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Abstract The locus coeruleus (LC) contains norepinephrine
(NE)-synthesizing neurons that send diffuse projections
throughout the central nervous system. The LC-NE system
has a major role in arousal, attention and stress responses. In
the brain, NE may also contribute to long-term synaptic plas-
ticity, pain modulation, motor control, energy homeostasis
and control of local blood flow. The LC is severely affected
in neurodegenerative disorders including Parkinson disease
(PD). Involvement of the noradrenergic neurons of the LC
precedes that of dopaminergic neurons of the substantia nigra
pars compacta and has been increasingly recognized as a po-
tential major contributor to cognitive manifestations in early
PD, particularly impaired attention. Abnormal noradrenergic
signaling may also potentially contribute to motor manifesta-
tions of the disease.This makes the LC-NE system a major
contributor to the pathobiology and potential target for therapy
of PD.
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Functional anatomy of the locus coeruleus

The locus coeruleus (LC) or A6 group (Dahlstrom and
Fuxe 1964), is located in the upper dorsolateral pontine
tegmentum and is one of the several noradrenergic cell
groups distributed through the brainstem. The LC is the

largest of these groups and its neurons have extensively
branched axons that project throughout the neuraxis pro-
viding the main source of norepinephrine (NE) to the
neocortex, hippocampus, amygdala, thalamus, cerebellum
and spinal cord (Lindvall and Bjorklund 1974; Fig. 1).
The LC neurons have different morphologies and neuro-
chemical characteristics. Most neurons are predominantly
medium-sized cells with a fusiform and polar morphology
and three or four long thin dendrites (Chan-Palay and
Asan 1989; Patt and Gerhard 1993),. In addition, the cau-
dal and ventrolateral regions of the LC, including the
subcoeruleus region, are intermingled with smaller
spindle-shaped pigmented neurons; these caudal norad-
renergic cells of the subcoeruleus region have different
targets in the brainstem and spinal cord than those of the
more rostrally located LC neurons (Westlund and Coulter
1980). The estimated number of bilateral LC neurons in
the adult human brain is about 45,000–50,000 cells
(Sharma et al. 2010). Neurons of the LC are identified
by their immunoreactivity for tyrosine hydroxylase and
dopamine-β-hydroxylase, the two enzymes critically in-
volved in NE biosynthesis. Locus coeruleus neurons ex-
press a variety of neuropeptides including neuropeptide Y,
somatostatin and cholecystokinin. Some neurons in the
human subcoeruleus region also express galanin (Miller
et al. 1999).

Efferent projections of the LC-NE system

Mature LC noradrenergic neurons have relatively sparse
dendritic ramifications but their axons have extensive
bifurcations and travel long distances within the cortical
mantle potentially innervating multiple cortical domains
(Foote and Morrison 1987). Norepinephrine may be re-
leased both at typical synapses and at non-synaptic
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release sites; extrasynaptic NE mediates paracrine effects
on neurons, glial cells and microvessels (Waterhouse
et al. 1998). Despite this widespread distribution, norad-
renergic innervation has a differential distribution in the
cerebral cortex. In humans, the most extensive innerva-
tion is in the somatosensory and motor cortices (Gaspar
et al. 1989; Morrison et al. 1982) and in association
areas including the prefrontal and parietal cortices
(Lewis and Morrison 1989). Telencephalic efferents from
the LC also innervate the medial prefrontal and anterior
cingulate cortex, entorhinal cortex, hippocampus,
subiculum and amygdala (Gaspar et al. 1989; Gompf
et al. 2010; Leichnetz 1986; Radley et al. 2008;
Sadikot and Parent 1990). Other targets include the basal
forebrain cholinergic groups including those in the medi-
al septum, diagonal band and nucleus basalis of Meynert.
There is also heavy innervation of the thalamus, particu-
l a r l y t h e pu lv i n a r / l a t e r a l po s t e r i o r comp l ex ,
periventricular, anteroventral, ventral posterolateral and

