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Abstract The epithelial-mesenchymal transition (EMT) de-
scribes the global process by which stationary epithelial cells
undergo phenotypic changes, including the loss of cell-cell
adhesion and apical-basal polarity, and acquire mesenchymal
characteristics that confer migratory capacity. EMT and its
converse, MET (mesenchymal-epithelial transition), are inte-
gral stages of many physiologic processes and, as such, are
tightly coordinated by a host of molecular regulators.
Converging lines of evidence have identified EMT as a com-
ponent of cutaneous wound healing, during which otherwise
stationary keratinocytes (the resident skin epithelial cells) mi-
grate across the wound bed to restore the epidermal barrier.
Moreover, EMT plays a role in the development of scarring
and fibrosis, as the matrix-producing myofibroblasts arise
from cells of the epithelial lineage in response to injury but
are pathologically sustained instead of undergoing MET or
apoptosis. In this review, we summarize the role of EMT in
physiologic repair and pathologic fibrosis of tissues and or-
gans. We conclude that further investigation into the contribu-
tion of EMT to the faulty repair of fibrotic wounds might

identify components of EMT signaling as common therapeu-
tic targets for impaired healing in many tissues.
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Introduction

The epithelial-mesenchymal transition (EMT) is a process
during which epithelial cells gradually transform into
mesenchymal-like cells and lose their epithelial functionality
and characteristics. Converging lines of evidence suggest that
EMT plays a role in both physiologic and pathologic healing.
In this review, we summarize findings from animal and human
wound-healing models supporting the importance of the prop-
er execution of EMT in achieving successful tissue repair
following injury. For instance, during cutaneous wound
healing, epidermal keratinocytes undergo EMT by losing their
adherent epithelial phenotype to becomemotile cells that have
a mesenchymal phenotype and that migrate across the wound
bed (Yan et al. 2010). We discuss several growth factors com-
mon to both wound healing and EMT, such as fibroblast
growth factor (FGF), hepatocyte growth factor (HGF), epider-
mal growth factor (EGF), and transforming growth factor-beta
(TGFβ), and highlight shared signaling pathways.

Whereas EMT is necessary for proper re-epithelialization
and extracellular matrix (ECM) deposition, an uncontrolled
continued transition from epithelial cells to myofibroblasts
can result in fibrosis.We discuss the role of EMT in generating
myofibroblasts from resident epithelial cells during the matu-
ration phase of wound healing. We summarize evidence that
sustained EMT is a key mechanism underlying the fibrotic
pathology of multiple organs including the skin. The role of
EMT in the pathophysiology of renal, pulmonary, cardiac, and
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liver fibrosis, cutaneous scleroderma, and impaired wound
healing are also discussed.

Global features of EMT

EMT is often divided by biological context into three sub-
types: Type I, which occurs during embryogenesis; Type II,
which takes place during tissue repair; and Type III, which is
involved in the metastatic spread of cancer. The three types of
EMT have a shared outcome: the production of motile cells
with a mesenchymal phenotype from otherwise classically
adherent epithelial cells with apical-basal polarity (Kalluri
and Neilson 2003). However, in contrast to Types I and III,
Type II EMT is instigated exclusively by damage and inflam-
mation (Volk et al. 2013).

The first step of EMT is the loss of epithelial cell markers,
one of the most notable of which is the decreased expression
of E-cadherin (Whiteman et al. 2008). E-cadherin is responsi-
ble for maintaining the lateral contacts of the epithelial cells
via adherens junctions and for the cell adhesion and relative
immobility in the tissue (Huang et al. 2012; Moreno-Bueno
et al. 2008; Qin et al. 2005). E-cadherin downregulation is also
mediated through the upregulation of vimentin, an intermedi-
ate filament that decreases E-cadherin trafficking to the cell
surface (Mendez et al. 2010). The cell then progresses towards
a mesenchymal phenotype by gaining mesenchymal markers
and capabilities (Lee et al. 2006). This change is orchestrated
by the temporally regulated expression of proteins, including
neural cadherin (N-cadherin), vimentin, integrin, fibronectin,
and matrix metalloproteinases (MMPs; Huang et al. 2012;
Thiery and Sleeman 2006; Wheelock et al. 2008). Integrins
that interact with ECM components such as fibronectin are
then upregulated to increase motility (Maschler et al. 2005;
Yang et al. 2009). A driving force behind this motility is the
loss of the polarized cytoskeleton in epithelial cells, and the
development of lamellipodia in the advancing edge of the
transitioning mesenchymal cells (Takenawa and Suetsugu
2007). Notably, the EMT process may not always be com-
plete. In some instances, cells lie along a gradient on which
incomplete transition occurs, and both epithelial and mesen-
chymal characteristics are exhibited by the same cell (Jordan
et al. 2011).

