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Abstract Mitochondrial dysfunction is a common feature of
many neurodegenerative diseases, including proteinopathies
such as Alzheimer’s or Parkinson’s disease, which are charac-
terized by the deposition of aggregated proteins in the form of
insoluble fibrils or plaques. The distinct molecular processes
that eventually result in mitochondrial dysfunction during
neurodegeneration are well studied but still not fully under-
stood. However, defects in mitochondrial fission and fusion,
mitophagy, oxidative phosphorylation and mitochondrial bio-
energetics have been linked to cellular demise. These process-
es are influenced by the lipid environment within mitochon-
drial membranes as, besides membrane structure and curva-
ture, recruitment and activity of different proteins also largely
depend on the respective lipid composition. Hence, the inter-
action of neurotoxic proteins with certain lipids and the mod-
ification of lipid composition in different cell compartments,
in particular mitochondria, decisively impact cell death asso-
ciated with neurodegeneration. Here, we discuss the relevance
of mitochondrial lipids in the pathological alterations that re-
sult in neuronal demise, focussing on proteinopathies.
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Introduction

Neurodegenerative diseases are a large and diverse group of
disorders, characterized by the progressive loss of neuronal
function or structure in specific parts of the brain, eventually
leading to cell death. Among these pathologies are
proteinopathies, a subclass that includes amyotrophic lateral
sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and
Huntington’s disease (HD). Their common hallmark is the
misfolding and aggregation of distinct proteins, resulting in
the formation and deposition of insoluble fibrils, tangles and
plaques. Thereby, ALS is characterized by aggregates of
RNA-binding proteins such as TAR DNA binding protein
43 (TDP-43), while PD is associated with x-synuclein-
containing aggregates and fibrils, AD with 3-amyloid (Af3)
plaques and HD with aggregation-prone huntingtin (Htt) with
extended polyglutamine stretches (Jellinger 2009).
Interestingly, the accumulation of these neurotoxic proteins
is mostly accompanied by critical impairment of mitochondri-
al integrity, mutations in the mitochondrial DNA (mtDNA),
compromised oxidative phosphorylation, ATP depletion, in-
creased oxidative stress and subsequent cell death. In fact,
effects on distinct respiratory chain complexes, mitochondrial
transmembrane potential, biogenesis and dynamics have been
attributed to most of the neurotoxic proteins (Ryan et al. 2015;
Guedes-Dias et al. 2015; Burté et al. 2015), and the crucial
role of mitochondria in neurodegenerative demise has been
described in diverse model systems (Biittner et al. 2013;
Biittner et al. 2008; Debattisti and Scorrano 2013;
Humphrey et al. 2012; Maglioni and Ventura 2016; Wager
and Russell 2013; Lane et al. 2015). The selective degradation
of damaged or superfluous mitochondria via mitophagy is also
impaired in several proteinopathies, and mutations in the sig-
nalling pathways that govern this mitochondrial quality con-
trol system have been linked to familial PD (Lionaki et al.
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2015). Remarkably, several of the detrimental changes in mi-
tochondrial function, maintenance, dynamics and degradation
related to age-associated neurodegeneration are influenced by
mitochondrial lipid composition and general lipid metabo-
lism. Mitochondria-derived reactive oxygen species (ROS)
are a common feature of these pathologies and can cause lipid
peroxidation and alterations in the organelle-specific lipid
content. Besides their role in energy storage, lipids mediate
other vital functions like cellular compartmentalization and
signalling. For instance, lipid rafts, sensitively tuned microdo-
mains within biological membranes, are essential for the ar-
rangement of signalling molecules, the interaction of distinct
proteins, and contact sites between different organelles
(Simons and Gerl 2010). Among such crucial contact sites
are the mitochondria-associated membranes (MAMSs), which
mediate numerous cellular events, such as the import of lipids
into mitochondria, regulation of Cat homeostasis, mitochon-
drial function, autophagy and apoptosis (Rowland and Voeltz
2012; van Vliet et al. 2014). Importantly, such events are
directly linked to neurodegeneration (Vance 2014).

Here, we discuss the role of mitochondria in selected
proteinopathies, focussing on the connection between mito-
chondrial lipid metabolism and mitochondrial dysfunction
during neurodegenerative decay.

Lipids and their physiological role in mitochondria
Classification and organellar distribution of lipids

To date, more than 1000 different lipid species have been
identified in eukaryotes, with functions ranging from energy
storage and membrane structure to cellular signalling and or-
ganelle cross-talk (Van Meer et al. 2008). Lipids are hydro-
phobic or amphipathic small molecules built up entirely or in
part by condensation of thioesters and/or isoprene units. Based
on their structural and biosynthetic properties, they are cate-
gorized into eight groups, listed in Table 1 (Fahy et al. 2005).

