe de-
pressed mood states and periods of high energy and elation
known as manic episodes (NIMH data 2 n.d.). Medications
usually used to treat BD include mood stabilizers, atypical
antipsychotics and antidepressants. Lithium, which is one of
the most effective mood stabilizers used in BD, has been
shown to regulate serotonin receptors (5-HT1A and 5-
HT2A) in pre-clinical studies. Short-term lithium treatment
in rodents has been shown to enhance 5-HT1A receptor re-
sponsiveness specifically at postsynaptic sites, whereas long-
term treatment with lithium downregulates postsynaptic sero-
tonin receptors, in part by modulating presynaptic serotoner-
gic nerve terminals (Blier et al. 1987; Hotta et al. 1986).
Interestingly, in patients concurrently taking serotonergic
medications such as antidepressants, lithium can potentially
precipitate ‘serotonin syndrome’ arising from excessive sero-
tonin in the body, suggesting that lithium may be activating
the serotonergic system. On the other hand, evidence suggests
that treatment with antidepressants alone may aggravate
symptoms such as anxiety and even mania and therefore
may need to be combined with antimanic agents (Cannon
et al. 2007). A majority of atypical antipsychotic drugs pre-
scribed for BD, such as quetiapine, olanzapine and lurasidone,
target multiple pathways but also display high affinities for
multiple serotonergic receptors, including the 5-HT1A, 5-
HT2A-C, 5-HT6 and 5-HT7 receptors (Fountoulakis et al.
2015; Mendonca Junior et al. 2015). However, given the dual
mood states characteristic of BD, it is plausible that serotoner-
gic alterations following pharmacological intervention may be
acting to alleviate depressive states. PET imaging studies have
shown increased 5-HT1A receptor levels in the raphe, hippo-
campus, dorsolateral prefrontal cortex and amygdala of BD
patients (Sullivan et al. 2009) and decreased 5-HT1A receptor
levels in the anterior cingular cortex, anterior insula and
mesiotemporal cortices (Drevets et al. 2007; Nugent et al.
2013), while others showed decreased serotonin transporter
binding in the midbrain, amygdala, hippocampus, thalamus,
putamen and anterior cingulate cortex and increased serotonin
transporter binding in the insula and striatum of BD patients.
Genetic studies in large populations and their meta-analyses

(Cho et al. 2005) revealed an association with two polymor-
phisms for the serotonin transporter (5-HTTLPR and VNTR)
(Kishi et al. 2011). Large-scale meta-analysis studies with
approximately 1000 BD patients, with a haplotype-wise anal-
ysis, found an association of HTR1A rs6295 polymorphism
and BD and discovered the 5-HT1A receptor to be a suscep-
tibility gene for mood disorders (Kishi et al. 2011; Kishi et al.
2013) These findings may relate to increased DNA methyla-
tion found at the 5-HT1A receptor promoter region (Carrard
et al. 2011). It is noteworthy that the 5-HT1A receptor is a
heteroreceptor that is highly expressed in the raphe neurons
and responsible for feedback auto-inhibition in serotonergic
neurons.

While multiple links clearly exist between serotonergic al-
terations and mood disorders, the complex interplay between
genetic and cellular mechanisms underlying MDD and BD
remains poorly understood. It is also important to note that
there exist multiple hypotheses for neural mechanisms under-
lying MDD and BD, including altered glutamatergic and
GABAergic neurotransmission, with imbalances between
these systems contributing to the pathophysiology of MDD
(Gerhard et al. 2016; Lener et al. 2017). Two recent studies
using BD patient iPSC-derived neurons revealed a hyperex-
citability phenotype of Prox1 expressing hippocampal neu-
rons, emphasizing the relevance of using human iPSC-based
models (Mertens et al. 2015; Stern et al. 2017). Future studies
utilizing patient-derived serotonergic neurons may yield novel
insights into the role of serotonergic neurotransmission in
these disorders. In the next section, we provide an overview
of the developmental program and transcriptional cascades
driving serotonergic fate specification in vivo and how they
have been harnessed for deriving serotonergic neurons from
human fibroblasts and iPSCs.

