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Abstract Many lung diseases result in fibrotic remodelling.
Fibrotic lung disorders can be divided into diseases with
known and unknown aetiology. Among those with unknown
aetiology, idiopathic pulmonary fibrosis (IPF) is a common
diagnosis. Because of its progressive character leading to a
rapid decline in lung function, it is a fatal disease with poor
prognosis and limited therapeutic options. Thus, IPF has mo-
tivated many studies in the last few decades in order to in-
crease our mechanistic understanding of the pathogenesis of
the disease. The current concept suggests an ongoing injury of
the alveolar epithelium, an impaired regeneration capacity,
alveolar collapse and, finally, a fibroproliferative response.
The origin of lung injury remains elusive but a diversity of
factors, which will be discussed in this article, has been shown
to be associated with IPF. Alveolar epithelial type II (AE2)
cells play a key role in lung fibrosis and their crucial role for
epithelial regeneration, stabilisation of alveoli and interaction
with fibroblasts, all known to be responsible for collagen

deposition, will be illustrated. Whereas mechanisms of colla-
gen deposition and fibroproliferation are the focus of many
studies in the field, the awareness of other mechanisms in this
disease is currently limited to biochemical and imaging stud-
ies including quantitative assessments of lung structure in IPF
and animal models assigning alveolar collapse and collapse
induration crucial roles for the degradation of the lung
resulting in de-aeration and loss of surface area.
Dysfunctional AE2 cells, instable alveoli and mechanical
stress trigger remodelling that consists of collapsed alveoli
absorbed by fibrotic tissue (i.e., collapse induration).

Keywords Idiopathic pulmonary fibrosis .Mechanical
stress . Alveolar collapse . Alveolar epithelial type 2 cells .

Collapse induration

Functional microarchitecture of healthy lung

Lung parenchyma is composed of alveolar and ductal air-
spaces and inter-alveolar septal walls containing a capillary
network. To accommodate its central role in gas exchange,
the parenchyma of the mammalian lung provides a huge sur-
face area within a limited volume, together with a very thin
barrier between the air and blood in order to minimise diffu-
sion distances for oxygen (Gehr et al. 1978; Weibel et al.
1993). The lung is stabilised by an economically designed
fibre network, which in particular consists in the so-called
axial, septal and peripheral elastic and collagen fibre system
(Wilson and Bachofen 1982). The axial network of elastic
fibres takes its origin in the walls of the conducting airways
and forms the stress-bearing component of the alveolar en-
trance rings. This axial network is connected to the peripheral
fibre system by the septal system so that it is fixed to the
subpleural connective tissue (Mercer and Crapo 1990;
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Weibel 2009; Wilson and Bachofen 1982). Hence, elastic fi-
bres and collagen fibrils are concentrated at the edges of the
septal walls and, although they possess a central role for
stabilisation of lung parenchyma and airways, they contribute
less than 10 % to the volumes of septal walls in the human
lung, thereby minimising interference with gas exchange ca-
pacity (Mercer and Crapo 1990). In the healthy lung, this
stabilising system of connective tissue allows the volume to
change during respiration with minimal effort and without
interfering with the crucial gas exchanging function of the
parenchyma.

The pulmonary surfactant system contributes to pulmonary
mechanics and stabilises alveoli at lower lung volumes
(Schürch et al. 2001). High surface tension leads to a reduction
in alveolar surface area by causing the collapsibility of air-
spaces (Schiller et al. 2001). This is counteracted by the
intra-alveolar surfactant through the reduction of surface ten-
sion. The intra-alveolar surfactant consists of 90 % lipids
(mostly phospholipids) and 10 % proteins. The alveolar epi-
thelial type II cells (AE2 cells) synthesize the components of
the surfactant in the Golgi apparatus and rough endoplasmic
reticulum and then move these components via transporters
and multi-vesicular bodies into specialised organelles called
the lamellar bodies (LB). With regard to the relevance of dys-
function in surfactant function and homeostasis in lung dis-
eases, the reader is referred to the review article by Lopez-
Rodriguez et al. in this special issue of Cell and Tissue
Research.

Alterations in either the interstitial connective tissue com-
ponents or the surfactant system or both of them will directly
affect lung mechanical properties and diffusion capacity and
are typical features of lung diseases resulting from pro-fibrotic
pulmonary remodelling. Pulmonary fibrosis is not merely an
excessive accumulation of extracellular matrix (ECM) com-
ponents within the pulmonary interstitium and/or intra-
alveolar space produced by highly activated fibroblasts and
myofibroblasts. In particular, in the case of idiopathic pulmo-
nary fibrosis (IPF), pulmonary fibrosis can furthermore be
considered as a disease resulting in severely disorganised con-
nective tissue and the loss of ventilated lung parenchyma fol-
lowing alveolar collapse (i.e., volume loss; Leslie 2012;
Myers and Katzenstein 1988) resulting in the stiffening of
lung parenchyma. In this review, we focus on IPF, which, in
view of its fatal and progressive nature, still represents a
severe health-care problem in respiratory medicine. Taking
relevant findings from animal models of pulmonary fibrosis
used in translational research into account, we will discuss
aspects in the pathogenesis of pulmonary fibrosis including
the roles of AE2 cells and their interaction with fibroblasts and
myofibroblasts. In addition, we will discuss alveolar instabili-
ty and mechanical stress as a potential trigger of pro-fibrotic
remodelling and the relevance of a mechanism called collapse
induration for the degradation of lung function.

Effects of IPF on lung structure and function

The histopathological pattern found in patients with IPF is the
usual interstitial pneumonia (UIP) pattern (ATS and ERS
2002). UIP is characterised by temporal and spatial heteroge-
neity. Temporal heterogeneity refers to the fact that, within the
same lung, regions can be found representing the various
stages from the initiation of fibrotic remodelling to end-stage
lung fibrosis. Spatial heterogeneity reflects the patchy distri-
bution of the various pathological alterations in the lung; this
means that completely normal-appearing lung parenchyma
with maintained acinar architecture can be found in the close
neighbourhood of affected and even severely affected areas.
Typical light microscopic findings in UIP are fibroblast foci,
thickening of inter-alveolar septal walls, microscopic
honeycombing with bronchiolarisation of distal airspaces
and hypertrophy and hyperplasia of alveolar epithelial cells
(Katzenstein et al. 2008). These pathological alterations are
predominantly located in basal and subpleural regions of the
lung. Hence, an apical to basal gradient of pathological find-
ings including the formation of honey comb cysts and the
volume loss in high-resolution chest computed tomography
(HRCT) is an important feature for the diagnosis of IPF
(Raghu et al. 2011). The existence of fibroblast foci is a crucial
characteristic for the diagnosis of a UIP pattern at the histo-
pathological level. Fibroblast foci are considered to be sites of
ongoing lung injury with fibroproliferation within the alveolar
and interstitial space and the presence of fibroblasts and
myofibroblasts, with both of them being responsible for the
deposition of ECM components including immature collagen
(Cool et al. 2006; Katzenstein et al. 2008; Kuhn et al. 1989;
Kuhn and McDonald 1991). The clinical meaning of fibro-
blast foci as locations of disease activity has been emphasised
in several observational clinical studies. The number of pro-
files of fibroblast foci and the volume fraction of fibroblast
foci in light microscopic sections from surgical lung biopsies
from IPF patients have been found to correlate with the im-
pairment in lung function (degree of restrictive ventilator fail-
ure), disease progression and prognosis of the patients in terms
of mortality (Enomoto et al. 2006; Harada et al. 2013;
Nicholson et al. 2002). However, in two-dimensional light
microscopic sections, fibroblast foci appear to be isolated
Bislands^. Using serial sections from patients with the diagno-
sis of IPF and a three-dimensional reconstruction of lung pa-
renchyma including fibroblast foci, Cool and co-workers
demonstrated that fibroblast foci are not isolated. Instead,
fibroblast foci form a three-dimensional fibroblast reticulum
meaning that islands of fibroblast foci are interconnected by
connective tissue bridges (Cool et al. 2006). Moreover, the
finding that interconnected fibroblast foci form a three-
dimensional network has direct implications for lung
mechanical properties of the IPF lung. IPF is a disease that
is supposed to have a subclinical phase meaning that a period
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of unknown duration ranges from the initiation of the disease
to its first symptoms, the establishment of the diagnosis and
finally respiratory failure attributable to progression (Ley et al.
2011). The degradation of lung function characterised by the
loss of forced vital capacity with time is a typical and clinically
highly relevant IPF feature, which is often used as an endpoint
in clinical studies (King et al. 2014; Noble et al. 2011;
Richeldi et al. 2014) and predictive of the prognosis (Collard
et al. 2003). In this regard, Bates and co-workers linked the
progression of lung parenchymal pathology with functional
pulmonary degradation by using a computational modelling
approach based on the concept of percolation (Bates et al.
2007). In this model, an elastic network of springs
corresponded to lung parenchyma and defined the lung me-
chanical properties. Progressive pulmonary fibrosis at a struc-
tural basis was modelled by progressive and random stiffening
of individual springs. As long as the fibrotic springs were not
interconnected, the modelling predicted only minor effects of
progressing lung pathology on lung mechanical impairment.
However, as soon as a network of stiffened springs appeared
with progressive disease attributable coalescence, meaning
that a threshold was reached, the overall stiffness of the lung
suddenly markedly increased (Bates et al. 2007). This model-
ling emphasises that not only the total amount or volume of
pathological lesions (e.g., fibroblast foci) within the lung in-
creased but also the three-dimensional organisation of such
lesions, which determines lung mechanical properties (Bates
et al. 2007) underscoring the pathophysiological relevance of
the three-dimensional architecture of the fibroblast foci (Cool
et al. 2006). Moreover, the modelling could, at least in part,
explain the time course of the disease with a subclinical phase
followed by a phase of rapid deterioration of symptoms and
lung function.