The major lipid species in eukaryotic membranes are
glycerophospholipids (GP), namely phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine
(PS), phosphatidylinositol (PI) and phosphatidic acid (PA).
PC is the most abundant membrane lipid and shows sponta-
neous self-organization. Furthermore, the desaturation state of
its fatty acid (FA) chains contributes to the regulation of mem-
brane fluidity (Tuller et al. 1999; Zinser et al. 1991).

The overall lipid composition of a cell is tightly con-
nected to its physiological functions and adapts to envi-
ronmental changes. Similarly, the specific lipid setup
within distinct organelles determines their structural and
functional properties and can vary depending on external
or internal influences, such as the availability of a specific
carbon source. Lactate, for example, drives respiration
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and results in a particular pattern of organellar phospho-
lipid distribution in yeast (Table 2). Indeed, fluctuations in
cellular and organellar lipid content have been mainly
studied in budding yeast (Tuller et al. 1999; Zinser et al.
1991). However, there is a general trend in organelle-
specific lipid content despite physiological variations be-
tween species. In particular for mitochondria, the distinct
lipid composition differs only very slightly between yeast
and mammalian cells (Van Meer et al. 2008).

Mitochondrial lipids

The inner mitochondrial membrane (IMM) is enriched in
proteins and contains only about 20 % of lipids, thus
differing greatly from the lipid-rich outer mitochondrial
membrane (OMM) (see Table 2). Several mitochondrial
enzymes are involved in lipid biosynthesis pathways,
e.g. the IMM-localized enzyme cardiolipin synthase,
catalysing the conversion of phosphatidylglycerol (PG)
to cardiolipin (CL) (Gallet et al. 1997). CL, which is pre-
dominantly localized in the IMM but can also be found in
the OMM, hints at the bacterial origin of mitochondria
and seems to be required for efficient oxidative phosphor-
ylation (Van Meer et al. 2008). It is thought to assist in
cytochrome ¢ oxidase function, binding of matrix Ca®,
maintenance of mitochondrial membrane permeability and
in protein import (Gohil et al. 2004). Furthermore, it is
required for mitochondrial fission/fusion processes (Joshi
et al. 2012) and seems to play a role in lipid peroxidation
and cellular ageing (Paradies and Ruggiero 1990;
Petrosillo et al. 2001). CL interacts with various mito-
chondrial proteins, thereby stabilizing their conformation,
a function that is shared by PE (Joshi et al. 2012). In fact,
yeast cells lacking the mitochondrial phosphatidylserine
decarboxylase Psd1, which converts PS into PE, are defi-
cient in mitochondrial fusion, leading to fragmented mi-
tochondria. The simultaneous absence of CL and PE even
aggravates this phenotype (Chan and McQuibban 2012),
illustrating the importance of certain phospholipid species
in mitochondrial dynamics (as described in detail below).
A further lipid determining mitochondrial function is the
sphingolipid ceramide. Though sphingolipids are mainly
synthesized in the endoplasmic reticulum (ER), a pathway
for mitochondrial ceramide production has been described
in yeast and mammalian cells (Kitagaki et al. 2007;
Novgorodov et al. 2011). Within mitochondria, the cer-
amide content is three-fold higher in the OMM than in
the IMM, which might reflect the involvement of cer-
amide in the formation of protein-permeable channels that
assist in releasing pro-apoptotic proteins from mitochon-
dria (Siskind and Colombini 2000). As such, ceramide is
an important determinant of the mitochondrial cell death
pathway.
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Table 1

Structural characteristics and main functions of lipid classes. Based on Fahy et al. 2005

Lipid class

Characteristic structural features

Function
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Composed of mono-, di-, and tri-
substituted glycerols;

Important membrane components, also
act as signalling molecules

Phosphate or phosphonate group
esterified to a hydroxyl group of
glycerol;

Key components of the cellular lipid
bilayer

Nitrogenous base as core structure;
Compounds of membranes and
signalling in diverse cellular functions

Core structure with seventeen carbon
atoms, fused to four rings;

Function as signalling molecules and
important components of membranes

Synthesized from 5-carbon precursors
by mevalonic acid pathway;

Assist in transport of sugars across
membranes, some function as vitamins

Fatty acids linked to sugar backbone;
Including precursors of
lipopolysaccharide from Gram-negative
bacteria

Synthesized from acetyl-CoA, malonyl-
CoA, propionyl-CoA and butyryl-CoA
subunits;

Secondary metabolites, often potent
toxins (e.g. aflatoxin B1)