reticular nucleus (Morrison and Foote 1986), as well as
the midline, intralaminar and mediodorsal thalamic nuclei
(Vogt et al. 2008). The LC also innervates the hypothal-
amus, particularly the paraventricular and supraoptic nu-
clei (Ginsberg et al. 1993). Other projections of the LC
target the superior colliculus (Morrison and Foote 1986)
and cerebellum (Nystrom et al. 1972). Tracing and im-
munocytochemical studies showed that the descending
projections from the LC and subcoeruleus region have
different targets in the brainstem and spinal cord
(Westlund and Coulter 1980). Whereas the LC primarily
projects to the parasympathetic neurons of the dorsal
motor nucleus of the vagus, nucleus ambiguus and sacral
spinal cord, the descending subcoeruleus pathway pro-
jects to sympathetic preganglionic neurons and somatic
cranial nerve nuclei. Both pathways have widespread
projections to the brainstem reticular formation and dor-
sal horn of the spinal cord (including the marginal zone
containing spinothalamic neurons (Westlund and Craig

Fig. 1 Main connections of the
locus coeruleus
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1996), the region surrounding the central canal and the
ventral horn (Westlund and Coulter 1980; Westlund and
Craig 1996).

Inputs to the LC

Neurons of the LC receive a wide variety of afferent in-
puts from several sources (Fig. 1). Forebrain afferents
include glutamatergic inputs from the prefrontal and ante-
rior cingulate cortices (Arnsten and Goldman-Rakic
1984), corticotropin-releasing hormone containing inputs
from the central nucleus of the amygdala (Pammer et al.
1990) and hypocretin/orexin inputs from the posterior lat-
eral hypothalamus (Downs et al. 2007). Other brain re-
gions projecting to the LC include the bed nucleus of
the stria terminalis, preoptic region, periaqueductal gray,
midbrain pontine reticular formation, pedunculopontine
tegmental nucleus and cerebellum. The LC also receives
excitatory inputs from the C1 area of the rostral ventro-
lateral medulla (Holloway et al. 2013) and is strongly
interconnected with the dorsal raphe nucleus (Kim et al.
2004). Lamina I of the dorsal horn provides nociceptive
inputs to the LC (Westlund and Craig 1996).

Biochemistry and effects of the central noradrenergic
system

Biosynthesis and metabolism of norepinephrine

Norepinephrine is synthesized from tyrosine by the rate-
limiting enzyme tyrosine hydroxylase yielding dopamine,
which is then targeted by dopamine-β-hydroxylase within
the synaptic vesicle to yield NE. Both dopamine and NE
are transported into synaptic vesicles via the vesicular
monoamine transporter 2. The synaptic effects of norepi-
nephrine are terminated by its uptake via the presynaptic
norepinephrine transporter (NET) followed by its metab-
olism by mitochondrial monoamine oxidase A and cyto-
solic catechol-O-methyltransferase. Of note, the NET is
also the main transporter responsible for clearance of do-
pamine in the prefrontal cortex, as dopaminergic terminals
in this region express low levels of the dopamine trans-
porter (Moron et al. 2002).

Adrenergic receptors

The effects of NE are mediated by three families of G-
protein coupled receptors, α1, α2 and β, each consisting
of several subtypes. There is a differential distribution of
adrenergic receptors in the different targets of LC projec-
tions. The α1 and β receptors are present primarily at
postsynaptic sites. The α1 receptors are coupled to the

phospholipase C/inositol triphosphate/protein kinase C
pathway and in general mediate excitatory effects. The
β receptors (including β1 and β2 subtypes) are positively
coupled to adenylyl cyclase, increasing cyclic adenosine
monophosphate (cAMP), which affects synaptic excitabil-
ity and plasticity both directly and via protein kinase A-
triggered cascades. The α2 receptors are located both pre-
and postsynaptically. They are negatively coupled to
adenylyl cyclase, activate K+ currents (thereby reducing
neuronal excitability) and inhibit presynaptic calcium
(Ca2+) channels, thereby reducing neurotransmitter re-
lease. Alpha 2 receptors in somatodendritic and presynap-
tic axon domains of LC neurons act as inhibitory
autoreceptors. Whereas in general α2 receptors have an
inhibitory function, their activation increases the excit-
ability of prefrontal cortical networks, by inhibiting
hyperpolarization-gated cAMP-regulated cation channels
in pyramidal neurons (Arnsten et al. 2012).