Another description with regard to the fibroblast foci in
UIP has included not only acute lung injury but also alveolar
collapse, so that fibroblast foci have been considered as sites

of alveolar epithelial cell necrosis followed by collapse of
distal airspaces and fibroproliferation (Kuhn and McDonald
1991; Myers and Katzenstein 1988). In the context of UIP,
ultrastructural evaluation of fibroblast foci showed remnants
of the alveolar epithelial basal lamina deep within the connec-
tive tissue (Kuhn and McDonald 1991; Myers and
Katzenstein 1988), whereas in cases of acute interstitial pneu-
monia, denuded basal lamina with alveolar collapse and ap-
position of alveolar septal walls were typical findings
(Katzenstein 1985). Moreover, hyperplastic alveolar epithelial
cells overgrew such apposing alveolar septal walls. Hence,
Katzenstein concluded that not only interstitial fibrosis but
also alveolar collapse, plus the incorporation of intra-
alveolar exudates into the septal wall are responsible for the
thickening of the septal walls found in interstitial lung diseases
such as IPF or acute interstitial pneumonia, a disease which is
characterised by a much more rapid and acute clinical presen-
tation and time course (Katzenstein 1985). Of note, Kuhn and
co-workers were also able to demonstrate that epithelial cells
covering fibroblast foci quite often have no basal lamina and
are in direct contact with underlying collagen fibrils (Kuhn
and McDonald 1991), a finding that we have reproduced in
our own material from explanted IPF lungs (Fig. 1). Using
design-based stereology, Coxson and co-workers underscored
the relevance of the collapse of distal airspaces in IPF (Coxson
et al. 1997). By means of computed tomography and surgical
lung biopsies up to the ultrastructural level taken from IPF
patients at the time point of diagnosis for quantitative mor-
phology, the authors demonstrated a dramatic decline of alve-
olar surface area per lung from 100 m2 in healthy controls to
30 m2 in IPF patients. Of interest, this study did not find an
overall increase in the total amount of tissue per lung. These
data do not support the concept of an excessive proliferation
of connective tissue as the main factor for lung functional
degradation, which is in agreement with earlier findings by
using hydroxyproline levels for the quantification of fibrosis

Fig. 1 Severe fibrosis in
idiopathic pulmonary fibrosis
(IPF). Hyperplastic epithelium
covers severely remodelled tissue.
No basal lamina is detectable and
epithelial cells are directly located
on collagen fibrils (col). Note the
multi-vesicular bodies (mvb). The
boxed area in a is shown at higher
magnification in b
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in IPF (Fulmer et al. 1980). Nevertheless, within the paren-
chymatous tissue of the lung, an increase in the volume frac-
tion of collagen fibrils was observed (Coxson et al. 1997).
Taking the ultrastructural findings from Myers and
Katzenstein into consideration (Myers and Katzenstein
1988), the quantitative structural data provide evidence for
the relevance of the instability of the distal airspaces, such as
permanent alveolar collapse in IPF (Galvin et al. 2010; Leslie
2012; Todd et al. 2015), giving at the same time, an explana-
tion how the lung loses lung capacity with only a limited
increase in components of connective tissue elements
(Coxson et al. 1997; Fulmer et al. 1980; Selman et al. 1986).
Using micro-computed tomography (μCT) of explanted IPF
lungs, Mai and co-workers recently performed a correlative
morphological study and closed the gap with regard to the
resolution between light microscopy and HRCT. In areas with
minor alterations at the HRCT level, evidence of alveolar
collapse could be found adjacent to the consolidations, which
most likely represented fibroblast foci. From these observa-
tions, the authors concluded that alveolar collapse occurs at an
initial stage predating the profibrotic remodelling of IPF (Mai
et al. 2016). Similar observations were reported in animal
models of lung injury and fibrosis including the bleomycin
model (Lutz et al. 2015), the amiodarone model (Birkelbach
et al. 2015; Mahavadi et al. 2014) and the transforming
growth factor (TGF) β1 model (Lopez-Rodriguez et al.
2016a) and after paraquat challenge of monkey lungs
(Fukuda et al. 1985). Thus, the important effects of IPF on
lung structure are the formation of a fibroblast reticulum in

concert with alveolar collapse, with both of these structural
alterations impacting lung mechanical properties.

Aetiological aspects of IPF

Known triggers for the development of lung fibrosis include
drugs (bleomycin, amiodarone), radiation and chronic inflam-
matory diseases such as connective tissue diseases or those
diseases following inhalation of organic (e.g., farmer’s lung)
or inorganic (e.g., asbestosis) particles. Some of these entities
of interstitial lung disease triggered predominantly by inflam-
matory stimuli respond to anti-inflammatory therapies.
However, in the case of IPF, the aetiology of the disease re-
mains elusive and anti-inflammatory drugs have turned out to
be harmful for these patients (Raghu et al. 2012). In other
words, IPF is the result of ongoing lung injury with impaired
regeneration but the factors that cause the lung injury and the
aberrant repair are unclear. As such, current concepts suggest
the merging of a diversity of potentially harmful hits on the
lung including those genetic, environmental and behavioural
factors thought to be necessary for the development of IPF
(Fig. 2; Brownell et al. 2016; Mulugeta et al. 2015). Several
conditions and activities including smoking, farming and rear-
ing livestock and wood-dust and stone/sand inhalation have
been identified as being associated with a higher risk for the
development of IPF, although a clear cause-effect relationship
has not been established (Ekström et al. 2014; Taskar and
Coultas 2006). Case–controlled genome-wide association

