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Abstract Acute respiratory distress syndrome (ARDS) is a
disease with a variety of causes and is defined by severe hyp-
oxemia. Whereas ARDS carries a mortality of approximately
30 %, patients that survive may ultimately regain near normal
pulmonary physiology. The critical pathophysiological pro-
cesses in ARDS are alveolar barrier dysfunction and over-
whelming inflammation. This encompasses damage to the
epithelial and endothelial layers, thickening of the interstitial
matrix, edema with inactivation of pulmonary surfactant at the
alveolar surface and marked inflammation mediated by infil-
trating neutrophils and pro-inflammatory macrophages. For
patients that survive the disease, these are the critical process-
es that require repair and remodeling to allow for the recovery
of ARDS. As such, the current review focuses on the experi-
mental studies that have begun to elucidate the mechanisms
involved in restoring the alveolar barrier following injury.

Keywords Lung repair . Acute lung Injury .Acute respiratory
distress syndrome

Overview: objective of the article

The current review focuses on lung remodeling and repair in
acute lung injury (ALI) and its clinical correlate, the acute
respiratory distress syndrome (ARDS). As the name implies,

the damage to the lung in the setting of ARDS is rapid and
includes structural damage to the alveolar endothelium, inter-
stitium, epithelium and aqueous alveolar lining layer
(hypophase and surfactant surface film). Albeit complex, the
current understanding of the mechanisms leading to the dam-
aged lung in ARDS, including downstream processes that in
some cases lead to fibrosis, is substantial and has been
reviewed in several excellent publications (Ware and
Matthay 2000; Matthay et al. 2012; Baron and Levy 2016;
Kim and Hong 2016). Less information is available about the
normal mechanisms involved in repair and remodeling that
occur during the recovery of ARDS, enabling the restoration
of an efficient gas-exchange barrier within the lung.
Nonetheless, in recent years, valuable insight has been obtain-
ed related to recovery of the epithelial layer, clearance of ede-
ma and inflammatory cells within the airspace, restoration of
the interstitial matrix and repair of the endothelial layer. A
review of these mechanisms will serve as the primary focus
of this article.

Definition of ARDS, ALI, clinical background,
causes, outcomes

ARDS was originally described in 1967 by Ashbaugh et al.
(1967) in a small cohort of patients with severe hypoxemia,
diffuse pulmonary infiltrates and reduced lung compliance.
Since this time, the disease-specific definition has undergone
several updates including the most recent in 2012, commonly
referred to as the ‘Berlin’ definition (Ranieri et al. 2012). The
current definition includes an acute onset within 1 week of a
clinical insult, bilateral lung infiltrates and a reduced arterial
oxygen content. The Berlin definition utilizes the oxygenation
criteria with specific ventilation parameters to further classify
the disease into mild (PO2/FiO2 between 200 and

* Ruud A. W. Veldhuizen
rveldhui@uwo.ca

1 Centre for Critical Illness Research, Lawson Health Research
Institute, London, ON, Canada

2 Departments of Medicine and Physiology & Pharmacology, Western
University, London, ON, Canada

Cell Tissue Res (2017) 367:495–509
DOI 10.1007/s00441-016-2521-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s00441-016-2521-8&domain=pdf


300 mmHg), moderate (PO2/FiO2 between 100 and
200 mmHg) or severe ARDS (PO2/FiO2 < 100 mmHg), there-
by enhancing prognostic accuracy (Ranieri et al. 2012). Of
note, the term ALI, which was included in prior definitions
(Bernard et al. 1994; Artigas et al. 1998), was removed in this
latest definition as it was felt that this term was being utilized
incorrectly to refer to a subset of patients with only mild hyp-
oxemia, rather than as a general term to encompass all patients
affected by this disease. In a broader sense, however, the term
ALI remains pervasive within the literature, particularly when
referring to animal models where clinical ARDS cannot be
completely recapitulated.

ARDS is triggered by either direct pulmonary insults, such
as gastric aspiration, smoke inhalation and pneumonia, or in-
direct insults, such as sepsis, pancreatitis and trauma (Ware
and Matthay 2000; Matthay and Zemans 2011). However, not
all individuals sustaining an initial insult will progress to meet
complete diagnostic criteria for ARDS, as this threshold is
highly dependent on other factors including age, premorbid
alcohol consumption, or sex (Livingston et al. 1995; Johnston
et al. 2003; Brown et al. 2004; Boé et al. 2009; Heffernan et al.
2011). In patients progressing to ARDS, the direct or indirect
pulmonary insult leads to a series of pathological events cul-
minating in the physiological impairment that defines the dis-
ease. Additionally, other downstream factors, such as the im-
plementation of supportive mechanical ventilation, nutrition
and fluid management, have been documented to be associat-
ed with disease progression (Santacruz et al. 2015; Bein et al.
2016; Famous et al. 2016). Mechanical ventilation in particu-
lar has been shown to significantly contribute to disease pro-
gression, especially when used with inappropriately high-tidal
volumes (Brower et al. 2000; Tremblay and Slutsky 2006;
Villar et al. 2011).

Despite advances in both the understanding of ARDS path-
ophysiology and refinements of disease definitions, effective
pharmacologic interventions shown to improve patient out-
comes remain lacking (Bosma et al. 2010; Matthay and
Zemans 2011). Although several promising therapies have
been reported in preclinical investigation or early phase clin-
ical trials, optimal supportive care through the use of low-tidal
volume ventilation strategies, or improving tolerance to ven-
tilation strategies through pharmacologic paralysis, remain the
only interventions identified to improve outcomes in larger-
scale randomized clinical trials (Bosma et al. 2010; Brower
et al. 2000). Overall, current data suggest that mortality among
patients with ARDS remains at approximately 30 %, which is
relatively unchanged over the past several years (Phua et al.
2009; Erickson et al. 2009; Villar et al. 2016).