EMT in physiologic tissue repair

Wound healing exhibits EMT-like features

Converging lines of evidence indicate that EMT is an essential
component of physiologic tissue repair. The majority of stud-
ies have been conducted in models of cutaneous wound
healing.

Wound healing consists of several overlapping phases that
involve an injury-induced inflammatory response that is asso-
ciated with cellular proliferation, migration, and ECM remod-
eling (Eming et al. 2014;Martin 1997). Of these processes, the
one most reminiscent of EMT is the process of re-epitheliali-
zation, which has been termed Bpartial EMT^ (Arnoux et al.
2005). As discussed above, a hallmark of EMT is cell-cell
dissociation and acquisition of motility, and during re-epithe-
lialization, keratinocytes at the wound edge lose their intercel-
lular adhesions and migrate across the wound (Coulombe
2003). Specifically, these keratinocytes undergo changes in
junctional complexes including a reduction in desmosomes
and adherens junctions, a disruption of intermediate filaments,
and cytoskeletal reorganization that results in the creation of
intercellular gaps (Baum and Arpey 2005; Santoro and
Gaudino 2005). These changes enable the keratinocytes to
shift morphologically from cuboidal and stationary to flat-
tened and migratory, with extended lamellipodia (Baum and
Arpey 2005; Santoro and Gaudino 2005).

Evidence is also available that myofibroblasts, the key
players in the remodeling and maturation phase of wound
healing, are derived from resident epithelial cells that have
transformed through EMT to synthesize ECM components
and to contract the wound bed, enabling an approximation
of the injured edges (Iwano et al. 2002; Radisky et al. 2007;
Wynn and Ramalingam 2012).

EMT has been implicated in animal and human models
of cutaneous wound healing

Evidence from in vitro, in vivo, and ex vivo animal and human
models supports the importance of the proper execution of
EMT in achieving successful wound repair following cutane-
ous injury.

To start with, the EMT transcription factor Slug has been
implicated in the process of re-epithelialization in numerous
studies. Healing of excisional wounds is impaired in Slug
knockout mice almost twofold in comparison with wild-type
controls (Hudson et al. 2009), and epidermal keratinocytes
from these mice display defects in migration (Savagner et al.
2005). In ex vivo skin explants from Slug null mice, epithelial
cell outgrowth is also severely impaired, again indicating
compromised motility (Savagner et al. 2005; Kusewitt et al.
2009). Indeed, Slug expression is elevated in wild-type
keratinocytes at the edges of murine wounds in vivo (Shirley
et al. 2010; Savagner et al. 2005), and its expression specifi-
cally increases in actively migrating mouse keratinocytes
(Savagner et al. 2005).

Mechanistically, Slug regulates keratinocyte motility dur-
ing re-epithelialization by repressing E-cadherin, leading to
decreased cell-cell adhesion (Savagner 2001). It also drives
intercellular desmosomal disruption at the wound edge
(Savagner et al. 2005). Finally, the EGF receptor (EGFR)
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signaling pathway, which is integral to re-epithelialization in
physiologic wound healing, might be the master regulator of
EMT/Slug-mediated effects, since EGFR ligands stimulate
the expression of Slug and the subsequent migration of
keratinocytes (Kusewitt et al. 2009) in a process that is medi-
ated by Erk5 (Arnoux et al. 2008). Indeed, in the absence of
Slug, EGFR ligands are unable to stimulate the migration of
skin explants in the ex vivo model of physiologic re-
epithelialization (Kusewitt et al. 2009).