Fig. 2 Aetiological factors in
lung fibrosis. Several factors
including genetics, environmental
exposure, aging, mechanical
stress and co-morbidities have
been shown to be associated with
fibrotic lung diseases but for
most factors, a causal relationship
could not be demonstrated.
Nevertheless, current concepts
suggest a multiple hit model,
meaning that the disease results
from the interplay of a diversity of
different factors
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studies of patients with interstitial lung diseases have been
performed to find genes and single nucleotide polymorphisms
(SNPs) that might be linked to an increased susceptibility for
lung fibrosis (Fingerlin et al. 2013, 2016). These studies have
demonstrated a set of genes related to cell-cell adhesion, DNA
repair, host defence and HLA to be associated with idiopathic
interstitial lung diseases among which IPF is the most com-
mon representative. A strong association could be found be-
tween the DSP gene and idiopathic interstitial pneumonias.
DSP encodes for desmoplakin, a component of the desmo-
some, which provides epithelial cells with resistance towards
mechanical stress (Fingerlin et al. 2013). Hence, SNPs of the
DSP gene might be linked with an increased susceptibility of
alveolar epithelial cells to be injured as a result of mechanical
challenge. Moreover, genes or SNPs related to ATP-binding
cassette transporters, which are found in AE2 cells and in-
volved in surfactant homeostasis, have been associated with
an increased risk for idiopathic interstitial pneumonias
(Fingerlin et al. 2013; Postle et al. 2011). Another very strong
association has been established and also confirmed, in sever-
al studies, between a SNP of the MUC5B gene (rs35705950)
and pulmonary fibrosis. In cases of homozygous alleles of
rs35705950, a 20-fold increase in the risk of pulmonary fibro-
sis has been seen (Fingerlin et al. 2013; Seibold et al. 2013).
Moreover, the rs35705950 allele has been linked to a dramatic
up-regulation of MUC5B expression by epithelial cells of dis-
tal conducting airways, both in healthy controls and in IPF
patients (Nakano et al. 2016; Seibold et al. 2011). Several
prospective cohorts of the population, including the cohort
of the Framingham Heart study, were recently further evalu-
ated by computed tomography of the chest and by lung func-
tional data and followed for several years (Putman et al. 2014,
2016). These studies demonstrated that interstitial lung abnor-
malities are not rare findings in chest computed tomography
of the lung and were observed in 7 % of subjects, although
lung functional parameters were not impaired in these subjects
and the diagnosis of an interstitial lung disease was not
established (Hunninghake et al. 2013). However, a clear asso-
ciation of the interstitial lung abnormalities with MUC5B
SNP rs35705950, increased mortality and increased loss of
lung function was noted at follow-up (Araki et al. 2016;
Hunninghake et al. 2013; Putman et al. 2016). Themechanism
of action of MUC5B SNP rs35705950 is not yet clear but
some hypotheses include impaired host defence mechanisms
or increased mechanical stress imposed on lung parenchyma
because of the interaction of MUC5B protein with surfactant
leading to impaired surface tension lowering function, in cases
in whichMUC5B reaches the alveolar portion, e.g., caused by
the bronchiolarisation of the distal airspaces (Kolb et al. 2016;
van Moorsel et al. 2015). SNPs of TOLLIP, a gene regulating
the innate immune response via Toll-like receptors and
transforming growth factor-β1 (TGF-β1) signalling have also
been shown to be associated with IPF but with the same

prognosis and a response upon treatment with N-
acetylcystein, an anti-oxidative drug (Noth et al. 2013;
Oldham et al. 2015). Hence, TOLLIP determines susceptibil-
ity for IPF but also modulates disease progression. Other
genes that have been linked not only to IPF but also to familiar
cases of pulmonary fibrosis, which can manifest with an UIP
pattern at histopathological evaluation, include those that reg-
ulate the telomere length (TERT and TERC; Armanios et al.
2007; Fingerlin et al. 2013) and a shortening of telomere
length has been associated with IPF. Hence, ageing such as
the senescence of alveolar epithelial cells or the immuno-
senescence or exhaustion of stem cell resources necessary
for regeneration are also factors that seem to play important
roles with respect to the susceptibility for the development of
fibrotic lung diseases including IPF (Araya et al. 2013; Chilosi
et al. 2013). Aging as such is very likely to increase suscepti-
bility of the alveolar epithelium with respect to harmful
factors. Viral triggers such as an infection of the alveolar
epithelium with Epstein-Barr virus (EBV), human herpes
virus (HHV) or herpes simplex virus (HSV) have been
discussed as a potential etiological factor for lung injury, as
both the protein and DNA of the viruses have been traced in
the lung tissue of IPF patients (Lok et al. 2001; Molyneaux
and Maher 2013). Compared with the general population,
gastroesophageal reflux (disease) is much more frequent and
a common finding in patients with IPF (e.g., 10–19 % vs. 87–
94%), indicating that acid aspiration might play an etiological
role in pathogenesis (Ghebre and Raghu 2016; Raghu et al.
2006). However, from a lung mechanical point of view, the
higher prevalence of gastroesophageal reflux in IPF might
also be a secondary effect resulting from increased lung stiff-
ness and an increased intra-thoracic pressure swing that might
lead to an insufficient sphincter function at the oesophageal-
gastral junction (Ghebre and Raghu 2016). Further co-
morbidities that are more often found in IPF than in the gen-
eral population are sleep-related breathing disorders including
obstructive sleep apnoe syndrome (OSAS) or alveolar
hypoventilation (Milioli et al. 2016). Whether untreated
OSAS contributes to disease progression is not clear but the
combination of OSAS and IPF has been shown to be associ-
ated with a poorer prognosis (Milioli et al. 2016). In principle
high trans-thoracal pressure gradients acting on lung paren-
chyma during phases of obstruction of the upper airways
might contribute to ongoing or repetitive lung injury bymeans
of mechanical stress.

Pathogenesis of IPF

In recent years, IPF has in general been accepted to result from
repetitive or ongoing injury of the alveolar epithelium with
aberrant pro-fibrotic repair including clot formation and the
generation of a provisional matrix, activation of fibroblasts
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and myofibroblasts and interstitial and intra-alveolar scar for-
mation (Fig. 3; Geiser 2003). This concept with regard to the
pathogenesis of IPF was describedmore than 30 years ago and
ever since has been confirmed not only in several animal
models but also in familiar forms of interstitial lung diseases
resulting from mutations of the surfactant protein C gene,
which is linked to the chronic endogenous injury of AE2 cells
(Mulugeta et al. 2015; Uhal and Nguyen 2013). Repetitive

minor injuries of the alveolar epithelium in concert with an
impaired regeneration capacity results in aberrant wound re-
pair with the activation of fibroblasts and the deposition of
collagen fibrils (Geiser 2003). This concept is based on animal
experiments performed by Haschek and Witschi dating back
to the 1970s (Haschek et al. 1981; Haschek and Witschi
1979). Butylated hydroxytoluene was intraperitoneally
injected into the mouse and induced acute injury of the

Fig. 3 Summarised pathophysiological concept of pulmonary fibrosis.
Ongoing injurious events operating on the alveolar epithelium are
considered key in IPF, although the injurious triggers are still not
defined. The alveolar milieu is characterised by an imbalance of pro-
fibrotic (e.g., activated TGF-β1) and antifibrotic (e.g., HGF) factors.
The Alveolar epithelial type II (AE2) cells, which are responsible for
regeneration, fail to repopulate the denuded epithelial basal lamina (BL)
resulting in activation in fibroblasts. Factors related to alveolar epithelial
cells, such as direct cell-cell contacts with interstitial cells or the
production of paracrine factors (Il-1, Col 1, CTGF), are involved in this
process. After injury, the coagulation cascade is activated resulting in the
formation of intra-alveolar clots, which are invaded and remodelled by
fibroblasts and myofiboblasts. Involved mediators include PDGF, LPA,
EGF, or FGF-2. Intra-alveolar fibrotic tissue is repopulated by epithelial
cells and engulfed in the interstitial compartment. Not only alveolar
epithelial cells but also endothelial cells and interstitial macrophages
expressing VEGF-receptor have been shown to be involved in the
regulation of alveolar epithelial cell and fibroblast function (so-called
haematopoietic vascular niche). AE2 cell dysfunction also results in