Via these multiple receptors and transduction pathways,
NE exerts potent neuromodulatory actions. Its primary effect
is to reduce the baseline activity and increase the responsive-
ness of its target neurons to novel synaptic stimuli.
Norepinephrine also facilitates synaptic plasticity, including
long-term potentiation, in the neocortex, hippocampus, amyg-
dala and cerebellum (Hagena et al. 2016; Lim et al. 2010;
Lippiello et al. 2015). In addition, NE released from
extrasynaptic sites may diffuse in the extracellular fluid and
influence neurons, astrocytes and microvessels via volume
transmission. For example, NE activates glycogen metabo-
lism and calcium signaling in astrocytes and contributes to
the control of local blood flow throughout the sleep–wake
cycle (O’Donnell et al. 2015). The LC-NE system also regu-
lates expression of inflammatory cytokines and nitric oxide in
astrocytes and microglia, which may have implications in
mechanisms of dopamine neuronal loss in PD (Yao et al.
2015).

Physiology of LC neurons

Tonic and phasic firing of LC neurons

Locus ceruleus neurons fire in two distinct modes: tonic
and phasic (Aston-Jones and Cohen 2005; Usher et al.
1999) and the switch between these modes regulates the
different behavioral states of the individual. Tonic base-
line activity characterized by a sustained and highly reg-
ular discharge pattern (2–5 Hz) is related to the arousal
and waking state; this tonic LC discharge decreases with
reduced arousal and disengagement from the environment
and ceases during REM sleep. During focused attention,
LC neurons transiently interrupt their tonic firing and re-
spond with a phasic mode to task-relevant stimuli; this
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phasic discharge allows focused task performance by fil-
tering of irrelevant stimuli and is closely associated with
highly accurate behavioral responses (Aston-Jones and
Cohen 2005). In contrast, high levels of tonic LC dis-
charge, for example in response to stress, elicit behavioral
arousal and exploratory behavior and promote distractibil-
ity and increased vigilance for irrelevant environmental
events (Aston-Jones and Cohen 2005; Berridge and
Waterhouse 2003).

Synaptic control of LC neurons

The LC neurons are electrotonically coupled and both their
electrophysiological activity and strength of coupling are
modulated by a variety of synaptically released neurotransmit-
ters (Benarroch 2009). Norepinephrine released locally from
the soma of LC neurons inhibits neuronal activity via
somatodendritic α2 autoreceptors. Glutamatergic inputs orig-
inate primarily from the prefrontal cortex and activate phasic
firing of LC neurons. Inputs from the amygdala, including
those containing corticotropin-releasing hormone and from
orexin/hypocretin neurons of the lateral hypothalamus facili-
tate tonic discharge of LC neurons. Inputs from the C1 area of
the rostral ventrolateral medulla activate LC neurons.
Serotonergic inputs from the dorsal raphe may have either
excitatory (5-HT2 receptors) or inhibitory (5-HT1 receptors)
effects. The LC receives GABAergic or opioidergic inputs

from several sources, including local neurons; these neuro-
transmitters elicit both postsynaptic and presynaptic inhibition
of LC neurons.

Effects of the ascending LC-NE system

The LC-NE system has a critical role in attention, stress re-
sponse, emotional memory and control of motor, sensory and
autonomic functions (Fig. 2).

Attention

Noradrenergic inputs from the LC are particularly dense in the
prefrontal and parietal cortices, which are involved in mecha-
nisms of attention (Aston-Jones and Cohen 2005) and behav-
ioral arousal (Berridge et al. 1997). The phasic firing of LC
neurons, which occurs in response to novel salient stimuli or
to changes in value of a particular stimulus, is critical for
stimulus-induced shifts of attention and cognitive flexibility
(Aston-Jones and Cohen 2005; Vazey and Aston-Jones 2012).
Aston-Jones and Cohen (2005) proposed that the rapid change
from a tonic to a phasic LC leads to a switch from an explor-
atory state to a task-specific state that facilitates focused atten-
tion and accurate task performance. Phasic LC discharge may
also act as an interruption signal in response to an unexpected
change in the environment within the context of a task (Dayan

Fig. 2 Main effects of the locus
coeruleus-norepinephrine system
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and Yu 2006) and suppress activity in a ventral frontoparietal
attention network to prevent reorienting attention to
distracting events (Corbetta et al. 2008). The activity of the
LC thus may facilitate the dynamic reorganization of neural
networks for rapid behavioral adaptation to a changing envi-
ronment (Bouret and Sara 2005), which is required both for
the collection and processing of salient sensory information
(Berridge and Waterhouse 2003).