Work in additional mammalian models provides further
evidence for EMT involvement in skin repair. Treatment of
rat mucosal keratinocytes with EGFR ligands and inflamma-
tory cytokines TGFβ or interleukin 1 beta (IL1β) induces
EMT-associated MMP9 and MMP13, together with EMT-
like changes in cell morphology (Lyons et al. 1993). The N-
acetylglucosaminyltransferase V transgenic (GnT-V Tg)
mouse, which features aberrant structural modifications of
oligosaccharides, carries an enhanced EMT-like phenotype
that culminates in rapid re-epithelialization in vivo, in part
attributable to the differential glycosylation of EGFR and the
subsequent amplification of signaling that leads to increased
migration (Terao et al. 2011). Specifically, wounded GnT-V
keratinocytes exhibit spindle-like morphology, increased ex-
pression of EMT factors N-cadherin, Snail and Twist, and
enhanced migration (Terao et al. 2011). Foxn1, a potent mam-
malian wound healing factor, also appears to be involved in
EMT-driven re-epithelialization during repair, as evidenced by
studies of Foxn1 transgenic mice. In these mice, the induction
of EMT post-wounding has been demonstrated through the
upregulation of the EMT transcriptional regulator Snail1, the
increased MMP9 expression, and the presence of vimentin+/
E-cadherin+ cells, and migratory keratinocytes at the wound
edge expressing Foxn1, which co-localizes with Snail
(Gawronska-Kozak et al. 2016). Finally, zebrafish keratocytes
in explant culture, which serves as a well-studied model of
epithelial wound healing, display evidence of EMT
(McDonald et al. 2013). During injury-triggered migration,
keratocytes feature the loss of epithelial keratins and E-
cadherin accompanied by the gain of mesenchymal markers,
namely vimentin and N-cadherin. Moreover, explanted
zebrafish keratocytes exhibit EMT-like morphologic changes
including actin cytoskeletal rearrangements, disassembly of
cellular sheets, and flattened cells. Interestingly, cell motility
in this model appears to be driven in part by TGFβ1 (Tan et al.
2011), which is a known trigger of EMT.

In the in vitro models of human wound healing, immortal-
ized HaCaT keratinocytes with forced overexpression of the
EMT transcription factor Slug feature enhancedmigration and
disruption of desmosomes at the woundmargin, recapitulating
the effects of Slug in wounded skin of animal models in vivo
(Savagner et al. 2005). Similarly, antimicrobial peptides
shown to enhance wound healing concurrently induce Slug
at the edge of wounded HaCaTs (Carretero et al. 2008).

Heparin-binding EGF (HB-EGF), a keratinocyte-expressed
ligand that activates EGFR during human wound healing
(Mathay et al. 2008; McCarthy et al. 1996; Stoll et al. 1997),
triggers a migratory phenotype that is reminiscent of EMT.
Specifically, the expression of HB-EGF in human
keratinocytes decreases epithelial keratins and E-cadherin, in-
creases vimentin expression, and increases EMT factors
SNAIL1 and ZEB1. HB-EGF also increases COX2 and
MMP1, which are additional markers of cellular motility
(Stoll et al. 2012). However, perhaps the most compelling
evidence for the involvement of EMT in human cutaneous
wound healing originates from a study by Yan et al. (2010)
who demonstrated what they termed Bpartial EMT^ in wound
healing in vitro, ex vivo, and in vivo. Basal keratinocytes in
the migrating tongue of re-epithelializing human acute
wounds gained the expression of the mesenchymal markers
fibroblast-specific protein 1 (FSP1) and/or vimentin, whereas
the basement membrane zone displayed collagen disassembly,
reflecting EMT-associated degradation of the ECM.
Furthermore, the treatment of ex vivo human skin with in-
flammatory cytokines tumor necrosis factor- alpha (TNFα)
and TGFβ induced an EMT-positive cell population.
Primary keratinocytes treated similarly displayed morpholog-
ic cellular elongation and an enhanced migratory phenotype
that was reversible following the removal of the cytokine
stimuli. As such, injury-inducible mobilization of epithelial
cells involving TNFα and bone morphogenetic protein
(BMP)-2 produced a mesenchymal phenotype in migrating
keratinocytes (Yan et al. 2010).

Role of EMT in extra-cutaneous organ repair

Additional evidence exists for EMT occurring during the re-
pair of organs other than the skin. During in vitro healing of a
breast (mammary) epithelial cell line, time-lapse microscopy
indicated that EMT-associated vimentin was expressed in a
migration-dependent fashion, such that vimentin was exclu-
sively induced in actively migrating cells at the leading wound
edge, an event that was accompanied by actin filament reor-
ganization. Vimentin expression subsequently disappeared
once wound closure was achieved (Gilles et al. 1999).
Similarly, in a murine model of lacrimal gland injury, inflam-
mation induced by interleukin-1 (IL-1) injection triggered the
generation and migration of cells with mesenchymal features
to the site of injury, but these cells subsequently reverted to an
epithelial phenotype once repair was complete (You et al.
2012). These cells initially expressed EMT markers Snail1
and vimentin during the repair phase, the levels of which
decreased after injury resolution, indicating a reversible or
Bpartial^ EMT. Finally, EMT is a key feature of cardiac de-
velopment during embryogenesis, and accumulating evidence
in zebrafish and other models of myocardial injury indicates
that a subpopulation of epicardial cells undergo EMT to

Cell Tissue Res (2016) 365:495–506 497



regenerate the damaged epithelial cover and to help the estab-
lishment of new vasculature (Lepilina et al. 2006; Krainock
et al. 2016).