impaired surfactant function with instability of distal airspaces resulting
in alveolar collapsibility and subsequently mechanical stress, alveolar
epithelial injury and TGF-β activation predominantly in areas of the
lung, which are, from a physiological and anatomical point of view,
underprivileged: these are areas in which volume changes (strain)
during breathing are maximal within the lung and the alveoli are the
smallest. Finally, collapsed alveoli cannot be reopened. The entrance is
overgrown by hyperplastic transitory epithelial cells and these collapsed
alveoli are engulfed in fibrotic tissue, a process referred to as Bcollapse
induration^. As a result, massive de-aeration, volume loss and loss of
alveolar epithelial surface area occur, characteristics that from an
imaging perspective are key in IPF (Il-1 interleukin-1, Col 1 collagen
type 1, CTGF connective-tissue-derived growth factor, ECM
extracellular matrix, HGF hepatocyte growth factor, PDGF platelet-
derived growth factor, LPA lysophosphatidic acid, EGF epithelial
growth factor, FGF-2 fibroblast growth factor-2, TGF-β1 activated
transforming growth factor-β1, VEGFR+ M vascular endothelial
growth factor receptor positive macrophages, γmin minimum surface
tension)
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alveolar epithelial type I (AE1) cells, while leaving AE2 cells
intact according to ultrastructural criteria (Adamson et al.
1977, 1990). This injury was repaired without relevant fibrotic
remodelling as long as the AE2 cell function was not affected:
the AE2 cells proliferated and differentiated into AE1 cells.
However, exposure of these mice lungs to, for example, 70 %
oxygen in the inspiratory air during the days following butyl-
ated hydroxytoluene exposure resulted in a failure of AE2
cells to regenerate the loss of AE1. Instead, an increase in
collagen deposition and hydroxyproline per lung was found
(Haschek and Witschi 1979). In IPF lungs, an injury of AE1
and AE2 cells can be seen at the ultrastructural level resulting
in detachment of cells from the basal lamina and, finally, in
denudation of the alveolar epithelial basal lamina (Fig. 4). The
lung injury is accompanied by an inflammatory response not
only in animal models but also in human acute or chronic
lung injury. Reducing the influx of neutrophils into the
bleomycin-injured rat lung by antibody-induced depletion re-
sulted in an increase in lung fibrosis, meaning that at least the
neutrophil-related and injury-associated inflammatory re-
sponse fulfils a protective role in this context (Thrall et al.
1981). Findings from interleukin 10 (IL-10)-deficient mice
support the concept that acute-lung-injury-related inflamma-
tion and fibrotic remodelling do not correlate with each other
and can be regarded to be dissociated from each other (Huaux
et al. 1998). The silicate animal model of lung injury and
fibrosis in wildtype and IL-10-knockout mice revealed a de-
creased inflammatory response in wildtype animals related to
anti-inflammatory functions of IL-10. However, the fibrotic
response was more pronounced in the wildtype than in the
IL-10-knockout mice. Hence, IL-10 is anti-inflammatory on
the one hand but is pro-fibrotic on the other (Huaux et al.
1998). Until the beginning of the last decade, human IPF
was considered to result predominantly from uncontrolled

inflammation. Hence, diverse clinical trials involved various
forms and combinations of immunosuppressive drugs, none of
which showed any efficiency in IPF. Instead, the PANTHER
trial testing the efficiency and safety of a combination of ste-
roids, azathioprine and N-acetylcystein was terminated ahead
of schedule, since immunosuppressive treatment was associat-
ed with an increased mortality and hospitalisation rate (Raghu
et al. 2012). These data defeat the hypothesis that at least those
inflammatory factors that can be suppressed by steroids and
azathioprine are involved in the pathogenesis of IPF. Instead,
an explanation based on dysregulated wound repair attribut-
able to dysfunction of the alveolar epithelium, or more specif-
ically, dysfunction of the AE2 cells, moved closer to the centre
of the pathogenic concept of fibrosing lung diseases (Selman
and Pardo 2006). AE2 cells are responsible for surfactant me-
tabolism, which is essential for keeping alveoli open, dry and
clean (Ochs 2010) and for the regeneration of alveolar epithe-
lium, giving credence for their role as Bdefenders of the
alveolus^ (Fehrenbach 2001).

AE2 cell in focus: ER stress, autophagy and apoptosis

Consistent with a central role for the alveolar epithelium in the
pathogenesis of pulmonary fibrosis, the apoptosis of AE2 cells
is a prominent finding in the histopathology of IPF (Barbas-
Filho et al. 2001; Kuwano et al. 1996; Myers and Katzenstein
1988; Uhal et al. 1998). Experimentally, the targeted injury of
AE2 cells with subsequent cell death has been shown to be
sufficient to induce fibrotic remodelling in mice lungs (Sisson
et al. 2010). Apoptosis of AE2 cells leads to a denudation of
the basal lamina and might reflect the initial damaging event
in the development of this disease (Horowitz and Thannickal
2006), although the involved molecular mechanisms are in-
completely understood.

Fig. 4 Injury to alveolar epithelial cells in IPF. Ultrastructural evidence
of AE2 and AE1 cell injury in samples from explanted IPF lungs analysed
within the frame of a previous study (Lutz et al. 2015). Tissue taken from
a macroscopic non-fibrotic-appearing area of the lung. a Swollen
(oncotic) AE2 cell in the direct neighbourhood of a normal-appearing

AE2 cell. b Swollen (oncotic) AE1 cell covering an alveolar septum
(BL basal lamina, ECM extracellular matrix, endo endothelial cell). On
the other side of this septum, alveolar oedema (edema) is visible. c
Completely denuded basal lamina (BL) and a hyperplastic lamellar body
(LB) containing an AE2 cell detached from the BL
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Recently, several studies have demonstrated evidence for
the pivotal role of cellular stress, in particular endoplasmic
reticulum (ER) stress, as the underlying cause for epithelial
apoptosis in IPF and other forms of pulmonary fibrosis (for a
review, see Korfei et al. 2016).

Initial insights into the role of ER stress in the pathogenesis
of lung fibrosis came from the observations in familial inter-
stitial pneumonias. Mutations in the surfactant protein C gene
(SFTPC) are associated with familial forms of lung fibrosis in
both adults and paediatric patients (Lawson et al. 2008;
Mulugeta et al. 2005; Nogee et al. 2001; Thomas et al.
2002). Meanwhile, over 60 different mutations in the
SFTPC gene have been described (Mulugeta et al. 2015),
many of them being located within the pre-protein
BRICHOS domain, an approximately 100-amino-acid region
in the COOH-terminal area. This region bears homology to a
number of proteins linked to familial neurodegenerative dis-
ease and amyloid formation (Sánchez-Pulido et al. 2002). The
mutations result in the misfolding of the pro-protein, impaired
proteolytic processing and trafficking through the regulated
secretory pathway with subsequent intracellular aggregate for-
mation and accumulation (Mulugeta et al. 2007; Thomas et al.
2002; Wang et al. 2003). As a consequence of an accumula-
tion of misfolded proteins, the activation of ER stress path-
ways (PERK, ATF6α and IRE1) and the unfolded protein
response (UPR), the induction of the pro-apoptotic transcrip-
tion factor CHOP and, finally, the activation of caspase-3 have
been observed (Korfei et al. 2016; Mulugeta et al. 2005, 2007;
Wang et al. 2003).

In addition to mutations in SFTPC, mutations in the genes
encoding surfactant protein A (SPA, SFTPA2; Maitra et al.
2010) and ABCA3 (Bullard et al. 2005; Wambach et al.
2014; Weichert et al. 2011; Young et al. 2008), an ATP-
binding cassette transporter involved in intracellular surfactant
transport, have been discovered in patients with various forms
of lung fibrosis. Overexpression of these mutant proteins in
alveolar epithelial cells in vitro also results in the significant
induction of ER stress. The finding of pro-apoptotic ER stress
in AE2 cells, however, is not restricted to familial forms but is
also prominent in patients with sporadic IPF (and other idio-
pathic interstitial pneumonias) in the absence of any gene
mutation (Korfei et al. 2008, 2011, 2013; Lawson et al.
2008). A significant activation of ER stress pathways, includ-
ing ATF6-upregulation and -cleavage, the activation of the
IRE1α/XBP1-pathway and significant increases in the ex-
pression of ATF4 and CHOP have been demonstrated in
AE2 of sporadic IPF patients but not in AE2 of organ donors.

Another example of a link between defective AE2 homeo-
stasis and ER stress in the development of pulmonary fibrosis
comes from lysosomal storage diseases. Patients with
Hermansky-Pudlak syndrome (HPS), who develop a form of
lung fibrosis that is indistinguishable from the typical UIP
histology found in IPF, show an impaired lamellar body

genesis and disturbed surfactant processing with intracellular
accumulation of surfactant proteins and lipids (Brantly et al.
2000; Nakatani et al. 2000). A severe ER stress response can
develop as a consequence of the defective trafficking,
targeting and secretion of proteins and lipids and the accumu-
lation of unprocessed proteins and lipids in distal lysosomes,
vesicles, Golgi and (finally) also in the proximal ER. Indeed,
hyperplastic AE2 cells of patients with HPS1 exhibit pro-
apoptotic ER stress, as shown by immunohistochemistry for
the ER stress markers ATF4 and CHOP and the apoptosis-
marker cleaved capase-3 (Mahavadi et al. 2010). In corre-
sponding animal models (Hps1/Hps2 double-mutant mice),
lysosomal stress has been demonstrated by the increased ex-
pression of cathepsin D and of its apoptotic pro-form and
seems to precede the induction of severe ER stress
(Mahavadi et al. 2010). In agreement with these findings,
defective surfactant storage attributable to the inhibition of
trafficking and transport mechanisms in vesicles of the lyso-
somal compartment with the subsequent induction of autoph-
agy, lysosomal and ER stress has been found in amiodarone-
induced lung fibrosis in mice (Birkelbach et al. 2015;
Mahavadi et al. 2014, 2015).