For individuals who survive to hospital discharge, long-
term clinical data suggest functional impairments across a
variety of neurocognitive, physical and emotional domains
(Herridge 2002; Wilcox and Herridge 2011; Herridge et al.
2016; Chiumello et al. 2016). However, many of these

patients may ultimately regain near normal pulmonary physi-
ology as measured by lung function testing and chest imaging
(Herridge 2002; Wilcox and Herridge 2011; Herridge et al.
2016; Chiumello et al. 2016). Implicit within this observation
is the notion that individuals who survive the initial exudative
phases of ARDS must be capable of initiating a resolution or
remodeling process that involves an intricate and coordinated
ability to reestablish an effective epithelial–endothelial barrier,
while clearing residual edema fluid and residual inflammatory
cells from the alveolar airspaces.

Pathophysiology of ARDS/ALI

Much of our current knowledge of ARDS pathophysiology
stems from analyses of bronchoalveolar lavage (BAL) sam-
ples and post-mortem histological analysis of pulmonary tis-
sues, as well as countless in vitro and in vivo studies (Matthay
et al. 2012). As the disease involves multiple initiating insults,
various susceptibility factors and potential iatrogenic factors,
such as the progression of the disease through mechanical
ventilation, there is no single animal model to study all path-
ological features of ARDS (Ranieri et al. 2012). However, to
overcome the issue of wide variability among animal studies,
the American Thoracic Society published recommendations
of pathological and other assessments that ensure animal
models accurately reflect ARDS (Matute-Bello et al. 2008,
2011). In addition to an acute onset of disease, these guide-
lines include physiological criteria, histological assessments,
measurements of inflammation and determination of edema
formation. Undeniably, these criteria provide the essence of
ARDS, namely alveolar barrier dysfunction and overwhelm-
ing inflammation; these are the critical processes that require
repair and remodeling to allow for the recovery of ARDS
(Fig. 1) (Matthay et al. 2012). Therefore, prior to discussion
of repair pathways, this section describes the primary obser-
vations made in both patients with ARDS and animal models
with ALI in terms of barrier dysfunction.

Numerous clinical and experimental studies have provided
insight into many of the alterations that occur in the alveolar
hypophase of the lung in ARDS/ALI (Meduri et al. 1995a;
Veldhuizen et al. 1995; Lee et al. 2008). Edema formation is
evident in all instances of ARDS/ALI (Ware and Matthay
2000; Bhattacharya and Matthay 2013). This is determined
by simple measurements of serum protein in the lavage,
through dynamic measurements of leaks using a marker mol-
ecule, such as Evans blue-labeled albumin, or through mea-
surement of the wet-to-dry ratio of the lung (Matute-Bello
et al. 2011). These measurements all reflect barrier dysfunc-
tion leading to leakage of fluid and serum proteins into the
alveolar space.

Analysis of BAL samples from patients with ARDS, as
well as lung lavages from animal models of ALI, provide
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convincing evidence of alterations in the pulmonary surfactant
system (Gregory et al. 1991; Veldhuizen et al. 1995; Malloy
et al. 1997; Schmidt et al. 2004). By reducing the surface
tension at the alveolar surface, this endogenous lipid protein
mixture is essential for maintaining normal lung compliance
(Goerke 1998). In ARDS/ALI lungs, surfactant is altered, in-
cluding changes in the amounts, lipid composition, protein
composition and, ultimately, surface tension reducing function
(Gregory et al. 1991; Veldhuizen et al. 1995; Schmidt et al.
2004). This inactivation of surfactant contributes to reduced
lung compliance in ARDS, thereby directly contributing to
impaired gas exchange.

Additional studies of lavage samples illustrate the other
hallmark of ARDS/ALI, overwhelming inflammation
(Meduri et al. 1995b; Chollet-Martin et al. 1996; Schutte
et al. 1996; Nakos et al. 1998). At a cellular level, lavage
samples from ARDS/ALI patients and animals demonstrate
a large infiltration of neutrophils and the presence of resident
and recruited macrophages, each of which may have under-
gone polarization to a more pro-inflammatory phenotype
(Yamashita et al. 2013; Hume 2015). Associated with the
cellular evidence of inflammation is a marked increase in the
numerous mediators of inflammation that can be detected in
the lavage sampling of the pulmonary hypophase including
cytokines, chemokines, lipid mediators and a variety of other
molecules (Meduri et al. 1995b; Nakos et al. 1998; de Torre
et al. 2006; Lee et al. 2008; Sixt et al. 2012; Hashemian et al.
2014). Furthermore, evidence of increased oxidative stress,
phospholipase and protease activity and other inflammatory
pathways have been reported (Sittipunt et al. 2001; Fligiel
et al. 2006; Seeds et al. 2012). These pro-inflammatory path-
ways, which may be initially activated as an adaptive or pro-
tective mechanism against a direct or indirect lung insult, can
ultimately lead to negative consequence on the lung tissue,
directly resulting in further damage of the alveolar-capillary
barrier.

Histological examination of lung tissue in ARDS/ALI has
demonstrated marked morphological changes of the lung as-
sociatedwith this disease (Ashbaugh et al. 1967;Matute-Bello
et al. 2011). A hallmark feature of ARDS/ALI is a thickening
of the alveolar walls and formation of hyaline membranes.
These changes reflect the deposition of fibrin and other pro-
teins, alterations to the matrix, as well as damage to endothe-
lial and epithelial cells. In addition, the overwhelming inflam-
mation described above is clearly evident in histological eval-
uation whereby abundant neutrophils can be observed
(Fig. 2).