Wound healing and EMT share central signaling
pathways

Notably, a complex signaling network involving numerous
growth factors activated during wound healing are also in-
volved in the initiation and regulation of the EMT, supporting
a global role for EMT in epithelial barrier restoration follow-
ing injury (Fig. 1). The common growth factors indispensable
for both processes include FGF, EGF, HGF, and TGFβ
(Akhurst and Derynck 2001; Camenisch et al. 2002;
Jechlinger et al. 2006; Kim et al. 2007; Murillo et al. 2005;
Nawshad and Hay 2003). FGF, EGF, and HGF function as
ligands for the corresponding receptors, namely tyrosine ki-
nase transmembrane proteins, resulting in their dimerization
and autophosphorylation, the phosphorylation of downstream
target proteins, and the activation of the signaling cascades
(Lemmon and Schlessinger 2010; Tsai and Yang 2013).
Thus, ERK MAPK, p38 MAPK, and JNK are among the
activated pathways that ultimately upregulate EMT transcrip-
tion factors such as SNAIL, Slug, and ZEB (Tsai and Yang
2013) on the one hand, while triggering wound healing pro-
cesses on the other (Castilho et al. 2013; Zhang et al. 2015).

FGF signaling

The FGF family comprises 23 members, with the three crucial
FGFs for the wound healing process being FGF-2, FGF-7, and
FGF-10 (Golinko et al. 2009). FGF-2 (or basic FGF) increases
in the acute wound and plays a role in granulation tissue for-
mation, epithelialization, and tissue remodeling (Powers et al.
2000). In vitro studies have shown that the activation of the

FGF receptor by FGF-2 increases keratinocyte and fibroblast
motility (Di Vita et al. 2006; Sogabe et al. 2006) and stimulates
fibroblasts to produce collagenase (Sasaki 1992). The FGF
family is also induced during EMT (Smith and Bhowmick
2016), with the role of ensuring that epithelial cells adopt a
mesenchymal phenotype through classic effects such as the
downregulation of E-cadherin and catenins and the induction
of mesenchymal MMPs (Ciruna et al. 1997; Strutz et al. 2002).
In particular, FGF-2 is important in repair-associated EMT
(Ciruna et al. 1997; Sun et al. 1999). Other FGF family mem-
bers (e.g., FGF-1) instigate EMT in carcinomas, prompting an
increase in the EMT transcription factor Slug, the downregula-
tion of desmosomal components, and the upregulation of
MMPs and integrins, all of which are essential for cell motility
(Billottet et al. 2008; Savagner et al. 1997; Valles et al. 1996).

EGF signaling

The EGF family represents the best-characterized growth fac-
tor family in wound healing and includes a wide variety of
ligands such as EGF, HB-EGF, TGFα, Cripto-1, epiregulin,
amphiregulin, betacellulin, epigen, and neuregulins (NRG) 1–
6 (Barrientos et al. 2008, 2014). Ultimately, EGF signaling
leads to the activation of a number of converging signaling
pathways promoting keratinocyte migration and proliferation
(Omenetti et al. 2008). EGF also helps to accomplish EMT by
downregulating E-cadherin via E-cadherin internalization, up-
regulating SNAIL1 and/or TWIST, and increasing cell motil-
ity through MMP-directed ECM degradation (Ahmed et al.
2006; Lo et al. 2007; Lu et al. 2003). In murine mammary
epithelial cell tumors, the upregulation of Cripto1, an EGF
family member, results in enhanced mesenchymal character-
istics, such as increased expression of N-cadherin, vimentin,
and Snail1 (Rangel et al. 2012; Strizzi et al. 2004; Tao et al.
2005).