Additionally, AE2 apoptosis might be the cellular conse-
quence of genomic instability, DNA damage and aberrant
DNA repair. In this regard, several cases of familial interstitial
pneumonias, mostly IPF, with mutations in the telomerase
genes, namely telomerase-reverse transcriptase (TERT) and
telomerase RNA component (TERC; Armanios et al. 2007;
Tsakiri et al. 2007) and other telomere-associated genes (e.g.,
dyskerin/DKC1 and shelterin-complex protein TINF2;
Fukuhara et al. 2013; Kropski et al. 2014) have been reported.
These mutations have been demonstrated to be associated
with telomere shortening, which is a potential cause for the
triggering of the activation of a persistent DNA damage re-
sponse and the induction of a replicative senescence or apo-
ptosis in affected cells. Moreover, shortened telomeres have
been observed directly in the AE2 of familial IPF patients and
have even been commonly detected in AE2 of sporadic IPF
cases, in the absence of any gene mutations in the telomerase
complex (Alder et al. 2008).

Taken together, all these independent observations suggest
that the ER-stress-induced apoptosis of AE2 represents a com-
mon pathomechanistic principle in IPF and other forms of
lung fibrosis. Various cellular stress mechanisms, including
defective protein folding and processing, DNA damage stress
and genomic instability or lysosomal stress can induce or ag-
gravate ER stress and thereby contribute to the loss of AE2. If
the cellular stress is not resolved, an otherwise protective ER
stress response on normal cells can be converted into mal-
adaptive severe ER stress and subsequent apoptosis. Second
hits might further trigger the maladaptive switch (Xu et al.
2005). Oxidative stress (e.g., as caused by cigarette smoking)
is known to disrupt protein folding and is the leading cause of
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telomere shortening (Jones 2006) and viral/bacterial infections
might critically overwhelm protein synthesis in the ER and
induce or aggravate ER stress (Endo et al. 2005). In agreement
with such reasoning, an imbalanced alveolar oxidant-
antioxidant status in the lung attributable to an increased pro-
duction of oxidants and the depletion of antioxidants has been
observed in the fibrotic lung (Kinnula and Myllärniemi 2008)
and respiratory infections are a common phenomenon that
frequently antecede the clinical appearance of the disease
and also seem to accelerate the clinical course (Molyneaux
and Maher 2013).

AE2 cells, fibroblasts and their interaction in fibrotic
remodelling: lessons learned from animal models

Upon injury of the alveolar epithelium resulting in denudation
of the epithelial basal lamina, AE2 cells start to proliferate to
fill the gap and to repopulate the denuded basal lamina.
Finally, AE2 cells differentiate into AE1 cells (Adamson and
Bowden 1974). If the AE2 cells fail to repopulate the denuded
basal lamina, interstitial fibroblasts are activated and start to
produce excessive amounts of ECM components (Adamson
et al. 1988, 1990). These observations were originally made in
animal models of lung injury and fibrosis but the local asso-
ciation of denuded basal lamina and interstitial collagen depo-
sition can also be found in IPF samples quite commonly: at the
ultrastructural level, excessive amounts of connective tissue
components can be observed in areas of denuded basal lamina
in human IPF explants (Fig. 5). Moreover, the deposition of
collagen in the interstitial tissue is correlated with the ultra-
structural changes in AE2 cells in IPF and also in the amioda-
rone mouse animal model of lung injury and fibrosis
(Birkelbach et al. 2015; Kawanami et al. 1982).

Hence, dysfunctional AE2 cells, which, on the one hand,
fail to regenerate the alveolar epithelium and, on the other
hand, show hypertrophy, hyperplasia and severe ultrastructur-
al abnormalities related to the intracellular surfactant pool,
appear to be of relevance for the interstitial deposition of con-
nective tissue components. Based on observations from the
bleomycin-induced lung injury and fibrosis model, Adamson
and co-workers (1990) suggested a reciprocal epithelial-
fibroblast control system: epithelial cell damage with delayed
repair promotes the growth of fibroblasts and direct cell-cell
contacts between AE2 cells and fibroblasts or fibrillary colla-
gen seem to be involved in regulating AE2 cell growth and
differentiation (Adamson et al. 1990). Thus, treatment strate-
gies with the goal of stimulating migration, proliferation and
differentiation of AE2 cells have been tested in animal models
of lung injury and fibrosis. In order to enhance the regenera-
tion capacity of AE2 cells, hepatocyte growth factor (HGF)
has been successfully used either by unspecific overexpres-
sion of the HGF gene by alveolar epithelial cells or by specific
expression in AE2 cells under the control of the surfactant
protein C promotor or by bone-marrow-derived stem cells
passed intratracheally into the bleomycin injured lung
(Gazdhar et al. 2007, 2013a, 2013b). In this regard, a relative
deficiency of HGF in the alveolar space has also been reported
in IPF patients providing evidence of an imbalance of factors
promoting alveolar epithelial regeneration (e.g., HGF;
Marchand-Adam et al. 2006; Mason et al. 1994; Phin et al.
2010), on the one hand and factors that inhibit regeneration
directing fibrotic repair mechanisms, such as TGF-β1, on the
other hand. TGF-β1, a key player for fibrotic remodelling, has
major effects on AE2 cells in vivo and the increased expres-
sion of an active variant of TGF-β1 with increased secretion
into the alveolar space by using an adenoviral vector for gene-
transfer results in a loss of polarisation of AE2 cells

Fig. 5 Alveolar collapse and collapse induration in less severe fibrotic
areas. Areas of the lung from an IPF explant with thickened septal walls.
Denuded basal lamina (arrowheads), indicating the course of the original
alveolar epithelium, can be followed deep into the interstitial tissue. The
former lumen (asterisk in a) is partly filled with interstitial cells, most

probably fibroblasts and extracellular matrix. In b, c, the presumed former
entrances of the alveoli are overgrown by alveolar epithelial cells that
partly show characteristics of AE2 cells (air airspace, IC interstitial cell,
col collagen fibrils, endo endothelial cell, cap capillary lumen)
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characterised by a decrease in the surface area of the apical
membrane and an increase in the surface area of the baso-
lateral membrane (Lopez-Rodriguez et al. 2016a). These
changes correlate with lung mechanical properties such as
decreased compliance indicating the functional relevance of
ultrastructural alterations of AE2 cells (Lopez-Rodriguez et al.
2016a). Dysfunctional AE2 cells and dysregulated crosstalk
between alveolar epithelial cells and interstitial fibroblasts
have been suggested to be of great importance for the progres-
sion of fibrotic remodelling (Selman and Pardo 2006).
Markers of apoptosis and electron microscopy have revealed
an increased proportion of apoptotic and necrotic AE1 and
AE2 cells with shortened telomere length not only in fibro-
blast foci but also in normal-appearing alveoli (Uhal et al.
1998; Waisberg et al. 2010). In vivo experiments on animal
models of lung injury and fibrosis have brought to light many
signalling factors and pathways that might also orchestrate the
pathogenesis of IPF and lead to both a pro-apoptotic milieu for
alveolar epithelial cells and a pro-fibrotic milieu in which
fibroblasts appeared to be more resistant for apoptosis.
Lysophosphatidic acid (LPA), for example, which is a bioac-
tive lipid, plays an important role during alveolarisation in the
mouse lung via the LPA1-receptor by mediating the migration
of peripheral myofibroblasts and the synthesis of elastin, with
both of these factors being highly relevant for early and late
alveolarisation in young mice (Funke et al. 2016). However,
good evidence is available for LPA acting as a factor enhanc-
ing pro-apoptotic signalling in AE2 cells and, at the same
time, protecting fibroblasts from apoptosis (Funke et al.
2012). In IPF patients, the levels of LPA are increased in the
bronchoalveolar lavage and LPA1-receptor knockout mice are
protected from bleomycin-induced fibrosis providing evi-
dence that this pathway is also involved in human IPF
(Tager et al. 2008).