Phospholipids and mitochondrial dynamics
in neurodegeneration

Mitochondria exist as a dynamic network, governed by a
tightly regulated balance between fission and fusion events
that dictate mitochondrial morphology. This plasticity is crit-
ical for proper mitochondrial function, including the inheri-
tance of organelles during cytokinesis, cellular metabolism
and cell death (Roy et al. 2015; Elgass et al. 2013). Hence,

disturbances in mitochondrial dynamics are linked to several
pathophysiological conditions, among them neurodegenera-
tion (Itoh et al. 2013). Importantly, several lipid species, in-
cluding CL, PE, PA and diacylglycerol (DAG), control mito-
chondrial shape and function via alterations of membrane
structure and curvature, recruitment of proteins and regulation
of protein interactions (Frohman 2015). Within the last de-
cades, the yeast Saccharomyces cerevisiae has become the
major model organism for studying the molecular machinery
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Table2  Total phospholipid content of selected organelles in yeast cells
grown on lactate

Relative phospholipid content of cellular compartments [%]

PM® Mitochondria® OMM? IMM® Microsomes® Vacuole®

PC 21 40 46 38 53 41
PE 18 27 33 24 10 17
PI 13 15 10 16 24 29
PS 23 3 1 8 4
PA 8 2 4 2 3 1
CL 5 13 6 16 1 7
others 12 0 0 0 1 1

PC phosphatidylcholine, PE phosphatidylethanolamine, P/
phosphatidylinositole, PS phosphatidylserine, PA phosphatidic acid, CL
cardiolipin, PM plasma membrane, OMM outer mitochondrial mem-
brane, /MM inner mitochondrial membrane

* Adapted from Tuller et al. 1999
® Adapted from Zinser et al. 1991

regulating mitochondrial dynamics (Okamoto and Shaw
2005).

The mitochondrial fission and fusion machinery
at a glimpse

Mitochondrial fission and fusion are controlled by highly con-
served dynamin-related GTPases, as well as by additional
adaptor and receptor proteins and the lipid composition of
the respective membranes. Mitochondrial fission is regulated
by the dynamin-related GTPase Drp1 (yeast Dnm1). This pro-
tein is predominantly localized in the cytosol, but is recruited
to mitochondria during fission events by regulatory proteins
(including Fisl and Mff), as well as via post-translational
modifications (Loson et al. 2013). Prior to Drp1 recruitment,
ER tubules form rings around mitochondria at upcoming fis-
sion sites, thus determining the position of division (Friedman
et al. 2011). The further constriction and cleavage of mito-
chondria involves INF2, an actin polymerizing protein, and
myosin II (Mears et al. 2011; Korobova et al. 2013, 2014).
During this process, DAG regulates the actin filament poly-
merization at the ER site, and collaborates with myosin II and
INF2 to permit the ER to squeeze the fission site to a diameter
that allows Drpl to proceed (Abramovici et al. 2009).

The fusion of mitochondria occurs in several steps, includ-
ing organelle tethering, fusion of the OMM and fusion of the
IMM (Detmer and Chan 2007). These steps are controlled by
conserved dynamin-related GTPases termed mitofusins, in-
cluding human Mfn1/2 (yeast Fzol) in the OMM and Opal
(yeast Mgm1) in the IMM. In yeast, these GTPases are linked
in a functional complex by the OMM protein Ugo1, which is
required for efficient fusion (Ishihara et al. 2004; Chan 2006;
Hoppins et al. 2009). Quite recently, a human Ugol-like
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protein has been identified. While this protein, encoded by
the SLC25A46 gene, resembles yeast Ugol with respect to
protein sequence, localization and some interaction partners, it
seems to have converse functions in the regulation of mito-
chondrial dynamics. Overexpression of SLC25A46 causes
mitochondrial fragmentation, and its depletion leads to an
elongated mitochondrial network, suggesting a pro-fission
role of this protein (Abrams et al. 2015). The IMM protein
Opal selectively binds to negatively charged phospholipids,
and is essential for both IMM and OMM fusion, probably
governing the lipid-mixing event during fusion (Hoppins
et al. 2009). The lack of either PE or CL severely impairs
mitochondrial fusion in yeast cells, and cellular Mgm1 levels
decrease upon lack of both CL and PE, resulting in highly
fragmented mitochondria (Joshi et al. 2012). In addition, the
presence of CL seems to be crucial for Mgm1 GTPase activity
(Frohman 2015). CL within mitochondrial membranes is also
important for the recruitment of the fission master regulator
Drpl to mitochondria and for its GTPase activity. However,
loss of CL still provokes mitochondrial fragmentation, indi-
cating that this lipid, although involved in the fission path-
way as well, mainly functions as a pro-fusion factor
(Frohman 2015). As another phospholipid involved in mito-
chondrial dynamics, PA seems to be directly involved in the
function of Ugol. Although PA is not necessary to target this
protein to mitochondria, subsequent steps like membrane in-
sertion and dimerization require PA (Vogtle et al. 2015).
Finally, mitochondrial insertion of non-bilayer-forming lipids,
like PE, CL and PA, causes a negative membrane curvature,
leading to a lower activation energy for both fission and fusion
processes (Vicogne et al. 2006; Vitale et al. 2001).