�Fig. 1 Schematic of the alveolar barrier in ARDS/ALI identifying the
four distinct morphological constituents, the alveolar lining layer
(including the hypophase and surfactant), epithelial layer, interstitium
and endothelial cells, which require remodeling to restore the efficient
gas-exchange barrier within the lung
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The microvascular barrier dysfunction associated with
ARDS encompasses damage to both alveolar epithelial cells
and endothelial cells. Specifically, both necrosis and apoptosis
of epithelial cells during the development of ARDS has been
extensively reported (Crosby et al. 2011). Elevated levels of
FAS ligand (FASL) in lavage fluid from patients, combined
with evidence that FAS/FASL are expressed by alveolar epi-
thelial cells, suggests that apoptosis is at least one of the con-
tributing factors to epithelial damage and dysfunction
(Albertine et al. 2002; Lee et al. 2008). Furthermore, the pres-
ence of overwhelming inflammation affecting epithelial cells
through a variety of other pathways, such as reactive oxygen
species, protein and lipid mediators and protease activities,
may also contribute to a loss of barrier function. Finally, the
shear forces and cell stretch due to mechanical ventilation
provides an additional mechanism of damage to the epitheli-
um (Suki and Hubmayr 2014).

Similarly, pulmonary microvascular endothelial cell
(PMVEC) injury, dysfunction and death are a significant com-
ponent of microvascular barrier dysfunction (Groeneveld
2002). Multiple mechanisms promote PMVEC dysfunction,
including activation by cytokines, mechanical interaction with
activated leukocytes and exposure to harmful leukocyte-
derived molecules, such as proteases and oxidants
(Groeneveld 2002; Farley et al. 2008; Handa et al. 2008;
Wang et al. 2012). Importantly, cell death is a critical contrib-
utor to barrier dysfunction (Gill et al. 2014, 2015). The dis-
ruption of inter-PMVEC junctions, predominantly adherens
junctions comprising vascular endothelial (VE)-cadherin, is
a significant component contributing to this pathology
(Dejana et al. 2008; Bhattacharya and Matthay 2013). VE-
cadherin is a transmembrane protein with extracellular do-
mains that form homodimers between cells and cytoplasmic

domains that link to the cytoskeleton through interaction with
several partners such as p120 and β-catenin (Dejana et al.
2008; Bhattacharya and Matthay 2013). Disruption of VE-
cadherin localization within adherens junctions can be due
tomultiple mechanisms, including degradation bymetallopro-
teinases, physical disruption due to actin/myosin contraction
leading to PMVEC retraction and potentially increased vascu-
lar endothelial growth factor (VEGF) signaling, all of which
result in VE-cadherin internalization and degradation
(Medford and Millar 2006; Dejana et al. 2008; Lucas et al.
2009; Chen et al. 2012; Dreymueller et al. 2012; Arpino et al.
2016).

Finally, a thickening of the alveolar wall interstitium is
clearly observed histologically and is due to interstitial edema
as well as to deposition of fibrin and collagen fibers, similar to
wound repair in other tissues (Olczyk et al. 2014; Maquart and
Monboisse 2014). The lung interstitium comprises many dif-
ferent cell types, including pericytes, smooth muscle cells and
fibroblasts (Warburton et al. 1998). Within the interstitium is
the extra cellular matrix (ECM), which includes both the base-
ment membranes located in close proximity to the alveolar
epithelium and pulmonary vasculature and the interstitial ma-
trix (Warburton et al. 1998). The most important aspect of the
interstitiumwithin the gas-exchange unit (i.e., surrounding the
alveolus) is that there is minimal interstitial matrix, with the
epithelial and endothelial basement membranes fusing togeth-
er (Bhattacharya and Matthay 2013). This allows for minimal
distance and thereby efficient gas exchange, across the alveo-
lar–capillary barrier (Bhattacharya and Matthay 2013). The
thickening of the interstitium following lung injury caused
by deposition of ECM proteins is currently the focus of in-
tense research and the mechanisms mediating this process are
the subject of ongoing debate (Rocco et al. 2001). Moreover,

Fig. 2 Bleomycin-induced lung injury is associated with severe
infiltration of leukocytes and thickening of the interstitium. Leukocyte
infiltration is apparent in perivascular and interstitial spaces of the lungs

of mice 3 days after intratracheal instillation of bleomycin (2.5 U/kg; b)
vs. PBS-instilled control mice (a). Scale bar 250 μm
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there is evidence to support the involvement of multiple mech-
anisms. Traditionally, activation of interstitial fibroblasts to a
myofibroblast phenotype, as well as epithelial-to-
mesenchymal transition, have been thought to be responsible
for collagen deposition following lung injury (Chapman 2011;
Phan 2012). However, Hung et al. (2013) recently identified a
population of pericytes responsible for collagen deposition
following bleomycin-induced lung injury. Collectively, these
studies demonstrate that multiple pathways are likely respon-
sible for matrix deposition in ALI/ARDS.

Overall, ARDS is defined by histological alterations to the
lung, including all components of the alveolar barrier, which
lead to the dysfunction of the alveolar–capillary barrier and
result in the pathophysiological impairments that define the
disease (Ashbaugh et al. 1967; Ware and Matthay 2000;
Ranieri et al. 2012). It should be noted that a vast number of
pathological processes are involved in the generation of
ARDS. Further, these processes may vary among initiating
insults and also exhibit temporal variation. Description of
these processes is beyond the focus of this review and readers
are referred to several excellent recent review articles (Ware
andMatthay 2000;Matthay et al. 2012; Baron and Levy 2016;
Kim and Hong 2016).