Generating human serotonergic neurons in vitro

Following the publication of the first methodologies for gen-
erating neurons from human iPSCs, several groups have pub-
lished methods for generating and enriching specific neural
subtypes in vitro for comparing disease-relevant cellular phe-
notypes from patient-derived cells (Parr et al. 2017). There are
nowmethods available for generating several neural subtypes.
Over the last year, we, along with two other groups, have
developed methodologies for generating serotonergic neurons
in vitro from human fibroblasts and iPSCs. Our group and Jian
Feng’s group overexpressed sets of serotonergic transcription
factors for transdifferentiating human fibroblasts into seroto-
nergic neurons (Vadodaria et al. 2016b; Xu et al. 2016) and
Su-Chun Zhang’s group utilized combinations of growth fac-
tors and developmental signaling molecules to differentiate
human iPSCs into raphe-like serotonergic neurons (Lu et al.
2016). Remarkably, each method generated 25–50%
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serotonergic neurons that displayed key functional properties.
In the next section, we discuss key aspects of raphe develop-
ment in the context of utilizing them in vitro.

Specification of serotonergic neurons within the develop-
ing raphe nuclei is directed by a combination of developmen-
tal signaling molecules. Broadly, Sonic hedgehog (Shh) re-
leased by the notochord and the floor plate, FGF-8 released
by the midbrain-hindbrain organizer (MHO), FGF-4 released
by the paraxial mesoderm and Wnt and TGF-beta have been
shown to be key signaling molecules for the development and
specification of serotonergic nuclei in the mammalian brain
(Kiyasova and Gaspar 2011). Downstream transcriptional cas-
cades play decisive roles in determining the functional and
regional identity of serotonergic neurons. Expressed in tem-
poral waves, transcription factors enable the step-wise cell fate
choices and expression of functional genes of serotonergic
neurons within the distinct rhombomeres. Early on, down-
stream of Shh signaling, the homeodomain transcription factor
Nkx2.2 plays a decisive role in serotonergic specification, as
Nkx2.2 knockout mice lack a majority of their serotonergic
neurons and Nkx2.2 overexpression is sufficient for generat-
ing a majority of brain serotonergic neurons (Briscoe et al.
1999; Craven et al. 2004). In combination with Nkx2.2,
Nkx6.1 also dictates serotonergic fate specification and
Foxa2 promotes serotonergic specification by repressing a
ventral motor neuron fate (Jacob et al. 2007; Vallstedt et al.
2001). Gata2 and Gata3 act downstream of Nkx transcription
factors and only loss of Gata2 results in a complete loss of
serotonergic neurons in the brain (Craven et al. 2004). Lmx1b
and Pet-1 (FEV in humans) are among the next set of down-
stream transcription factors and are thought to be critical for
the neurochemical identity of serotonergic neurons. They reg-
ulate the expression of proteins involved in serotonin process-
ing and biosynthesis, including tryptophan hydroxylase 2 and
the serotonin transporter. Lmx1b and Pet-1 continue to be
expressed in serotonergic neurons throughout adulthood and
are utilized as markers for labeling serotonergic neurons
in vivo. Lmx1b mouse knockouts display a complete loss of
serotonergic neurons, whereas Pet-1 mouse knockouts still
have about 30% of raphe serotonergic neurons, highlighting
the heterogeneity among serotonergic neurons (Kiyasova
et al. 2011). Based on insights obtained from studies on raphe
development in rodents, developmental signaling molecules
and their downstream transcriptional programs have now been
used to generate human serotonergic neurons in vitro.