Nevertheless, the biomechanical properties of the matrix in
which the fibroblasts and myofibroblasts are embedded have
also been shown to be of importance regarding the prevention
of apoptosis and the maintenance of a pro-fibrotic phenotype
via mechanotransduction (Kulkarni et al. 2016; Liu et al.
2010, 2015; Saito and Nagase 2015; Zhou et al. 2013).
Matrix stiffness (by analogy to TGF-β1 stimulation) as such
induces a remodelling of the actin cytoskeleton in fibroblasts
and triggers the actin-myosin-related contractile system,
which in turn, via nuclear translocation of transcription factor
MKL1 (megakaryoblastic leukaemia 1), leads to the differen-
tiation of fibroblasts to myofibroblasts and the increased pro-
duction of collagen and anti-apoptotic mediators (e.g., BCL-2;
Zhou et al. 2013). This results in a feed-forward loop, since the
increasing stiffness of the matrix in scared lung tissue and
fibroblast foci promotes, at least in part, further myofibroblast
contraction, differentiation and survival via the GTPase Rho
A/Rho-associated kinase (ROCK) and also an integrin-
mediated release of active TGF-β1 from extracellular sources

(Hinz 2012). Another aspect of this feed-forward loop is a
progressive shrinkage of tissue caused by the contraction of
the myofibroblasts. Of interest is the finding that mechanical
stress in concert with TGF-β1 signalling is important for the
differentiation of myofibroblasts from fibroblasts (Hinz
2012). Whereas the mechanical properties of the normal lung
parenchyma, e.g., low stiffness and a normal shear modulus of
tissue, inhibit fibroblast activation, increasing stiffness, for
example, via the down-regulation of cyclooxygenase (COX)
2 and prostaglandin E2 (Liu et al. 2010) or increased signalling
of the Hippo-pathway, leads to fibroblast stimulation and pro-
fibrotic remodelling (Liu et al. 2015; Saito and Nagase 2015).

Further mechanisms that are involved in the misdirected
epithelial-mesenchymal cross-talk and that are similar to path-
ways activated during organogenesis of the lung have been
revealed, such as the Wnt/β-catenin signalling pathway
(Königshoff and Eickelberg 2010) resulting in an elevated
expression of Wnt target genes (Königshoff et al. 2008). In
AE2 cells, the activated Wnt/β-catenin pathway, e.g., via
Wnt3a, induces the production of pro-inflammatory IL-1β
and IL-6 after bleomycin challenge of mouse lung (Aumiller
et al. 2013). Prolonged overexpression of IL-1β by epithelial
cells for 7–10 days by using adenoviral-mediated gene-trans-
fer has been linked to fibrotic remodelling, most likely via
excessive production of other pro-fibrotic factors including
TGF-β1 and platelet-derived growth factor (PDGF; Kolb
et al. 2001). Moreover, the Wnt/β-catenin signalling cascade
promotes the proliferation of AE2 cells followed by hyperpla-
sia and the epithelial-mesenchymal transition andmediates the
deposition of ECM by fibroblasts via Wnt1-induceable sig-
nalling protein-1 (WISP1; Königshoff et al. 2009). However,
other factors produced by challenged AE2 cells also mediate
fibroblast activation. For example, selective deletion of
connective-tissue-derived growth factor (CTGF) or collagen
I in alveolar epithelial cells results in the attenuation of
bleomycin-induced lung fibrosis in mice (Yang et al. 2013,
2014). AE2 cells are also known to be involved, in collabora-
tion with interstitial cells, in the turnover of components of the
ECM (Leuenberger et al. 2012). Yang and co-workers (2013)
showed that murine AE2 cells after injury produce excessive
collagen type 1, which is involved in the resolution of
inflammation but also, via the collagen receptor discoidin do-
main receptor (DDR2), capable of directly activating fibro-
blasts leading to excessive production of matrix proteins.
These and other mechanisms might explain the co-
localisation of denuded basal laminae, the hyperplasia and
hypertrophy of AE2 cells and the deposition of ECM in ani-
mal models and IPF samples (Birkelbach et al. 2015; Knudsen
et al. 2015).

Other important issues are the injury-induced exudates and
activation of the coagulation cascade within the alveolar space
resulting in the formation of a provisory matrix necessary for
wound healing (Ruppert et al. 2008). The latter is then invaded
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by fibroblasts and myofibroblasts, which, because of their
contractile properties, cause tissue shrinkage and the
organised intra-alveolar connective tissue is re-epithelialised
and incorporated into the septal walls (Basset et al. 1986;
Kuhn et al. 1989; Kuhn and McDonald 1991). Hence, previ-
ous studies in animal models have demonstrated decreased
fibrosis after bleomycin-induced injury as a result of the inhi-
bition of components of coagulation cascade (e.g., thrombin;
Howell et al. 2001). However, clinical trials involving the use
of anticoagulation with Warfarin have not shown a benefit for
IPF patients (Noth et al. 2012). Nevertheless, the invasion of
fibroblasts into the provisory matrix located in the alveolar
space means that fibroblasts have to overcome the basal lam-
ina and other matrix components, e.g., by the activation of
proteases involved in the degradation of matrix proteins,
allowing the fibroblasts to generate gaps through which they
can invade (Li et al. 2011). In this regard, Li and co-workers
assigned fibroblast-produced hyaluronan and its receptor
CD44 a critical role for promoting an invasive fibroblast phe-
notype in the context of bleomycin-induced fibrosis and hu-
man IPF (Li et al. 2011; Pardo et al. 2016). In addition,
Ahluwalia and co-workers (2016) identified several factors
found in the broncho-alveolar lavage fluid taken 7 days after
bleomycin challenge and from IPF patients; these factors can
mediate the development of an invasive phenotype of
fibroblasts enabling them to traverse through a matrigel
ex vivo (Ahluwalia et al. 2016) and include PDGF-BB,
LPA, epithelial growth factor (EGF) and fibroblast growth
factor 2 (FGF-2). The knockdown of their corresponding re-
ceptors might consequently attenuate the invasive phenotype
of the fibroblasts (Ahluwalia et al. 2016). Diverse cell types
might be involved in producing these factors but, in principle,
AE2 cells are capable of such production and have been
shown to be a major source and therefore an important regu-
lator of fibroblast/myofibroblast function (Selman and Pardo
2014).

However, the mechanisms involved in regulating AE2 cell
functions are not entirely clear, with other cell types possibly
also being involved. In this context, further key players
interacting with alveolar epithelial cells and fibroblasts have
been identified in the so-called pulmonary capillary vascular
niche consisting of endothelial cells and perivascular macro-
phages directing the response upon injury either towards re-
generation or fibrosis of the lung (Cao et al. 2016). Cao and
co-workers compared the behaviour of the pulmonary
vascular niche cells following single and repetitive injuries
of the blood-gas barrier in the lung with bleomycin or hydro-
chloric acid. Of note, in this study, a single bleomycin instil-
lation was associated with a complete recovery of oxygena-
tion and hydroxyproline content at day 35 but this was not the
case after repetitive bleomycin instillations mimicking the
time course and current pathophysiological concept of IPF
in a realistic manner (Cao et al. 2016; Degryse et al. 2010).

Mechanistic studies performed by Cao and co-workers re-
vealed that, after a single injury to the alveolar epithelium,
pulmonary capillary endothelial cells promote, via chemokine
receptor CXCR7, a regeneration of alveolar epithelial cells
including their proliferation and repopulation of denuded bas-
al lamina. Chronic injury by repetitive instillation of
bleomycin or hydrochloric acid (e.g., 6 times), however, re-
sults in the downregulation of the chemokine receptor
CXCR7 with hampered proliferation/function of AE2 cells,
on the one hand and the recruitment of vascular endothelial
growth factor receptor 1 (VEGFR1)-positive perivascular
macrophages, on the other hand. These macrophages via the
pulmonary capillary endothelial cells andWnt/β-catenin path-
way activate stromal fibroblasts, thereby generating fibrotic
repair mechanisms (Cao et al. 2016). The presented data are
in agreement with findings that pulmonary resident stromal
fibroblasts are an important source of effector cells with regard
to fibrotic remodelling in the lung, whereas other sources,
such as epithelial-mesenchymal transition or differentiation
from pericytes, appear not to be dominant (Rock et al. 2011).