Processes of remodeling, repair and resolution
of injury

As can be deduced from the magnitude and complexity of
barrier dysfunction in ARDS, remodeling and repair mecha-
nisms to re-establish a normal alveolar surface and healthy gas
exchange are equally complex and multi-factorial. This pro-
cess includes the recovery of the epithelial layer, clearance of
inflammatory signals and edema from the airspace, remodel-
ing of the interstitial matrix, and repair of the endothelial layer
(Fig. 1). Valuable progress has been made in all of these as-
pects of repair and remodeling; however, the data are limited
by the experimental approaches available. To date, the data are
still incomplete and too variable to create a composite picture
of all of the repair processes working in conjunction to restore
the normal alveolar–capillary barrier in patients who have
survived the disease.

Experimental approaches

When discussing findings related to the recovery of barrier
function in ARDS, it is important to understand the various
experimental research approaches taken to study repair and
remodeling in this disease and to realize the complexity and
significant limitations associated with these approaches. As
with disease development, the use of animal models can pro-
vide significant insight into cellular repair processes.
However, in contrast to the development of ARDS, for which

specific guidelines have been established to ensure animal
models accurately reflect clinical ARDS (Matute-Bello et al.
2011), such recommendations do not currently exist for the
study of repair and remodeling. In fact, the majority of exper-
imental models used to study the exudative stages of ARDS
have not been traditionally employed to study mechanisms
involved in repair and remodeling. Practical factors, including
the severity of the initial injury, the time frame of injury of
existing ALI models and the inadequate use of prolonged
mechanical ventilation strategies in laboratory animals, may
represent some of the critical limitations.

The most commonly used animal model for injury/repair
studies is bleomycin-induced lung injury (Kradin et al. 2004;
Lawson et al. 2005). This model involves the intra-tracheal
administration of bleomycin leading to marked histological
changes, including significant neutrophil infiltration and in-
flammation 3–7 days following the insult (Fig. 2b), with sub-
sequent development of fibrotic lesions. Interestingly,
bleomycin-induced lung injury, which is one of the primary
models for the study of pulmonary fibrosis, is often criticized
as a model of fibrosis because mice with bleomycin-induced
fibrosis resolve their fibrosis, whereas clinical pulmonary fi-
brosis is a progressive disease that does not resolve.
Understanding the mechanisms that allow mice to recover
from bleomycin-induced fibrosis may provide unique insight
into the repair and remodeling mechanisms that must be initi-
ated to allow for recovery from ARDS/ALI. Furthermore,
utilizing this model in conjunction with, for example, trans-
genic animals or cell-based therapies, allows researchers to
elucidate some of the aberrant processes that lead to fibrosis
rather than repair (Madtes et al. 1999; Lawson et al. 2005;
Nakagome et al. 2006; Yamashita et al. 2011). Other animal
models that have been utilized to study repair generally differ
from the ARDS models by inducing a less severe injury that
allows for recovery. Examples of such models are the injury
created by a brief period of mechanical ventilation followed
by extubation (Nin et al. 2008; González-López et al. 2011) or
the intratracheal or intravenous injection of lipopolysaccha-
ride (LPS) (Yang et al. 2015; Lin et al. 2016). These types of
models have the advantage of being easily titrated to a severity
of injury, or, in the case of LPS, mostly provide an inflamma-
tory injury and thereby allow for subsequent investigation into
the recovery phase.

Interestingly, the one pathological feature of ARDS
amendable to extensive study in vivo has been the resolu-
tion of edema (Matthay 2014). This experimental focus
stems from the notion that fluid clearance after the exuda-
tive phases of ARDS reflects the cumulative effect of all
repair processes. In addition, the arsenal of techniques
available to study edema in ARDS is more extensive than
for some other, cellular, aspects. For example, radiographic
techniques, wet-to-dry lung ratios and Evans blue-labeled
albumin leak readily provide simple in vivo tools to
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examine edema within the injured lung, even within com-
plex in vivo models (Matute-Bello et al. 2011).

Complementing the in vivo methods are a large number of
in vitro approaches that can provide additional insight into
repair processes. Both primary and transformed cell lines have
been utilized to study repair mechanisms related to cell prolif-
eration, migration and differentiation (Kheradmand et al.
1994; Geiser et al. 2001; Aman et al. 2016). In addition, co-
culture systems allow investigation of either direct or indirect
cell–cell interactions (Willems et al. 2013; Wang et al. 2013).
Transwell cell systems that measure passage of labeled mole-
cules across a cell layer allow the study of limiting or resolv-
ing edema formation in vitro (Wang et al. 2013; Arpino et al.
2016). These approaches can be utilized with one or multiple
cell types in order to closely mimic the barrier and examine
cell–cell interaction. In order to study repair mechanisms
in vitro, a variety of insults can be administered ranging from
the traditional wound repair scratch assay to more BARDS-
like^ insults, such as exposing the primary cells to LPS, septic
conditions using human plasma, or the direct administration of
hydrochloric acid (Geiser et al. 2000, 2001; Wang et al. 2013;
Chen et al. 2014; Arpino et al. 2016). Together, these studies
have elucidated remodeling pathways and signals involved in,
for example, the differentiation of a progenitor cell into a
specific epithelial cell population in vitro (Gong et al. 2014;
Huang et al. 2015). The obvious limitation, as with all studies
of this nature, is the linkages to the in vivo situation including
the 3D architectural features of the alveoli.