The effects of the LC-NE system on attention reflect the
potent modulatory influence of NE in the prefrontal cortex,
both directly and via interactions with dopaminergic inputs
from the midbrain (Arnsten et al. 2012; Xing et al. 2016).
There is an inverted U-curve relationship between LC-
noradrenergic activity and prefrontal cortex function.
Moderate levels of NE, reflecting transient phasic firing of
LC neurons, facilitate working memory primarily via α2 re-
ceptors; in contrast, high NE concentrations reflecting in-
creased tonic LC firing (as occurs during stress), impair pre-
frontal cortex function via α1 receptors (Arnsten et al. 2012;
Aston-Jones and Cohen 2005; Berridge and Waterhouse
2003). Consistent with these findings, drugs that activate α2

receptors, such as guanfacine, improve attention in patients
with right hemispheric lesions causing visual neglect
(Malhotra et al. 2006) or other disorders affecting attention.

Stress

The LC-NE system has a major role in behavioral and auto-
nomic responses to stress (Chrousos 2009; Roozendaal and
McGaugh 2011). Experimental evidence indicates that stress-
related activity of orexin neurons of the perifornical hypothal-
amus involves activation of orexin 1 receptors in the LC
(Johnson et al. 2015). In the context of stress, the LC also
modulates the interaction between the amygdala and hippo-
campus, thereby promoting emotional memory (Strange and
Dolan 2004). The participation of the LC in stress response
primarily involves activation of β receptors in the basolateral
amygdala (Roozendaal and McGaugh 2011). The β adrener-
gic receptor blocker propranolol alleviates anxiety symptoms
and prevents development of posttraumatic stress disorder;
functional neuroimaging studies confirm that these anxiolytic
effects are linked to modulation of basolateral amygdala ac-
tivity (Hurlemann et al. 2010). The LC also participates in
autonomic responses to stress, including tachycardia. This ef-
fect in part depends on inhibition of cardiovagal neurons of
the nucleus ambiguus triggered by α1 receptor- and β
receptor-mediated activation of local GABAergic or
glycinergic neurons (Wang et al. 2014).

Emotional memory and behavioral arousal

Like other monoaminergic systems, the LC-NE system also
contributes to the maintenance of arousal via its effects on

thalamocortical circuits, where both acetylcholine and mono-
amines inhibit rhythmic burst and promote tonic mode firing
of thalamocortical neurons (McCormick 1992). The LC is one
of the main effectors of the orexin/hypocretin neurons of the
lateral hypothalamus involved in maintenance of the wake
state and inhibition of REM sleep (Carter et al. 2009). It has
been proposed that various levels of LC tonic activity promote
the emergence of four global states covering the whole spec-
trum of brain activation (sleep, quite wakefulness, goal-driven
attention and response to stress) through differential activation
of adrenergic receptors with high (α2), intermediate (α1) and
low (β) affinity in their targets (Atzori et al. 2016).

Effects on basal ganglia and cerebellar circuits

Norepinephrine may differentially affect the activity in basal
ganglia circuits through both presynaptic and postsynaptic
mechanisms. For example, NE acting via α2 receptors mod-
ulates dopamine release in the striatum (Weitemier and
McHugh 2016). Neurons of the subthalamic nucleus (STN)
express both α1 and α2 receptors, which modulate their firing
pattern and affect locomotor activity (Belujon et al. 2007).
Firing of STN neurons depends on the interplay between their
intrinsic electrophysiological properties, glutamatergic inputs
from the motor cortex, inhibitory GABAergic inputs from the
globus pallidus externus and modulatory effects of dopamine
released from midbrain afferents. Some studies indicate that
activation of presumably presynaptic α2 receptors promotes
STN burst firing and leads to locomotor deficits (Belujon et al.
2007; Delaville et al. 2012). In contrast, activation of α1 re-
ceptors increases the firing frequency but not burst activity of
STN neurons in vitro (Arcos et al. 2003; Delaville et al. 2012).
Activation of adrenergic receptors in the STN may therefore
affect the firing pattern of STN neurons through both presyn-
aptic or postsynaptic effects. Norepinephrine also exerts com-
plex effects in the cerebellum via different receptor subtypes
(Schambra et al. 2005). For example, NE affects the sponta-
neous activity of Purkinje cells by enhancing the inhibitory
GABAergic inputs from interneurons in the molecular layer
(Guo et al. 2016); NE also produces α1 receptor- and α-2
receptor-mediated depression and β2 receptor-mediated po-
tentiation at the parallel fiber-Purkinje cell synapse
(Lippiello et al. 2015), whereas it decreases the probability
of glutamate release at the climbing fiber-Purkinje cell synap-
se (Carey and Regehr 2009).