For generating serotonergic neurons in vitro, in our protocol
human fibroblasts were virally transduced with inducible over-
expression constructs for ASCL1 and NGN2, two neurogenic
transcription factors and NKX2.2, FEV, GATA2 and LMX1B,
serotonergic fate factors (referred to as S4F). Pure populations of
transduced fibroblasts were selected using geneticin and puro-
mycin, and propagated before transdifferentiaton using neural
conversion media containing a mix of small molecules and

doxycycline. Small molecules are increasingly utilized for en-
hancing transdifferentiation efficiencies. Notably, inhibition of
the TGFb/SMAD pathways with small molecules LDN-
193189 or SB-431542, Wnt pathway activation with the
GSK3b inhibitor CHIR99021 and increasing calcium signaling
with cAMP and forskolin significantly increase neural
transdifferentiation yields. For generating serotonergic neurons
from fibroblasts, Xu et al. also virally transduced human fibro-
blasts with tetracycline-inducible transcription factors ASCL1,
FOXA2, LMX1B, FEVand p53shRNA (referred to as AFLVp)
but in the absence of pharmacological selection. For both the
directed differentiationmethods for generating serotonergic neu-
rons, neural transdifferentiation efficiencies were about 60%
with 20–40% serotonergic neurons. Acute hypoxia has been
previously shown to boost neural transdifferentiation
efficiencies and utilizing this strategy, Xu et al. (2016) showed
that incubating cells in 5% O2 increased serotonergic differenti-
ation to approximately 25%.

ASCL1 and NGN2 have been shown to be sufficient for
direct conversion of fibroblasts to neurons and, in the context
of serotonergic differentiation, Xu et al. (2016) showed that
overexpressing FOXA2, LMX1B and FEV without ASCL1
reduced overall neuronal conversion. These data suggest that
the primary role of ASCL1 is for promoting neural fate choice,
rather than a serotonergic one. Together with our data, this
suggests that transcription factors overlapping between our
studies, ASCL1, FEV and LMX1B, may be the minimal set
of core transcription factors sufficient for serotonergic
differentiation in vitro. Interestingly, by testing different
transcription factor combinations, Xu et al. (2016) showed
that serotonergic differentiation efficiency decreased when
NKX2.2, PITX3, NEUROD1, or miR124 were expressed in
addition to AFLVp. These data suggest that these transcription
factors may act to limit the pro-serotonergic effects of other
serotonergic transcription factors, or may be redundant for a
serotonergic cell fate choice.

Transdifferentiated serotonergic neurons obtained from
each method express the rate-limiting enzyme required for
serotonin biosynthesis, tryptophan hydroxylase (TPH).
CNS-serotonergic neurons have been found to express TPH-
2 and using a TPH-2 promoter-based fluorescent lentiviral
reporter to sort out a relatively pure population of TPH-
expressing neurons, we showed that iSNs were enriched for
multiple human raphe-associated genes when compared to
transdifferentiated glutamatergic neurons. While these data
are promising, further studies are needed to understand the
differences between in vitro and in vivo serotonergic neurons,
given the entirely different environments and maturational
states. Both iSNs and i5-HT neurons directly differentiated
from fibroblasts displayed electrical activity. iSNs and i5-HT
neurons exhibited induced and spontaneous action potentials.
This correlates with the observation of higher serotonin in the
culture medium in both studies and the observations by Xu
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et al. that KCl-induced depolarization further increased extra-
cellular serotonin levels (Xu et al. 2016). Strikingly, both stud-
ies showed that treatment of transdifferentiated serotonergic
neurons with an SSRI resulted in increased serotonin concen-
trations, as did treatment with tryptophan in our study. The
collective data from both studies demonstrate that fibroblast-
derived serotonergic neurons are electrically active, can syn-
thesize and release serotonin and maybe targeted by pharma-
cological manipulations (Table 1).