Fig. 1 Common growth factor signals initiate and regulate essential EMTand wound-healing processes (FGF fibroblast growth factor, EGF epidermal
growth factor, TGFβ transforming growth factor beta, HGF hepatocyte growth factor)
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HGF signaling

HGF signaling is an additional example of the wound healing/
EMT crosstalk. HGF, mainly produced by fibroblasts, exerts
its function by binding to its tyrosine kinase receptor c-Met
(mesenchymal epithelial transition factor or HGFR), which is
expressed on the surface of keratinocytes (Toyoda et al. 2001).
Both HGF and c-Met are upregulated during wound healing
and promote g ranu la t i on t i s sue fo rma t ion and
neoangiogenesis (Toyoda et al. 2001; Wang et al. 2009;
Yoshida et al. 2003). Furthermore, c-Met plays an important
role in re-epithelialization through the activation of
PI3K/AKT, ERK1/2, Gab1 (Grb2-associated-binding protein
1), and PAK1/2 (p21-activated protein kinase) signaling
(Chmielowiec et al. 2007). HGF and its receptor also clearly
induce various changes in the EMT process, depending on the
specific cell type expressing c-Met (Grotegut et al. 2006;
Savagner et al. 1997). To begin with, HGF can regulate master
EMT transcription factor SNAIL1 (which decreases E-
cadherin) and Slug (which decreases desmoplakins) aiding
the breakdown of intercellular adhesions (Grotegut et al.
2006; Savagner et al. 1997). Additionally, the c-Met-PI3K/
AKT pathway influences the cell cycle, proliferation, and qui-
escence (King et al. 2015), and PI3K-activated mTORC2 is
one of the driving factors for the phenotypic transition in
EMT, whereas mTORC1 encourages cell growth and move-
ment (Lamouille et al. 2012; Lamouille and Derynck 2007).
Since one of the roles of AKT is to phosphorylate and inacti-
vate GSK3β, which itself is an inhibitor of SNAIL1 expres-
sion, the inhibition of AKT can cause the downregulation of
SNAIL activity in the cell and impede EMT (Lamouille et al.
2012; Zhou et al. 2004). The resultant decrease in MMP pro-
duction and non-inhibited production of E-cadherin makes
EMT and subsequent movement difficult for the cell to
achieve (Lamouille et al. 2012).

TGFβ signaling in wound healing, EMT, and fibrosis

The TGFβ pathway is well studied not only in wound healing
(Ramirez et al. 2014), but also in all three types of EMT
(Akhurst and Derynck 2001; Camenisch et al. 2002;
Nawshad and Hay 2003). TGFβ progresses via two pathways:
SMAD-dependent and SMAD-independent (Xu et al. 2000).
In SMAD-dependent pathways, the TGFβ cell surface recep-
tors (known as TGFβ receptors type II) are activated by ligand
and phosphorylate the transmembrane kinase (TGFβ receptor
type I), which then forms a SMAD complex; this complex can
enter the nucleus, subsequently activating or inhibiting tran-
scription factors important for either wound healing or EMT
(Derynck and Zhang 2003; Ramirez et al. 2014). In wound
healing, TGFβ1 plays important roles in inflammation, angio-
genesis, re-epithelialization, and connective tissue regenera-
tion (Ramirez et al. 2014). TGFβ and SMAD complexes

induce SNAIL1 expression and are themselves potent
downregulators of E-cadherin, occludin, and other epithelial
phenotypic markers, while promoting mesenchymal markers
such as vimentin and N-cadherin (Vincent et al. 2009).
SMAD3-SMAD4 complexes can also activate TWIST and
ZEB transcription factors, via the MAPK signaling route,
one of the SMAD-independent pathways (Javelaud and
Mauviel 2005). Another major SMAD-independent pathway
is the PI3K/AKT pathway, whose importance in both EMT
and wound healing is discussed above.

EMT in scarring and fibrosis

EMT-derived myofibroblasts, TGFβ, and fibrosis

During physiologic repair, tissue integrity must be restored not
only through re-epithelialization, but also through the forma-
tion of a stress-resistant scar. The cellular orchestrator of this
remodeling process is the contractile myofibroblast, which
secretes large amounts of ECM proteins and aids in the me-
chanical closure of the wound (Gabbiani et al. 1971; Hinz and
Gabbiani 2003). In normal wound healing, many
myofibroblasts undergo apoptosis and disappear once re-
epithelialization is complete (Desmouliere et al. 1995;
Gabbiani 2003). However, pathologically prolonged
myofibroblast activity results in fibrogenesis. Indeed, persis-
tent myofibroblast activation is a shared feature of fibrotic
diseases. As such, the dysregulation of injury-triggered EMT
is believed to contribute to fibrosis of multiple organs.

Although the myofibroblast can be derived from a variety
of sources (Abe et al. 2001; Direkze et al. 2003; Ebihara et al.
2006; Frid et al. 2002; Higashiyama et al. 2011; Wynn and
Ramalingam 2012), a large body of evidence supports that a
proportion of them arise through EMT during organ fibrosis.
Moreover, TGFβ1, a critical regulator of EMT signaling and
physiologic wound healing (as discussed above), is also the
major driver of fibrosis (Border and Noble 1994; Roberts et al.
1986), in part through its role in sustaining myofibroblast
activation (Desmouliere et al. 1993; Gabbiani 2003; Hong
et al. 2007; Ronnov-Jessen and Petersen 1993; Serini and
Gabbiani 1999). This section focuses on evidence implicating
EMT in the fibrogenesis of various tissues; this fibrogenesis
arises as a pathological response to injury.