Neuroprotection

Studies in vitro and in experimental models indicate that NE
exerts neuroprotective effects through various mechanisms.
These include α2 receptor-mediated modulation of NMDA
(N-methyl-D-aspartate) receptor function (Dong et al. 2008),
increased production glutathione (Madrigal et al. 2007),
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reduction of intracellular oxidative stress (Jhang et al. 2014)
and inhibition of microglial activation through regulation of
production of cytokines (Yao et al. 2015) and nicotinamide
adenine diphosphate oxidase (Jiang et al. 2015).
Norepinephrine also promotes survival pathways by increas-
ing expression of survival molecules (Patel et al. 2010) and
directly activating brain derived neurotrophic factor tyrosine
kinase B receptors (Liu et al. 2015),

Involvement of the locus coeruleus in parkinson
disease

Neuropathological evidence

Lewy pathology and neuronal loss in the LC are early and
prominent findings in PD (Braak et al. 2003; Brunnstrom
et al. 2011; German et al. 1992; Halliday et al. 1990;
McMillan et al. 2011; Seidel et al. 2015; Zarow et al. 2003;
Fig. 3). Degeneration of the LC occurs at neuropathological
stage 2 of Braak et al. (2003) together with other brain nuclei
involved in setting the behavioral state (such as the lower
raphe and paragigantocellular nucleus) and precedes both

degeneration of dopaminergic neurons of the substantia nigra
pars compacta (SNc; Del Tredici et al. 2002) and motor symp-
toms in PD (Del Tredici and Braak 2012). Consistent with loss
of LC neurons, there is loss of noradrenergic innervation of
several targets of the LC-NE system (Pifl et al. 2012).

Vulnerability of LC neurons

Noradrenergic neurons of the LC share several features with
the dopaminergic neurons of the SNc; these features render
these monoaminergic cells vulnerable to neurodegeneration.
They are both pigmented neurons that contain neuromelanin
and have the enzymatic machinery for catecholamine biosyn-
thesis and metabolism. Both enzymatic metabolism and au-
toxidation of catecholamines yield products leading to oxida-
tive stress (Zucca et al. 2015). The NE neurons of the LC, like
dopaminergic neurons of the ventral tier of the SNc, express
Cav1 (L-type) channels responsible for somatodendritic Ca2+

oscillations, which underlie their spontaneous spiking.
However, Ca2+ influx also predisposes to mitochondrial oxi-
dative stress (Chan et al. 2010; Sanchez-Padilla et al. 2014).
Noradrenergic LC neurons may be particularly susceptible to
neurodegeneration in PD, as they express not only Cav1- but

Fig. 3 Involvement of the locus
coeruleus in Parkinson disease. a
Histological section showing
normal locus coeruleus neurons
as identified by tyrosine
hydroxylase (TH)
immunostaining. b Topographical
relationship between the locus
coeruleus, dorsal raphe and
median raphe. c Loss of TH
immunoreactive neurons in the
locus coeruleus in a patient with
Parkinson disease. d
Accumulation of α-synuclein (α-
SYN) immunoreactive Lewy bod-
ies and Lewy neurites in locus
coeruleus neurons in Parkinson
disease. Bar 25 μm
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also Cav3 (T)-type channels, which contribute to their pace-
making activity (Matschke et al. 2015). This may conceivably
increase Ca2+-triggered mitochondrial stress in LC neurons.
Studies of the 6-hydroxdopamine (6-OHDA) rat model of PD
showed increased and irregular firing of LC neurons after SNc
lesions (Wang et al. 2009); this may also contribute to Ca2+