Recovery of the epithelial cell layer

The origin of our current understanding of the processes in-
volved in the recovery of the epithelial cell component of the
alveolar barrier stems from seminal studies by Kapanci et al.
(1969) and colleagues who used a morphological approach in
hyperoxia exposed monkeys to demonstrate that the alveolar
type II cells were capable of proliferation and differentiation
into alveolar type 1 cells. Since these studies, more evidence
and more detailed insight into the progenitor role of the alve-
olar type II cell have been obtained.

A supportive line of evidence for the importance of type II
cells in alveolar repair comes from studies utilizing type II cell
transplantation (Serrano-Mollar et al. 2007; Wada et al. 2012;
Guillamat-Prats et al. 2014). Two studies, using a bleomycin
model of fibrosis in rats, showed improved outcomes after
administration of purified alveolar type II cells. In a study by
Serrano-Mollar et al. (2007), intra-tracheal instillation of
freshly isolated rat type II cells 3, 7 or 15 days after bleomycin
insult led to significantly reduced histological evidence of
fibrosis. Utilization of male type II cells in a female model
of bleomycin-induced injury allowed the authors to provide
strong evidence for the engraftment of the instilled type II
cells. Other studies demonstrated benefits of type II cell

transplantation in an endotoxin model in piglets and in a pneu-
monectomy model in rats (Wada et al. 2012; Wang et al.
2016). Conversely, utilizing a transgenic mouse model with
the diphtheria toxin receptor on type II alveolar epithelial
cells, Sisson et al. (2010) were able to induce an injury spe-
cifically to the type II cell and demonstrated that this led to the
development of pulmonary fibrosis.

While the above studies supported the role for type II cells
in repair, they did not provide direct evidence for differentia-
tion of the transplanted cells into other cell types, such as the
alveolar type I cell. Evidence for this latter property of type II
cells has been obtained from in vitro studies, since the differ-
entiation of isolated type II cells into type 1 cells is observed
under basic culture conditions (Shannon et al. 1992; Wang
et al. 2007). In fact, in many studies focused on alveolar type
II cell properties and metabolism, this transdifferentiation has
actually limited the investigator’s objectives. Nevertheless,
this important observation of cell differentiation of type II
cells in vitro has opened the door to a variety of studies ex-
amining this process in the context of remodeling/repair
mechanisms (Geiser et al. 2000; Crosby et al. 2011; Xu
et al. 2015). For example, Ghosh et al. (2013) used a PCR
array to identify stem-cell associated genes that were altered in
isolated primary rat type II cells during differentiation to type I
cells; they identified IGF1, acting through upregulation of
Wnt5A, as an important stimulus for differentiation. Other
in vitro studies have utilized type II cell cultures and/or cell
lines to establish a role of a host of mediators, including cyto-
kines, chemokines, growth factors, metalloproteinases and
lipid mediators on proliferation and differentiation (Crosby
and Waters 2010). Similarly, additional studies have explored
the repair role of the type II cells in in vitro scratch assays, as
well as studying their interactions with other cell types such as
macrophages, fibroblasts and endothelial cells (Fehrenbach
2001; Chen et al. 2014). Together, these studies provide strong
evidence for the central role of the alveolar type II cell in the
repair mechanisms of the lung, although the in vivo relevance
of some of those observations, as well as identifying analo-
gous findings in human cells, are eagerly awaited.

To further explore the regeneration properties of the alve-
olar surface, more recent studies have focused on identifying
subpopulations of cells as lung progenitor cells (Fujino et al.
2011; Liu et al. 2011; Gong et al. 2014). Using lineage tracing
analysis and/or various cell differentiation markers, it has been
proposed that subpopulations of type II cells exist that vary in
their regenerative abilities. It has also been proposed that lung-
resident mesenchymal stem cells are involved in generating
type II cells and are associated with alveolar repair (Hayes
et al. 2015; Masterson et al. 2015). Certainly, based on many
in vitro studies generating alveolar type II cells from various
stem cells and experimental models of stem cell therapy, the
potential of this approach has received a significant amount of
recent interest (Horie et al. 2016; Cruz et al. 2016; Mei et al.
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2016). However, the overall picture of the role of subpopula-
tions of cells with regenerative properties within the lung is
still somewhat blurred through the use of different markers,
species and experimental models.

Endothelial remodeling

Restoration of this endothelial component of the gas-exchange
barrier requires multiple steps, which include PMVEC prolif-
eration and re-establishment of the inter-PMVEC junctions.
Surprisingly, while restoration of the microvascular barrier is
absolutely required for recovery from ARDS, our understand-
ing of the mechanisms regulating this process is limited
(Maniatis and Orfanos 2008; Bhattacharya and Matthay
2013). Similar to alveolar epithelial cells, proliferation of the
PMVEC is required to replace the damaged and apoptotic
cells (Maniatis and Orfanos 2008). The origin of these prolif-
erating cells is the source of ongoing debate and intensive
research. There is evidence that a population of resident endo-
thelial cells (EC) within the lung, identified through a panel of
markers, are capable of undergoing endothelial-to-
mesenchymal transition to a highly proliferative progenitor-
like cell (Suzuki et al. 2016). However, while restoration of
the pulmonary microvascular barrier is dependent on prolifer-
ation of the resident EC, Mao et al. (2015) used bone marrow
chimeras to generate mice expressing green fluorescent pro-
tein in bone marrow-derived endothelial progenitor cells and
demonstrated that these cells are recruited to the lungs follow-
ing injury. Further, these bone marrow-derived endothelial
progenitor cells are also required for restoration of barrier
function (Mao et al. 2015).