Renal fibrosis

Progressive chronic kidney disease characterized by intersti-
tial fibrosis can lead to tubular atrophy, loss of kidney func-
tion, and end-stage renal failure (Liu 2011). Numerous studies
have provided evidence that EMT-derived myofibroblasts
originating from tubular epithelia contribute to renal fibrosis.
These studies have involved animal models, human kidney
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biopsies, staining techniques for epithelial and fibroblast cell
lineage markers, lineage tags, and the activation of various
transcriptional signals known to stimulate the EMT program
(Higgins et al. 2007; Humphreys et al. 2010; Inoue et al. 2009;
Iwano et al. 2002; Nishitani et al. 2005; Rastaldi et al. 2002;
Strutz et al. 2002; Zeisberg et al. 2003). Although conflicting
at times, a series of genetic-lineage tracking and fate-mapping
studies have provided support for the existence of EMT-
derived myofibroblasts in renal fibrosis (Humphreys et al.
2010). In one experimental murine model, fibroblasts express-
ing the mesenchymal EMT marker FSP1 have been shown to
be derived from both the bone marrow and local EMT during
renal fibrogenesis (Iwano et al. 2002). In vivo evidence for
EMT in renal fibrosis has also been reported in human biopsy
studies (Inoue et al. 2009; Nishitani et al. 2005; Rastaldi et al.
2002). In a patient with fibrosis-inducing obstructive nephrop-
athy, obstructed tubular epithelial cells expressed FSP1
(Okada et al. 1997), and some adopted an EMT-like fibroblast
morphology (Inoue et al. 2009; Nishitani et al. 2005). FSP1
has also been shown to be a prognostic marker in renal fibrosis
in humans (Nishitani et al. 2005). Another study of 133 biop-
sies from various renal fibrosis conditions has demonstrated
that tubular epithelia cells produce a variety of ECM proteins
characteristic of a mesenchymal phenotype, the levels of
which correlate clinically with elevated serum creatinine
levels and indices of renal dysfunction and the histologic ex-
tent of interstitial fibrotic damage (Rastaldi et al. 2002).

TGFβ1 is the main inducer of EMT in renal tubular epi-
thelial cells (Fan et al. 1999; Strutz et al. 2002). The expres-
sion of FSP1 in transitioning tubular epithelium is induced by
TGFβ (Okada et al. 2000), and tubular basement membrane
disintegration leads to TGFβ1 upregulation by mouse proxi-
mal tubular epithelial cells contributing to EMT during renal
fibrosis (Zeisberg et al. 2001). Interestingly, TGFβ1-induced
EMT in tubular epithelial cells can be reversed by BMP7 by
inducing E-cadherin in a SMAD-dependent manner in vitro,
and the systemic administration of recombinant human BMP-
7 leads to the repair of damaged renal tubular epithelial cells in
a murine model of fibrotic chronic renal injury (Zeisberg et al.
2003), indicating that the TGFβ-EMT axis represents a ther-
apeutic target for injury-induced fibrosis.

Pulmonary fibrosis

Lung epithelial cells responding to repeated injury experience
persistent inflammation and sustained EMT, leading to fibro-
sis (Chapman 2011; Crosby and Waters 2010). Although the
origin of myofibroblasts in lung fibrosis is not certain, some
studies have reported the occurrence of EMT in lung fibrosis,
partly mediated through TGFβ signaling (Chen et al. 2015;
Kim et al. 2006; Mubarak et al. 2012; Willis et al. 2005; Zhou
et al. 2009; Zolak et al. 2013). Alveolar epithelial cells (AECs)
undergo EMTand contribute to pulmonary fibrosis pathology