overload and mitochondrial dysfunction. Activation of the
mitochondrial-associated apoptotic pathway, reflected by
apoptosome formation and caspase 9 activation, occurs in
both the LC and the SNc in patients with PD (Kawamoto
et al. 2014). Many NE metabolites contribute to the produc-
tion of neuromelanin in the LC (Wakamatsu et al. 2015).
Whereas neuromelanin may have an initial neuroprotective
anti-oxidant effect by sequestering free irons, when released
from degenerating neurons neuromelanin may activate mi-
croglia and trigger neuronal death, thereby starting a self-
sustained mechanism of neurodegeneration and neuroinflam-
mation (Zucca et al. 2015). Like in the case of SNc dopami-
nergic neurons, reduced vesicular storage of catecholamines
due to reduced expression of the vesicular monoamine trans-
porter 2 leads to increased levels of catecholamines and their
metabolites in the cytosol, which may contribute to progres-
sive degeneration of LC neurons in PD (Taylor et al. 2014).
Accumulation of free NE may also reflect upregulation of
presynaptic NET, as shown with single-photon computer
emission tomography using FP-CIT ([123I} N-ω-
fluoropropyl-2β carbomethoxy-3β-(4-iodophenyl) tropane)
in patients with early stage PD (Isaias et al. 2011). Proteome
studies of the LC in PD patients also showed a differential
expression of proteins involved inmaintenance of intracellular
Ca2+ homeostasis, oxidative stress, proteostasis, misfolding,
cytoskeletal regulation and neuroinflammation compared to
controls (van Dijk et al. 2012).

Effects of LC lesions in experimental models of PD

In transgenic mice expressing the A53T mutant of human α-
synuclein, there was an age-dependent reduction of tyrosine
hydroxylase-immunoreactive terminals and levels of NE (but
not dopamine) in the striatum, olfactory bulb and spinal cord;
this would indicate that the LC is more vulnerable than the
SNc system to the toxic effects of aberrant α-synuclein
(Sotiriou et al. 2010). Studies in transgenic mice also showed
that overexpression of wild-type or mutant- α-synuclein inter-
feres with the cAMP/PKA-dependent transcriptional activa-
tion of dopamine-β-hydroxylase in LC neurons (Kim et al.
2014). Studies on MPTP (1-methyl-4-phenyl-1,2,3,.6
tetrahydropyridine)-induced parkinsonism in monkeys show
a 30–40% neuronal loss in the LC and reduced noradrenergic
innervation of the dopaminergic groups in the ventral tegmen-
tal area, retrorubral field and dorsal (but no ventral) tier of the
SNc, as well as reduced noradrenergic innervation of the STN
(Masilamoni et al. 2016).

Loss of noradrenergic LC neurons potentiates neurodegen-
eration in midbrain dopaminergic neurons in the 6-OHDA
model in rats (Srinivasan and Schmidt 2003). Likewise, knock-
out of the DBH gene encoding dopamine-β-hydroxylase re-
sults in more severe dopaminergic cell loss and motor manifes-
tations in animal models of PD (Rommelfanger et al. 2007). In
contrast, pharmacological or genetic blockade of NET or ad-
ministration of the α2 receptor agonist clonidine protects dopa-
minergic neurons (Rommelfanger and Weinshenker 2007).
Striatal dopamine turnover is reduced inα2C receptor knockout
mice and increased in α2C receptor transgenic mice. These
findings are consistent with the evidence discussed above, in-
dicating that NE, in part via α2 receptors, exerts neuroprotec-
tive effects via several mechanisms, including prevention of
oxidative stress and promotion of cell survival pathways (Liu
et al. 2015; Patel et al. 2010).