The mechanisms and signals involved in PMVEC prolifer-
ation and re-establishment of the inter-PMVEC junctions dur-
ing repair following lung injury are currently under investiga-
tion but are less well established than in other tissues. For
example, while VEGF is well known to drive EC proliferation
during angiogenesis and in systemic circulation (Ribatti
2005), its role in PMVEC proliferation and restoring micro-
vascular barrier function following lung injury is unclear
(Medford and Millar 2006). VEGF is expressed by multiple
cell types in the lung, including both epithelial and endothelial
cells. Interestingly, there is some evidence that VEGF pro-
motes proliferation of the alveolar epithelial cells but not the
PMVEC (Papaioannou et al. 2006). In fact, it has been shown
that increased VEGF expression actually promotes increased
permeability across the epithelial–endothelial barrier early in
the injury process, indicating not only the importance of spe-
cific signals but also the timing during the injury/recovery
process (Papaioannou et al. 2006; Matthay et al. 2012).
Recent studies indicate that proliferation of the resident EC
may also be dependent on phosphatidylinositol-3-kinase sig-
naling through the forkhead box M1 transcription factor, at

least in an LPS-induced injury model (Zhao et al. 2006;
Huang et al. 2016).

In addition to proliferation, PMVEC must also re-establish
the inter-PMVEC junctions to form a leak-resistant barrier
(Lucas et al. 2009; Bhattacharya and Matthay 2013). Various
molecules and signaling pathways play a role in this critical
process. For example, sphingosine-1-phosphate (S1P), a nat-
urally occurring sphingolipid, is known to promote formation
of adherens junctions by increasing association of VE-
cadherin with α- and β-catenin (Sun et al. 2009).
Specifically, S1P promotes localization of focal adhesion ki-
nase (FAK) to the cell periphery and increased association
between FAK and VE-cadherin, which suggests that the sta-
bilization of adherens junctions and restoration of the PMVEC
barrier is also dependent on increased PMVEC interaction
with the ECM (Sun et al. 2009; Natarajan et al. 2013).

Metalloproteinases, including the matrix metalloproteinase
(MMP) and closely related a disintegrin and metalloproteinase
(ADAM) families, are known to be involved in degradation of
inter-PMVEC junctions during lung injury (Alexander and
Elrod 2002; Dreymueller et al. 2012). Thus, regulation of this
proteolysis is likely required to allow for repair following
ALI/ARDS. Recently, expression of the tissue inhibitor of
metalloproteinases (TIMP) 3 by PMVEC was found to be
required for establishment of PMVEC barrier function
through inhibition of metalloproteinases and subsequent sta-
bilization of inter-PMVEC cell surface VE-cadherin localiza-
tion (Arpino et al. 2016). Collectively, these studies begin to
provide insight into potential mechanisms regulating repair of
the endothelium following ALI/ARDS; however, these few
mechanisms are very likely an incomplete picture of the com-
plex system required for endothelial repair and, as with epi-
thelial cells, in many cases identifying analogous findings in
human cells remains to be done.

Recovery of the alveolar environment

Edema

Paralleling the recovery of the epithelial and endothelial cell
layer is the recovery of a normal alveolar environment, which
requires clearance of alveolar edema fluid. Whereas the for-
mation of tight barriers is essential for reducing fluid influx,
active transport of fluid and ions is required to restore an air-
filled airspace. Central to this process of edema clearance is
the epithelial sodium channel (ENaC) and the NA/K-ATPase
in both alveolar type I and II epithelial cells. The sodium
transport from the alveolar space into the interstitium generat-
ed by these channels creates the osmotic pressure needed to
clear water from the alveoli. The importance of these channels
has been illustrated using molecular techniques, such as ge-
netically modified mice. In mice lacking ENaC, lung fluid
clearance was impaired at birth (Hummler et al. 1996).
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Similarly, gene therapy using NA/K-ATPase was able to mit-
igate lung injury and edema formation, as assessed by protein
measurements in BAL fluid and wet-to-dry ratios, in the LPS
model of ALI (Lin et al. 2016). A second group of proteins
that have been studied with regards to edema clearance are the
aquaporins, specifically aquaporin 1 and 5, which are
expressed in the alveolar epithelium (Verkman 2007). By na-
ture of their function, these water channels were thought to
assist in the clearance of edema fluid from the airspace.
However, the mice genetically deficient for individual aqua-
porins did not support this supposition as abnormal pulmo-
nary edema clearance was not observed following lung injury
(Verkman 2007; Matthay 2014). Further studies will be re-
quired to determine the role of aquaporins in ALI/ARDS path-
ogenesis and repair.

Surfactant system

Considering the extensive literature available on the alter-
ations of surfactant in ARDS (Gregory et al. 1991;
Veldhuizen et al. 1995; Schmidt et al. 2004), studies charac-
terizing the restoration of surfactant during the recovery
phases of ARDS are lacking. A study by Schmidt et al.
(2007), who investigated surfactant composition at several
time points after diagnosis of ARDS, described improved sur-
factant lipid and protein composition at later (Days 7–9) as
compared to earlier (Days 0–5) time-points. In addition, this
study showed improved surfactant outcomes in survivors as
compared to non-survivors. Beyond this study, investigations
into the surfactant system in survivors of ARDS, or in animal
studies during or after recovery, are limited. The assumption is
that the recovery of the epithelial layer, including the surfac-
tant producing type II cells, is necessary for the restoration of
successful surfactant secretion and function.