induced by TGFβ (Kim et al. 2006; Willis et al. 2005; Zhou
et al. 2009). Moreover, in a TGFβ1 murine model of pulmo-
nary fibrosis, the beta-galactosidase (β-gal)-expressing epi-
thelial cells also expressed mesenchymal markers within in-
jured lungs, indicating epithelial cells as the progenitors for
the fibroblasts. Primary AECs cultured on provisional matrix
components, fibronectin, or fibrin undergo EMT via the
integrin-dependent activation of endogenous latent TGFβ1
indicating that the ECM acts as a regulator in the EMT process
during fibrogenesis (Kim et al. 2006). Exposure of TGFβ to
rat primary AECs increased the expression of mesenchymal
cell markers and a fibroblastic-phenotype, an effect accelerat-
ed by TNFα. In vivo, AECs co-expressed epithelial markers
and α-smooth muscle actin in lung tissue samples from pa-
tients with idiopathic pulmonary fibrosis (IPF; Willis et al.
2005). Studies have also demonstrated that pleural mesothelial
cells (PMCs) are capable of transitioning into myofibroblasts,
a process thought to be driven by TGFβ (Chen et al. 2015;
Zolak et al. 2013). PMCs are seen in lung tissue of IPF pa-
tients, and labeled PMCs injected into mice travel to IPF lungs
and display myofibroblast phenotypic markers in response to
TGFβ; the numbers of PMCs correlate with the degree of
fibrosis and IPF disease severity (Mubarak et al. 2012).
Increased production of type I collagen and mesenchymal
phenotypic markers and decreased epithelial phenotypic
markers are features of PMCs in the bleomycin animal model
of injury-triggered pulmonary fibrosis, which is phenotypical-
ly similar to human IPF. Moreover, in this model, PMC mi-
gration is mediated both in vivo and in vitro by TGFβ1-
SMAD2/3 signaling (Chen et al. 2015).

Cardiac fibrosis

Following cardiac injury, EMTappears to play a role in regen-
eration or fibrosis to produce mesenchymal cells with both
stem cell and myofibroblast characteristics (Limana et al.
2007). Adult epicardium-derived cells have been shown to
reactivate post myocardial injury, undergo EMT, and migrate
into the injured myocardium where they produce various cell
types in vivo, including cardiac interstitial fibroblasts and cor-
onary smooth muscle cells that aid the cardiac repair process
(Limana et al. 2007; Mikawa and Fischman 1992; Mikawa
and Gourdie 1996; Poelmann et al. 1993; Smart et al. 2013;
Winter et al. 2007). Evidence also supports the positive regu-
lation of epicardial cell transformation and smooth muscle
differentiation by TGFβ, as human adult epicardial cells with
an epithelial-like phenotype expressing the cell surface marker
vascular cell adhesion marker (VCAM-1) spontaneously un-
dergo EMT and adopt a smooth-muscle-like phenotype
in vitro when activated by TGFβ1 receptor signaling and
inhibited by VCAM-1 (Moore et al. 1999). Furthermore, in
epicardium explant studies, both TGFβ1 and TGFβ2 induce
the loss of epithelial cell markers cytokeratin and membrane-
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associated Zonula Occludens-1 from epicardial cells and trig-
ger the gain of smooth muscle markers calponin and
caldesmon; this is dependent upon ALK5 kinase activity, cul-
minating in the induction of epicardial cell EMT and invasion
(Compton et al. 2006).

Hepatic fibrosis

Chronic liver disease gives rise to hepatic fibrosis, but the
origin of the activated myofibroblasts is still under debate,
and various epithelial cells undergoing EMT may serve as
the sources. Hepatic stellate cells (HSCs) are one of the cellu-
lar candidates for activated myofibroblasts (Friedman et al.
1985), adopting a spindle-shaped phenotype and expressing
α-smooth muscle actin and type I collagen (Gressner and
Weiskirchen 2006; Lee et al. 1995). Lineage tracing experi-
ments in mice have demonstrated that HSCs contribute to 82-
96 % of myofibroblasts mediating fibrogenesis (Mederacke
et al. 2013). Epithelial hepatocytes and cholangiocytes are
also likely candidates for contributing to the myofibroblast
population in liver fibrosis. Interestingly, mouse
cholangiocytes, co-cultured with myofibroblastic HSCs un-
dergo EMT in vitro, exhibiting increased cell migration, re-
duced epithelial markers, and induced mesenchymal markers
(Omenetti et al. 2008).