Mechanical stress, alveolar collapse and collapse
induration

A major feature of IPF is the distribution of the lesions in the
lung; lesions emerge in basal and subpleural regions and as-
cend to upper apical regions of the lung with disease progres-
sion. Hence, the apical to basal gradient of pathological le-
sions, such as honeycombing and the volume loss as revealed
by HRCTare critical for diagnosis (Raghu et al. 2011). From a
functional point of view, the lesions predominantly occur in
regions of the lung in which volume changes during respira-
tion are maximal and in which the smallest alveoli are located
(Leslie 2012). In other words, the local strain operating on
lung parenchyma in these regions is the largest within the
lung. Taking these functional-anatomical aspects into consid-
eration, Carloni and co-workers (2013) used a mathematical
model with the goal of simulating the distribution of mechan-
ical stresses within the lung parenchyma. This modelling pre-
dicted the highest mechanical stresses in the basal and
subpleural regions of the lung coinciding with the typical dis-
tribution pattern of pathological alterations seen by HRCT
(Carloni et al. 2013). The relevance of mechanical stresses
for disease progression is well known in acute lung injury in
which mechanical ventilation with associated atelectrauma
(e.g., recruitment and derecruitment of distal airspaces during
each respiratory cycle) and volutrauma (dynamic stress attrib-
utable to overdistension of the open lung) contribute to disease
progression (Bilek et al. 2003; Mead et al. 1970; Nieman et al.
2015; Slutsky and Ranieri 2013). Mechanical stress in the
context of acute lung injury and ventilator-induced lung injury
has been shown to activate TGF-β1 and a pro-fibrotic
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response, with mechanisms such as epithelial-mesenchymal
transition being described to occur (Cabrera-Benítez et al.
2012; Heise et al. 2011). However, in spontaneously breathing
animals suffering from high inspiratory pressure gradients op-
erating on the lung parenchyma and induced either by in-
creased resistance of a partially ligated trachea or by high
surface tension, mechanical stress has also been shown to be
sufficient to induce acute lung injury in vivo (Ikegami et al.
2005; Mascheroni et al. 1988; Toumpanakis et al. 2010).
These findings suggest that mechanical stress in spontaneous-
ly breathing IPF patients might also play an important role in
the pathogenesis of pulmonary remodelling. The relevance of
mechanical stress for the generation of a pro-fibrotic milieu
within the lung parenchyma was recently highlighted by an
elegant ex vivo experimental setup (Froese et al. 2016). Lung
tissue strips with defined dimensions from an animal model of
lung fibrosis and surgical lung biopsies of IPF patients were
subjected to cyclic mechanical stresses by using forces in a
range that are also likely to occur in the IPF lung during
normal breathing. As a result, the fibrotic lung tissue but not
the normal controls, demonstrated an increased release of ac-
tive TGF-β1 and the activation of the Smad2/3 pathway fol-
lowing phosphorylation; this increase was correlated with
stiffness of the lung tissue as measured by Young’s module,
a measure indicating the force per area (Pascal) for a defined
strain. Moreover, use of ei ther inhibi tors of the
mechanosensitive Rho/kinase pathway (so-called ROCK
inhibitors) or of αv integrin but not of matrix metalloprotein-
ases, led to an attenuation of the release of active TGF-β1
from endogenous pools, indicating that mechanotransduction
is involved in generating an pro-fibrotic milieu in a fibrotic
lung upon mechanical stress (Froese et al. 2016). Hence,
TGF-β1 release is a function of lung stiffness and matrix
mechanical properties: latent TGF-β1 complex is bound to
collagen fibrils and, via αv integrin, is connected to the
actin-myosin filaments of contractile myofibroblasts so that
a stiff matrix, in concert with myofibroblasts, are capable to
release active TGF-β1 by means of mechanotransduction up-
on stretch (Hinz and Suki 2016). These data provide evidence
for mechanical stress during spontaneous breathing as being
an additional aggravating factor in fibrotic remodelling in dis-
eased lungs but not in healthy lungs supporting the concept
that several hits in concert are involved in the pathogenies of
IPF. The relevance of mechanical stress as a pro-fibrotic stim-
ulus and as a regulator of a variety of processes including
cytoskeletal structure, cell adhesion and ECM has been point-
ed out recently. In the context of acute lung injury and me-
chanical ventilation and independently of the release of active
TGF-β1 from extracellular stores, the NOX1 – Midkine –
Notch2 signalling pathway has been shown to contribute to
fibrotic remodelling in response to stretch and mechanical
stress (Zhang et al. 2015). In this regard, studies of the
bleomycin model have suggested that, after reaching a critical

mass of stiff tissue, the remodelling might be perpetuated be-
cause of a positive forward loop of mechanical stress and pro-
fibrotic signalling (Froese et al. 2016; Liu et al. 2010). The
idea that mechanical stress is involved in the pathogenesis of
IPF is definitely reasonable bearing in mind the distribution of
the pathology within the lung, the damage occurring predom-
inantly in areas in which mechanical stresses are the highest
(Carloni et al. 2013). However, the question remains: what is
the initial event increasing lung stiffness and thereby inducing
such a positive feed-forward mechanism of progressive fibro-
sis? In the rodent model of TGF-β1 in which an adenoviral
vector for intra-tracheal instillation and gene-transfer of active
porcine TGF-β1 is used, pro-fibrotic remodelling is known
predominantly to occur after the expression of porcine
TGF-β1 has declined and the endogenous active TGF-β1 is
increased (Ask et al. 2008; Knippenberg et al. 2015; Lopez-
Rodriguez et al. 2016a; Sime et al. 1997). Moreover, during
the expression of porcine TGF-β1 by epithelial cells, which
are the main target of the intratracheal instillation of the ade-
noviral vector and the resulting increased levels within alveo-
lar space, a high proportion of alveoli collapse, because of
high surface tension and surfactant dysfunction can be found
with no signs of fibrosis (Lopez-Rodriguez et al. 2016a). At
least at the organ scale, alveolar collapse is known to be linked
to an increase in lung stiffness as measured by invasive pul-
monary function tests (Lutz et al. 2015; Smith et al. 2013).
Based on the Bachofen-Wilson model of acinar
micromechanics, alveolar collapse, for example, caused by
high surface tension, leads to a considerable stretch of the fibre
network consisting of elastin and collagen fibrils (Wilson and
Bachofen 1982) and such a stretch of collagen fibrils has been
suggested to be involved in the release of active TGF-β1 by
means of mechano-transduction, in the fibrotic lung (Hinz and
Suki 2016). Hence, we can speculate that alveolar-collapse-
related tissue stiffness and the stretching of ECM components
might be sufficient to generate a pro-fibrotic milieu in the
lung. In IPF samples, alveolar collapse has recently been
found in areas with only a little fibrotic remodelling and is
suggested to be a trigger for disease progression including
fibroproliferation (Mai et al. 2016).