Inflammation

Reducing a maladaptive inflammatory response associated
with ARDS/ALI is not only a potential target of therapeutic
strategies to reduce the propagation of ARDS but it is also
important for the restorative process (Robb et al. 2016). The
removal of the initiating event and/or secondary stimuli con-
tributing to the inflammation, such as successful treatment of
underlying bacterial lung infections or systemic sepsis as well
as mitigation of inadvertent overstretching and collapse of the
lung units due to mechanical ventilation, is an obvious essen-
tial step towards downregulating inflammation (Slutsky and
Ranieri 2000; Brower et al. 2000; Santos et al. 2005). Overall,
a downregulation in persistent pro-inflammatory signals,
combined with the short half-life of most mediators of inflam-
mation, allows subsequent anti-inflammatory processes to ini-
tiate repair processes.

The various alveolar macrophage populations play a cen-
tral role in the resolution of ARDS and the restoration of
homeostasis within the alveolar environment (Herold et al.
2011). During lung injury, two distinct populations of macro-
phages, resident and recruited, are present within the alveolar
environment and each contributes specific roles during the
resolution of lung injury (Janssen et al. 2011; Tighe et al.
2011; Johnston et al. 2012). Furthermore, these macrophages
can exist in distinct polarization phenotypes: classically acti-
vated (M1) and alternatively activated (M2) macrophages
(Johnston et al. 2012; Hume 2015). Whereas M1 macro-
phages are mostly pro-inflammatory, M2 macrophages con-
tribute to resolution of inflammation through termination of
neutrophil influx, clearance of apoptotic neutrophils and re-
lease of anti-inflammatory cytokines. Many factors can influ-
ence the balance of M1 and M2 macrophage polarization,
thereby impacting repair mechanisms. As one example, it
has been shown that recruited macrophages frommice lacking
TIMP3 (Timp3−/− mice) are skewed towards an M1 pheno-
type and resistant to apoptosis, thereby leading to increased
neutrophil influx following lung injury and failure to resolve
inflammation (Gill et al. 2010, 2013).

In addition to the alveolar macrophages, alveolar epithelial
cells play an essential role in the process of resolving inflam-
mation. Alveolar type II cells have been termed Bthe defender
of the alveolus^ due to their broad role in maintaining a func-
tional alveolar environment (Fehrenbach 2001). These cells
can secrete inflammatory mediators, secrete surfactant, have
direct cell contact with type I cells, fibroblasts, neutrophils and
alveolar macrophages and interact with the ECM (Fehrenbach
2001). These properties and interactions of type II cells clearly
indicate a role of this cell type in the resolution of inflamma-
tion; however, further studies are required.

Interstitium

Restoration of the alveolar wall interstitium requires a variety of
processes to firstly remove residual interstitial edema and to
secondarily re-establish an intact interstitial compartment
through the deposition of fibrin and collagen fibers (Olczyk
et al. 2014; Maquart and Monboisse 2014). Focusing on the
latter, it should be noted that deposition of a provisional matrix
is absolutely required for wound repair, including following lung
injury. However, augmented matrix deposition or a lack of ma-
trix remodeling can ultimately lead to pulmonary fibrosis (Gill
and Parks 2008; Arpino et al. 2015). One family of potential
mediators of the ECM remodeling following lung injury are the
MMPs, as these proteases were initially thought to primarily
degrade the ECM (Greenlee et al. 2007). However, for many
of theMMPs, this may not be their main function, as many other
functions have been identified for these proteases. Thus, al-
though the MMPs more than likely play an important role in
the restoration of ECM following ARDS/ALI, the specific
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MMPs and/or their inhibitors, involved in restoring the intersti-
tial matrix have not been fully established. Similarly, we have
only begun to identify the mechanisms involved in the removal
of proteinaceous edema fluid as well as the removal of pro-
fibrotic cells, such as the activated pericytes and myofibroblasts,
from within the interstitium. Thus, in terms of regulating the
processes involved in the restoration of the lung interstitium to
its minimal thickness required for optimal gas exchange, much
work remains to be done.

Crosstalk between repair processes

Whereas the repair of individual components of the alveolar
barrier is important, the combination of all processes and the
appropriate timing of repair mechanisms are required for com-
plete restoration of lung function. As such, it is not surprising
that crosstalk must therefore exist between the various repair
mechanisms.

One example of crosstalk is the role of PMVEC. Although
clearly important for the restoration of the microvascular bar-
rier itself, these cells have also been found to drive recovery of
other tissue compartments (Ramasamy et al. 2015). For exam-
ple, VEGF stimulation of PMVECs led to increased MMP14
expression resulting in the increased release of active heparin-
binding epidermal growth factor (HB-EGF)-like growth factor
and subsequent activation of EGF receptor in alveolar epithe-
lial cells (Ding et al. 2011). Ultimately, this increased EGF
signaling resulted in proliferation of the alveolar epithelial
cells as well as expansion of a subset of pulmonary stem cells,
the bronchioalveolar stem cells (Ding et al. 2011).
Furthermore, this crosstalk between pulmonary epithelium
and endothelium is not unidirectional. In fact, alveolar type
II epithelial cells have been found to promote PMVEC barrier
function during sepsis-induced ARDS through release of a
lipid mediator (Wang et al. 2013). In addition to promoting
barrier function, this lipid mediator was also found to inhibit
trans-PMVEC neutrophil migration, suggesting a potential
role in regulating pulmonary inflammation following ARDS
(Wang et al. 2013). Together, these studies highlight the im-
portance of interaction between the different tissue compart-
ments during the recovery fromARDS. Importantly, while we
are beginning to understand the mechanisms that regulate this
repair, our knowledge continues to be limited, suggesting the
importance of ongoing research into these essential processes.