Several neural subtypes have been generated via
reprogramming of fibroblasts, first to an intermediate plurip-
otent stem cell state followed by exposure to developmental
cues. Here, iPSCs are differentiated using specific combina-
tions of developmental signaling molecules as well as defined
timelines. Using this strategy with hindbrain patterning cues,
Lu et al. (2016) described a method for generating serotoner-
gic neurons from human iPSCs. Their study showed that reg-
ulating the combination, concentration and sequence of expo-
sure to key hindbrain signaling molecules, Shh, Wnt and
FGF-4, is essential to serotonergic differentiation from
iPSCs. Notably, Wnt pathway activation, achieved in a small
window of Chir-99021 concentration (1.4 μM), promoted dif-
ferentiation of serotonergic neurons with a rhombomere 2–3
identity. Lu et al. (2016) also showed that late-stage exposure
to FGF-4 specifically enhanced expression of serotonergic
transcription factors including FOXA2, while simultaneously
repressingmotor-neuron specification. These data suggest that
precise levels and temporally regulated exposure to key de-
velopmental patterning cues is crucial for not only fate

specification but also regional identity (raphe and
rhombomere). Their method generated 60% serotonergic neu-
rons, expressing both TPH and serotonin. iPSC-derived sero-
tonergic neurons display a characteristic low spontaneous os-
cillatory potential and long after hyperpolarization duration.
Reassuringly, iPSC-derived serotonergic neurons released
measurable amounts of serotonin, which increased following
treatment with Escitalopram, a highly prescribed SSRI, or
Tramadol, an SSRI and serotonin-releasing agent. It is inter-
esting to note that all three methods generate serotonergic
neurons that express the serotonin transporter, which is
thought to be the primary target of SSRIs (Table 1).

Disease modeling with human serotonergic neurons

Each of the three methods efficiently generated human sero-
tonergic neurons via different strategies and reassuringly, the
derived serotonergic neurons expressed raphe-genes, generat-
ed serotonin, released serotonin and responded to SSRIs
in vitro. iSNs, i5-HT neurons and iPSC-derived serotonergic
neurons clearly share many defining properties but are likely
to be different from each other in unique ways. While on the
one hand direct differentiation technologies offer the advan-
tage of speed for generating serotonergic neurons, iPSC-to-
neuron differentiation captures the developmental sequence
of patterning to produce serotonergic neurons with subtype
identity. One can speculate that transdifferentiated serotoner-
gic neurons could be made to adopt region-specific

Table 1 Key aspects of methods for generating human serotonergic neurons in vitro

Lu et al. 2016 Vadodaria et al. 2016a, b Xu et al. 2016

Starting cells iPSCs Fibroblasts Fibroblasts

Reprogramming required Yes No No

Key pathways activated Transdifferentiation factors Transdifferentiation factors

Serotonergic differentiation Ascl1

Shh Ngn2 Ascl1

Wnt Nkx2.2 Foxa2

FGF-4 Fev Fev

Gata-2 Lmx1b

Lmx1b

Additional genetic targets None None p53 shRNA

Special culture conditions No No 5% oxygen

Feeder cell layers utilized None Astrocytes None

Electrophysiological activity Evoked, spontaneous, low frequency Evoked, spontaneous Evoked, spontaneous

Marker expression
assessment

QPCR, immunocytochemistry,
western blot

Whole transcriptome, immunocytochemistry QPCR, immunocytochemistry

Anatomical profile Rostral raphe (R 2–3) Unknown Unknown

5-HT measurement method HPLC ELISA HPLC

FDA-approved drugs tested Escitalopram, Tramodol Citalopram Citalopram
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serotonergic identities. Given that Shh, Wnt and FGF-4 pro-
mote regionalization via downstream transcription factors,
there exists the possibility that overexpression of fate-
determining transcription factors, exposure to signaling mol-
ecules, or an optimal combination of both could give rise to
directly differentiated serotonergic neurons with in vivo-like
regional identity. For a better understanding of the optimal use
of each ‘kind’ of serotonergic neuron for disease modeling
using patient fibroblasts, further studies are required to firstly
compare them to each other and, secondly, to compare them to

serotonergic neurons in the brain. For example, it would be
interesting to study how the derived serotonergic neurons ma-
ture in vitro or following transplantation in vivo. One could
ask whether the developing serotonergic neurons display the
full repertoire of in vivo features, including the expression of
multiple receptors, neuropeptides and co-neurotransmitters.
The choice of method for generating patient-derived seroto-
nergic neurons will depend on the specific questions as well as
the nature of the patient cohort. For example, the
transdifferentiation process itself may complicate the study