The effects of the LC-NE system in the motor manifesta-
tions of PD are yet to be fully understood and likely to be
complex. Studies on experimental PD models showed that
LC lesions promote levodopa-induced dyskinesia (Marin
et al. 2008; Perez et al. 2009; Shin et al. 2014) and reduce
the efficacy of levodopa therapy (Ostock et al. 2014). In ex-
perimental models of PD, neurons of the STN exhibit in-
creased activity with a burst pattern that is related to motor
deficits, primarily akinesia (Pan et al. 2016). The generation of
STN neuron bursts requires deinactivation of Cav3.1 (T)-type
calcium channels in the setting of activation of NMDA recep-
tors (Pan et al. 2016). GABAergic inputs from the globus
pallidus externus may promote burst firing by producing hy-
perpolarization of STN neurons and thus deinactivating their
T channels. Several studies have indicated that α2 receptors
promote STN burst firing and lead to locomotor deficits
(Belujon et al. 2007; Delaville et al. 2012). Local infusion of
clonidine, aα2 receptor agonist, induced a switch from a tonic
to burst pattern, which was associated with reduced locomotor
activity in both sham and 6-OHDA rats (Delaville et al. 2012).
The α2 receptor antagonist idazoxan prevented STN burst
firing and improved locomotor activity elicited by adrenergic
agonists (Belujon et al. 2007). These findings would be con-
sistent with studies showing that α2 receptor antagonists re-
lieve parkinsonianmanifestations, extend the duration of levo-
dopa responses and improve motor coordination in experi-
mental models of PD (Bezard et al. 1999; Domino et al.
2003; Philippens et al. 2014). The mechanisms underlying
these latter findings are uncertain and apparently contradictory
to the evidence that NE, acting via α2 receptor receptors,
protects against dopamine cells loss. This may reflect funda-
mental differences between systemic effects, direct synaptic
effects and indirect neuroprotective effects of pharmacological
manipulations of the LC-NE system. For example, systemi-
cally administered α2 receptor antagonists may increase LC
firing by blocking inhibitory autoreceptors in LC neurons and
thus induce NE release at their targets. However, at the level of
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the SNc, activation of α2 receptors may be neuroprotective,
for example by reducing release of glutamate or direct inhibi-
tion of oxidative stress and inflammatory pathways. At the
level of the STN, presynaptic α2 receptor activation could
potentially promote burst firing by preventing local dopamine
release; evidence in other circuits suggests that presynaptic α2
receptors may also prevent release of GABA or glutamate.
Whereas inhibition of glutamate release or NMDA receptor
activation may reduce abnormal burst firing in STN neurons,
inhibition of GABA release from pallido-STN afferents could
exert distinct effects depending on the functional state of the
STN. For example, excessive GABA release would promote
hyperpolarization and thus burst firing of STN neurons in
response to glutamatergic input. In this case, α2 receptor ag-
onists, rather than antagonists, would prevent burst activity in
the STN. Consistent with this possibility, the α2 receptor ag-
onist dexmedetomidine decreased burst activity in the STN, as
recorded in the setting of deep brain stimulation in PD patients
(Krishna et al. 2015).

Clinical correlations of LC involvement in PD

Cognitive manifestations

Loss of NE innervation of forebrain targets of the LC may
have a major role in the cognitive manifestations of PD
(Del Tredici and Braak 2013; Lewitt 2012; Rommelfanger
and Weinshenker 2007; Vazey and Aston-Jones 2012).
Cognitive dysfunction may occur at early stages of dis-
ease, before development of motor symptoms. One early
manifestation is executive dysfunction, particularly cogni-
tive flexibility, which depends on prefrontal cortex func-
tion and its substantially affected by the LC-NE system
(Vazey and Aston-Jones 2012). For example, patients with
PD have difficulties in tests such as the Wisconsin Card
Sorting Task (Lees and Smith 1983; Owen et al. 1993),
which depends on normal activity of the prefrontal cortex
(Konishi et al. 2010; Miller et al. 2013; Sawada et al.
2012). Patients with early stage PD also have dispropor-
tional impairment in tasks requiring behavioral shift
(Downes et al. 1989), which depends on LC-NE innerva-
tion of the prefrontal cortex (McGaughy et al. 2008). In
the prefrontal cortex, noradrenergic inputs acting via α2A
receptors strengthen synaptic efficacy and increase dy-
namic network connectivity and firing, whereas optimal
levels of dopaminergic D1 receptor activation refine men-
tal representations (Arnsten et al. 2012). Whereas loss of
dopaminergic innervation of the prefrontal cortex can also
impair attention (Chudasama and Robbins 2006) in PD,
these dopaminergic inputs originate in the dorsal tier of
the SNc and ventral tegmental area, which are spared in
initial stages of disease (Fu et al. 2016). However, these

midbrain dopaminergic areas receive NE inputs from the
LC (Masilamoni et al. 2016), and thus their noradrenergic
denervation may indirectly affect their function.
Furthermore, loss of NE terminals in the prefrontal cortex
may reduce dopamine uptake, which mainly depends on
NET activity in this region, thereby affecting local dopa-
mine levels and preventing optimal activation of its recep-
tors (Moron et al. 2002). This may explain in part why
NET inhibitors such as atomoxetine improve manifesta-
tions of prefrontal lobe dysfunction, such as impulsivity,
in PD (Kehagia et al. 2014; Ye et al. 2015).