As in the kidney and lung, TGFβ might be involved in the
induction of the EMT phenotype in liver fibrosis. In one study,
EMTwas induced in hepatocytes in vitro via the activation of
the TGFβ1/SMAD pathway (Kaimori et al. 2007). Additional
lineage-tracing experiments on transgenic mice demonstrated
that TGFβ1 induced hepatocytes to undergo EMT and con-
tributed to the population of FSP1-positive fibroblasts in the
CCl4-induced model of liver fibrosis, an effect that could be
blocked by BMP-7 administration. Moreover, human cultured
intrahepatic epithelial cells treated with TGFβ were shown to
undergo EMT-like changes, adopting an invasive fibroblast-
type phenotype with the loss of cytokeratin-7 and the gain of
SMAD2/3, S100A4, and α-smooth muscle actin expression.
In the same study, TGFβ mRNA and nuclear phospho-
SMAD2/3 were highly expressed in damaged ducts of chronic
diseased liver tissue that also expressed S100A4, vimentin,
and MMP-2. Finally, the co-expression of epithelial and mes-
enchymal markers in bil iary epithelial cel ls and
cholangiocytes of chronic liver disease patients also supports
an in vivo role for TGFβ-induced EMT in human hepatic
fibrosis (Diaz et al. 2008; Rygiel et al. 2008).

Scleroderma and skin fibrosis

Scleroderma (Sc) is a systemic disorder characterized by au-
toimmunity, chronic inflammation, vasculopathy, and exten-
sive skin and organ fibrosis of unknown etiology (Gazi et al.
2007). In Sc, early vascular injury precedes fibrosis, and as

with renal fibrosis, the persistently activated myofibroblasts
drive TGFβ-induced gene expression and increase pro-
fibrotic cytokine and protease production (Postlethwaite
et al. 2004). Although the origin of the myofibroblasts in Sc
fibrotic skin is unknown, studies have once again indicated
that the EMT process is one possible source (Postlethwaite
et al. 2004). Indeed, the increased nuclear translocation of
myocardin-related transcription factor-A (MRTF-A), a key
mechano-responsive transcription factor that signals EMT,
has been observed in Sc epidermis (O’Connor and Gomez
2013; Shiwen et al. 2015).

Increased levels of TGFβ1 and TGFβ receptors and en-
hanced TGFβ signaling has been reported in Sc (Dong et al.
2002; Leask et al. 2002) thus supporting a role for this cyto-
kine in myofibroblast activation and in the pathogenesis in the
fibrosis observed in Sc (Xu et al. 2009). In one murine model,
active TGFβ signaling was enhanced, leading to skin fibrosis
that resembled the biochemical, clinical, and histologic fea-
tures of human Sc (Sonnylal et al. 2007). In Sc epidermis,
keratinocytes have been shown to adopt an activated pheno-
type associated with active SMAD/TGFβ signaling and to
display increased expression of pro-fibrotic factors, namely
connective tissue growth factor (CTGF) and SNAIL1
(Nikitorowicz-Buniak et al. 2015). Sc keratinocytes stimulate
fibroblasts to increase ECM contractility and growth factor
expression, the effects of which are dependent on elevated
levels of IL-1α expression by epidermal cells and the induc-
tion of endothelin-1 and TGFβ in fibroblasts (Aden et al.
2010). In vitro, Sc fibroblasts display enhanced collagen de-
position and ECM contraction and remodeling (Jimenez et al.
1986).

Less is known regarding the contribution of EMT process-
es to fibrotic skin conditions other than scleroderma. High
expression of the mesenchymal marker FSP1 has been found
in the epidermis and dermis of human hypertrophic scars; this
is accompanied by increased levels of inflammatory cyto-
kines, fibrotic markers, and EMT-related Slug and TWIST.
Thus, a link has been demonstrated between unresolved in-
flammation and the development EMT characteristics during
fibrogenesis in hypertrophic scar tissue in vivo (Yan et al.
2010).

Concluding remarks and future directions

Injury triggers the inflammatory wound healing cascade, and
pathologically sustained inflammation is tightly associated
with fibrogenesis. This review has summarized evidence that
EMT plays a role in physiologic tissue repair, and that
sustained EMT is a key mechanism underlying the fibrotic
pathology of multiple organs. Given the fundamental parallels
between the regulation and signaling of EMT and the critical
wound-healing processes, we consider it quite conceivable
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that early and prolonged activation of EMT in the context of
the response to injury promotes inflammation and
fibrogenesis that culminates in non-healing wounds of many
epithelial tissues (Fig. 2). In investigating this hypothesis fur-
ther, we need to keep in mind that EMT is a dynamic and
reversible process, and that cells cannot always be classified
as purely epithelial or mesenchymal, especially in vivo, as
they may carry features of each. Loss-of-epithelial and gain-
of-mesenchymal features can also occur simultaneously.
Nevertheless, an assessment of the presence of the classic
EMT biomarkers in non-healing tissues and organs in vivo
will be critical to define the role of EMT in initiating and
sustaining a poor healing response and may represent a way
forward to the potential targeting of EMTas a novel and glob-
al therapeutic approach for difficult-to-treat wounds.
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