Figure 1. Serotonergic neurons for studying psychiatric disorders.
Schematic shows how psychiatric-patient derived serotonergic neurons
can be utilized for examining diverse in vitro phenotypes including dif-
ferential activity, 5-HT (serotonin) production, serotonergic receptor ac-
tivity, serotonin transporter activity, and antidepressant responses. In vitro

serotonergic readouts could then contribute to the discovery of novel drug
targets, biomarkers and may inform patient stratification in a clinically
relevant mannerfor disorders such as Major depressive disorder (MDD),
Bipolar disorder (BD), Generalized anxiety disorder (GAD),
Schizophrenia (SCZD), Autism spectrum disorder (ASD).
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of some serotonergic phenotypes, where overexpressed sero-
tonergic transcription factors may mask potential phenotypes.
On the other hand, iPSC-derived serotonergic neurons may
not be mature enough for studying adult raphe-related pheno-
types. Future methodological studies would also need to ad-
dress whether modifications of existing protocols could cap-
ture the diversity of in vivo serotonergic neurons. To under-
stand how in vitro serotonergic neurons compare human se-
rotonergic neurons, one could compare transcriptomic data
from each, utilizing available expression databases (e.g.,
Allen Brain Atlas). Further studies that compare in vitro-
derived serotonergic neurons to their in vivo counterparts
would help determine how they may be best utilized for dis-
ease modeling. Currently, much of our knowledge on cellular
aspects of serotonergic neurotransmission in vivo comes from
rodent studies and studying human serotonergic neurons
in vitro may give us insights into species-specific differences.
Given the unique and overlapping features of in vitro-derived
serotonergic neurons, each could serve as a complementary
approach for studying certain aspects of serotonergic neuro-
transmission in the context of psychiatric disorders.

It is becoming increasingly clear that gaining novel insights
into the biology of psychiatric disorders requires a multi-
pronged approach, consisting of but not limited to, cell-
based diseased modeling. Since their development over
10 years ago, reprogramming and transdifferentiation technol-
ogies have raised new hope for disease modeling and in vitro
drug screening using patient-derived cells (Parr et al. 2017).
Mood disorders have overlapping symptoms and therapies,
probably due to their complex and overlapping genetic, epi-
genetic and environmental contributors. Unlike neurological
disorders with neurodegenerative components, neuropsychi-
atric disorders do not appear to be the result of a loss of any
particular cell type and deficits in serotonergic neurotransmis-
sion appear to be nuanced. Hence, cell replacement would not
be the aim of generating patient-derived neurons but studying
components of serotonergic neurotransmission using patient-
derived neurons may offer new insight into the cellular mech-
anisms underlying some psychiatric disorders. In the current
state, generating serotonergic neurons from psychiatric pa-
tients would take at least 6 weeks, not offering value for the
purposes of immediate diagnosis but in the long run would
contribute to patient-stratification based on genetic and cellu-
lar differences (Fig. 1). Patient-derived serotonergic neurons
could also be used to examine whether patients would differ-
entially respond to therapeutic drugs that directly target com-
ponents of the serotonin system. Study designs that incorpo-
rate known genetic variants and well-characterized patient co-
horts would enable the testing of key hypotheses in the field
and promote the development of assay platforms for ascertain-
ing the role of altered serotonergic neurotransmission in neu-
ropsychiatric disorders. Thus, in vitro-generated human sero-
tonergic neurons represent a first step in exploring the utility

of patient-derived serotonergic neurons for studying psychiat-
ric disorders in the future.
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