The establishment of structure-function relationships in
animal models of lung injury and fibrosis demonstrates that
the degradation of lung function happens before the
fibroproliferative process starts; this is particularly true in
the bleomycin model in which the number of open alveoli
is the structural parameter best correlated with static compli-
ance during an observational period of 14 days (Lutz et al.
2015). Hence, alveolar collapse is a structural mechanism
increasing lung stiffness and, based on a modelling approach
published by Mead et al. in 1970, alveolar collapse in its
function as a stress concentrator might be the reason for
potentially harmful mechanical stress in the lung (Mead
et al. 1970) and therefore for the release of endogenously
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active TGF-β1, as seems to be the case in the animal model
of the adenoviral-mediated transfer of active porcine
TGF-β1. In human IPF, mechanical stress probably starts
to be of relevance in the pathogenesis very early during
disease development. Recently, inspiratory BVelcro crackles^
heard during auscultation of the basal parts of the lung have
been pointed out to be early findings in IPF patients
predating the occurrence of visible pathological alterations
in conventional chest X-ray evaluations (Cottin and Cordier
2012). Based on a modelling approach, inspiratory Velcro
crackles are suggested to originate from the energy-rich ex-
plosive reopening of distal airspaces (Vyshedskiy et al.
2009) and this in turn can impose potentially harmful stress-
es on lung parenchyma by recruitment/derecruitment of dis-
tal airspaces, on the one hand and heterogeneous ventilation,
on the other hand (Bilek et al. 2003; Mead et al. 1970). The
instability of distal airspaces, however, implies high surface
tensions and surfactant dysfunction in IPF lungs, an issue
that has indeed been shown to be the case in IPF (Günther

et al. 1999). In essence, the IPF lung is exposed to high
surface tension and alveolar instability. However, high sur-
face tension leads not only to alveolar instability but also to
a process referred to as hydrodynamic stress at the air-liquid
interface at which alveolar fluid oscillates during the respi-
ratory cycle resulting in shear stress at the apical membrane
of AE2 cells (Hobi et al. 2012; Ravasio et al. 2011). In vitro
experiments have linked such hydrodynamic stress to severe
dysfunctions of AE2 cells, which finally are subject to apo-
ptosis (Hobi et al. 2012). Therefore, an initial dysfunction of
AE2 cells, for example, because of aging, genetic suscepti-
bility or smoking, with increased surface tension might re-
sult in the most severe mechanical stress in the basal and
subpleural regions characterised by the recruitment/
derecruitment of distal airspaces, heterogeneous ventilation
and hydrodynamic stress aggravating injury by means of
inducing AE2 cell apoptosis and the release of active
TGF-β1, all culminating in a vicious circle with disease
progression over time (Fig. 6). Of note, the primary effect

Fig. 6 Mechanical stress and disease progression; effects on AE2 cells.
A model of the way that AE2 cell dysfunction and mechanical stress can
result in a vicious circle of disease progression. Repetitive injury of AE2
cells of unknown origin results in fibrotic remodelling and surfactant
dysfunction. Surfactant dysfunction leads to alveolar instability and
oscillation of the hypophase during breathing. Oscillation of the
hypophase in the presence of high surface tension has been shown to
result in hydrodynamic stress and further AE2 cell dysfunction in vitro.
Collapse induration and pulmonary fibrosis result in heterogeneous
ventilation, stress concentrators and a stiff matrix. These factors in

concert cause the release of TGF-β1 as a response to cyclic stretch.
TGF-β1 leads not only to fibrotic remodelling but also to the down-
regulation of surfactant proteins and therefore aggravates AE2 cell
dysfunction and disease progression. Mechanical stress might explain
the occurrence of IPF predominantly in basal and subpleural areas,
since here the volume changes during breathing are maximal. Here too
the alveoli are the smallest and thus, according to the law of Laplace, are
prone to high-surface-tension-induced collapse in the presence of
surfactant dysfunction
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of active TGF-β1 on lung structure, if produced after gene-
transfer by using an adenoviral vector for intratracheal instil-
lation, is alveolar collapse attributable to surfactant dysfunc-
tion and not to the activation of fibroblasts and the excessive
production of collagen fibrils within septal walls; these ef-
fects can be found with some delay, meaning that mechan-
ical stress predates fibrotic remodelling (Lopez-Rodriguez
et al. 2016a). This reasoning of the interaction of alveolar
instability and lung injury in the context of the chronic dis-
ease IPF leads to the pathogenetic concept of collapse indu-
ration, which has probably been underestimated in the past
(Burkhardt 1989; Crouch 1990; Gibson and Pride 1977;
Leslie 2012; Todd et al. 2015). Moreover, previous findings
in animal models provide a link between dysfunctional sur-
factant with high surface tension and the spontaneous devel-
opment of lung fibrosis (Mahavadi et al. 2010; Zhang et al.
2012). Using the bleomycin model of acute lung injury and
fibrosis, we have recently shown that surfactant dysfunction
and alveolar collapse at low lung volumes represent a very
early event occurring as soon as 1 day after challenge in the
absence of oedema formation at the light microscopic level:
approximately one third of alveoli are subject to alveolar
derecruitment below airway opening pressures of
10 cmH2O (Knudsen et al. 2016; Lutz et al. 2015).
Although, during the early stage, alveoli can be recruited
with increasing end-expiratory positive airway pressure
(PEEP), this is no longer possible at later timepoints.
Hence, alveolar micromechanics in progressive disease are
characterised by initial intratidal alveolar recruitment/
derecruitment, permanent derecruitment and, finally, col-
lapse induration. Collapse induration is characterised by col-
lapsed alveoli with denuded epithelial basal lamina being
piled up and embedded in interstitial fibrotic tissue; the for-
mer alveolar entrances are then overgrown by hyperplastic
alveolar epithelial cells (Burkhardt 1989; Lazenby et al.
1990; Lutz et al. 2015). Similar findings have also been
observed in samples characterised by a UIP or acute inter-
stitial pneumonia (AIP) pattern (Katzenstein 1985; Kuhn
and McDonald 1991; Myers and Katzenstein 1988); an ex-
ample from an explanted IPF lung is given in Fig. 5. The
term Bcollapse induration^ was introduced into the English
literature by Burkhardt (1989). It refers to the German term
BKollapsinduration^, which had been used in pathology
textbooks for a long time (e.g., Ziegler 1881).

Many drugs addressing the fibrotic response by, for
example, attenuating the activation of fibroblasts/
myofibroblasts and the deposition of ECM have been
demonstrated to be efficient in animal models of lung
injury of fibrosis but most of these treatments have failed
to prove efficacious in clinical trials of IPF (Ahluwalia
et al. 2014). As an exception, pirfenidone and nintedanib
have recently been shown to decelerate the decline in lung
function in IPF patients (King et al. 2014; Raghu et al.

2016; Richeldi et al. 2014), although the degradation of
lung function with time remains very high compared with
that of healthy controls evaluated in a former study
(Fletcher and Peto 1977). Whereas the mechanism of ac-
tion for nintendanib is known, as it is an unselective ty-
rosine kinase inhibitor and develops anti-fibrotic proper-
ties via the receptors of PDGF, VEGF and FGF
(Ahluwalia et al. 2016; Wollin et al. 2014), that for
pirfenidone is less clear. Animal studies have shown an
associated decrease in pro-fibrotic factors including active
TGF-β1 and others (Myllärniemi and Kaarteenaho 2015);
however, an upregulation of biophysically active surfac-
tant proteins resulting in a reduction in surface tension has
also been demonstrated, indicating beneficial effects of
this drug on AE2 cell function (Lopez-Rodriguez et al.
2016b). With regard to the effects of nintenanib on AE2
dysfunction, little is known so far.

In an attempt to regenerate AE2 cells and their function
as defenders of the alveoli, cell-based therapies might be
an attractive approach in the future. After acute lung in-
jury in mice, alveolar epithelial cells and endothelial cells
have been demonstrated to be regenerated from bone-
marrow-derived progenitor cells (Yamada et al. 2004). In
the bleomycin model, systemic treatment with mesenchy-
mal stem cells has been shown to be an efficient strategy
to prevent lung injury and fibrotic remodelling in mice
and experimental evidence has been provided that these
cells also differentiate to some extent into AE2 cells
(Ortiz et al. 2003).

Concluding remarks

In summary, IPF is a disease with complex effects on pulmo-
nary structure and function. Whereas the role of the injury of
alveolar epithelial cells as a trigger for interstitial and intra-
alveolar fibrotic remodelling including the activation of fibro-
blasts and myofibroblasts is well established, the relevance of
alveolar collapse and collapse induration for the degradation
of lung function might have been underestimated so far.
Increasing evidence supports the role of mechanical stress as
an important trigger for progressive remodelling processes in
IPF and animal models. Hypothetically, alveolar collapse
might act as an additional stress concentrator resulting in
harmful mechanical stresses in the lung contributing to fibro-
sis in the context of collapse induration. Therefore, treatments
aimed at a reduction of surface tension and the stabilisation of
distal airspaces might represent important additional therapeu-
tic strategies.
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