A more speculative form of crosstalk relates to the surfactant
system. Although it is assumed surfactant recovery is related to
restoration of type II cells within the alveoli, this should not
imply that surfactant is an innocent bystander within the remod-
eling and repair paradigm. Besides the biophysical role of sur-
factant in reducing surface tension at the alveolar surface, which
may further enhance alveolar edema resorption (Goerke 1998),
individual components of surfactant, including surfactant pro-
teins, may have a large variety of functions that could

dramatically influence various repair mechanisms (Pison et al.
1994; Davies et al. 2001; Mccormack and Whitsett 2002). For
example, surfactant-associated proteins A and D, SP-A and SP-
D are multimeric collagen-containing C-type lectins that are
components of the innate immune system (Mccormack and
Whitsett 2002). Such innate properties include clearance of ap-
optotic cells, modulation of macrophage phenotypes, control of
NETosis and regulation of pro- and anti-inflammatory signals
(Ikegami et al. 1998; Palaniyar et al. 2003; Litvack et al. 2010;
Phelps et al. 2011). Furthermore, when bred on specific genetic
backgrounds, mice deficient in the hydrophobic surfactant pro-
tein, SP-C, have been shown to develop pulmonary fibrosis
(Lawson et al. 2005; Glasser et al. 2009). It has also been report-
ed that overexpression of TGF-β1 in mice leads to a decrease in
surfactant-associated proteins that precedes formation of fibrotic
tissue (Lopez-Rodriguez et al. 2016). Although these observa-
tions do not provide direct Bcause and effect^ relationships, they
do suggest a potentially active role for surfactant in the repair
mechanisms of the lung. This would also imply that impairment
and compositional changes of surfactant observed in ARDS
may impact the various remodeling/repair processes. Further
studies to explore this possibility are required

In addition to these two examples, many other processes exist
that provide signals between different compartments of the bar-
rier, as well as appropriate signaling over the time course of the
disease and its repair. For example, there is ample evidence that
remodeling of the ECM by MMPs contributes to the release of
various growth factors and other mediators that can impact
mechanisms of repair (Parks et al. 2004; Davey et al. 2011).
There is also strong evidence for crosstalk betweenmacrophages
and monocytes with epithelial cells, as well as communication
between resident macrophages within different alveoli via the
type I cells (Chen et al. 2014; Westphalen et al. 2014;
Peteranderl et al. 2016); processes that undoubtedly impact re-
pair functions. The injury to tissuemay also directly or indirectly
initiate repair mechanisms. Geiser et al. (2001) demonstrated
that edema fluid from patients with ARDS had an increased
epithelial wound repair activity in vitro, compared to control
lavage fluid. The production of various pro-resolving mediators
by, among others, epithelial cells, which directly impacts inflam-
matory cells, provides another mechanism of crosstalk and the
initiation of the repair processes (Xie et al. 2013; Basil and Levy
2016). Together, these studies illustrate the intricacy of the repair
processes and the obvious need for further studies in various
animal models reflecting ARDS as well as in clinical samples.

General perspective and implications for clinical
management

From a clinical perspective, ARDS remains a challenging
enigma from which neither experimental findings nor clinical
trials have yielded significant strides in terms of therapeutic
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advances (Bosma et al. 2010). The inception of the NHLBI-
sponsored ARDSNetwork (ARDSnet) in the 1990s attempted
to translate a wealth of molecular and basic science knowl-
edge into reduced ARDS-associated morbidity and mortality
by conducting several multi-center randomized clinical trials
(Brower et al. 2000; Dinglas et al. 2015; Lammi et al. 2015;
Semler et al. 2016). Although these trials and studies yielded
important information on methods by which supportive care
for these patients should be delivered (including lower-tidal
volume mechanical ventilation or medical paralysis), no stud-
ies, including other non-ARDSNet clinical trials, have dem-
onstrated a benefit from any pharmacologic intervention
(Brower et al. 2001; Bosma and Lewis 2007; Bosma et al.
2010; Baron and Levy 2016). Over the past number of years,
and following the termination of the ARDS Network, a newer
NHLBI-sponsored initiative has sought to identify and poten-
tially prevent the development of ARDS in high-risk patients
based on the postulation that therapies targeting mid- to late
stages of the disease process may be administered at a refrac-
tory stage of the disease. This clinical network for the
Prevention and Early Treatment of Acute Lung Injury
(PETAL) will focus on early intervention as a means of deliv-
ering targeted therapies to high-risk individuals (www.
http://petalnet.org/). To date, results stemming from PETAL-
sponsored studies have not been reported.

In contrast to those mechanisms that govern proximal
events related to ARDS susceptibility, other lines of investi-
gation, such as those identified in the current review, seek to
identify more distal processes within the ARDS time-course
that may be of equal importance in terms of therapeutic de-
velopment. At this stage, the translation of this body of knowl-
edge into improving clinical outcomes remains a fundamental
challenge. A major factor complicating this approach is the
inherent limitation of the available in vitro or in vivo experi-
mental systems not accurately reflecting a widely heteroge-
neous and dynamic disease process. The ability to either has-
ten or promote homeostatic repair/remodeling in a diseased
lung after the onset of ARDS may be further contingent upon
clinical factors and/or in vivo biomarkers that allow for the
identification of specific patient populations combined with
optimal timing and delivery of therapy. Despite these hurdles,
considerable progress has been made in understanding the
highly coordinated complex series of events by which lung
remodeling or repair processes may ensue. Therapies aimed at
enhancing these endogenous mechanisms to direct the lung
toward recovery may well provide a novel approach to thera-
py for this complex disease. Coordinated and continued ef-
forts between basic and clinical researchers will be required to
translate this approach into a clinical reality.
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