Depression

Indirect evidence, including the beneficial effect of drugs that
inhibit NE re-uptake, point to a role of the LC-NE system in
mechanisms of depression and anxiety in PD (Ehgoetz
Martens and Lewis 2016; Remy et al. 2005; Ressler and
Nemeroff 2001). However, studies in elderly patients without
PD show no consistent relationship between the magnitude of
LC neuronal loss and depressive symptoms (Syed et al. 2005;
Wilson et al. 2013). In contrast, studies in patients without PD
show that depression appears linked to loss of dopaminergic
neurons in the ventral tegmental area (Wilson et al. 2013).
This is consistent with the beneficial effects of pramipexole
in the management of depression in PD patients (Seppi et al.
2011).

Motor symptoms

In PD, there is loss of noradrenergic innervation in nuclei of
the motor thalamus (pallidonigral and cerebellar territories), as
well as in associative, limbic and intralaminar thalamic re-
gions (Pifl et al. 2012). Loss of NE innervation may contribute
to the abnormal thalamocortical neuron discharge pattern,
with increased bursting and oscillatory activity; this may per-
turb the faithful transfer of thalamic information from the bas-
al ganglia and cerebellum to the cortex. Consistent with this
possibility, there is a reported case of unilateral rest tremor
associated with a contralateral lesion of the LC region
(Mevawalla et al. 2009). It has been hypothesized that exces-
sive α2 receptor activation may increase abnormal firing of
the STN associated with motor deficits by preventing GABA
release from pallido-subthalamic afferents (Belujon et al.
2007). However, the effects of GABA on the pattern of STN
firing are complex, as discussed above. Early studies show
that the α2 receptor antagonist idazoxan may improve brady-
kinesia and rigidity in patients with PD (Delaville et al. 2011;
Rascol et al. 2001). However, the potential benefits of manip-
ulating the noradrenergic system for the management of motor
manifestations of PD remain to be determined.
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Neuroimaging of the locus coeruleus in PD

The locus coeruleus can be clearly identified on melanin-
based magnetic resonance imaging. Several studies indicate
progressive loss of the LC signal, in parallel to that of the
dopaminergic signal in PD (Chen et al. 2014; Isaias et al.
2016; Keren et al. 2015; Ohtsuka et al. 2013, 2014; Schwarz
et al. 2016). This is consistent with evidence of progression of
monoaminergic dysfunction as assessed using positron emis-
sion tomography (Pavese et al. 2011). Neuromelanin-sensitive
imaging also showed that a reduced signal in the locus
coeruleus/subcoeruleus complex was more severe in PD pa-
tients with REM sleep behavior disorder (RBD) than in those
without RBD (Garcia-Lorenzo et al. 2013). A reduced
neuromelanin signal in this region was also reported in idio-
pathic RBD cases (Ehrminger et al. 2016). However, based on
experimental studies, RBD is thought to reflect loss of gluta-
matergic inputs from the subcoeruleus region activating
GABA/glycinergic neurons in the medulla oblongata and/or
spinal cord but not loss of NE innervation to these regions
(Luppi et al. 2013).

Conclusions

The LC/NE system is particularly vulnerable to neurodegen-
eration and is affected early in the course of PD. Experimental
evidence indicates that early loss of noradrenergic inputs from
the LC may contribute to neurodegeneration of dopaminergic
neurons and can be responsible for some non-motor manifes-
tations of the disease, including prefrontal cortex dysfunction.
Whereas the precise role of the LC/NE system in the motor
manifestations of PD remains to be better understood, all this
evidence provides the basis for pharmacological approaches
that target both the noradrenergic and dopaminergic systems
in PD.
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