In aggregate, the lipid environment largely influences the
mitochondrial fission/fusion equilibrium, regulating the
targeting and/or the activity of the involved proteins as well
as the mitochondrial structure and membrane curvature.
The protein machinery involved in mitochondrial dynam-
ics, as well as pathological alterations in neurodegenera-
tive diseases discussed in the following section, are illus-
trated in Fig. 1.

Thrown out of balance: mitochondrial dynamics
in neurodegeneration

The principal histological hallmarks of PD are proteinaceous
deposits, called Lewy bodies, which mainly consist of «-sy-
nuclein, a small protein of 140 amino acids (aa), which can
interact with phospholipids via its N-terminal domain (Perrin
et al. 2000). This allows «-synuclein to form large homo-
oligomeric complexes in its membrane-bound state, which
are of both physiological and pathological importance.
Oligomeric a-synuclein, rather than monomeric or fibrillar
forms, shows membrane permeabilization activity that is ex-
acerbated in PD-associated mutants (Volles et al. 2001; Volles
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Fig. 1 Mitochondrial dynamics in health and neurodegenerative
diseases. Under physiological conditions (indicated with green arrows),
mitochondrial fusion (a) and fission (b) are balanced processes to adapt to
the needs of a cell. In the wake of mitochondrial damage, mitophagy (c)
acts as one of the protective mechanisms by degrading these organelles,
thereby preventing oxidative stress and other deleterious consequences.
However, in the pathogenesis of many neurodegenerative diseases (red

and Lansbury 2002). Interestingly, binding of «-synuclein to
the mitochondrial membrane triggers mitochondrial fragmen-
tation in a Drpl-independent way. The use of artificial mem-
branes with and without CL indicates that interactions be-
tween «-synuclein and this phospholipid are essential for
binding (Nakamura et al. 2011). Furthermore, the nature of
CL acyl side chains also influences this process (Zigoneanu
et al. 2012). Notably, a-synuclein itself seems to alter mito-
chondrial lipid concentration, since mice lacking this protein
display a severe reduction of CL and of its precursor PG (Ellis
etal. 2005; Barcel6-Coblijn et al. 2007), while the residual CL
shows a significant increase in saturated FAs bound to its
glycerol backbone (Ellis et al. 2005). This tight connection
between x-synuclein and CL possibly determines the forma-
tion and function of mitochondrial membrane microdomains.
While CL is mainly found in the IMM, its concentration in the
OMM can reach 25 % of total lipid content within lipid rafts
that form specific contact sites between the OMM and IMM.
As fusion and fission events specifically occur at these contact
sites (Ardail et al. 1990), binding of «-synuclein to CL might

b

FISSION

arrows), the equilibrium of fission and fusion is shifted towards fission.
This involves alterations of regulatory proteins and changes in the lipid
composition of mitochondria. In such cases, cellular protection via
mitophagy is severely impaired. Some key players in the molecular
processes of mitophagy, for example, are also Parkinson’s disease-
related proteins. For a detailed description of the pictured mechanisms,
see main text

have a strong impact on mitochondrial dynamics. Another
phospholipid with a decisive impact on mitochondrial remod-
elling is PE, a significant component of the OMM and IMM
(Sperka-Gottlieb et al. 1988; Tasseva et al. 2013).
Mitochondria without PE show an incomplete mixing of
joined mitochondrial membranes upon fusion, which might
be due to impaired lipid transfer (Chan and McQuibban
2012). Recently, phosphatidylserine decarboxylase Psd1
(mammalian Pisd), which is embedded in the IMM and syn-
thesizes PE, has been linked to «-synuclein toxicity in yeast
and worm models of PD. Knockout of the enzyme results in
the formation of «-synuclein foci, decreased respiration, ER
stress and defects in trafficking. Addition of ethanolamine,
which can be converted to PE via the Kennedy pathway, has
no influence on respiration, but partially reduces ER stress and
decreases o-synuclein foci (Wang et al. 2014).

A common feature in AD is the accumulation of small
hydrophobic A peptides, which are the cleavage product of
the amyloid precursor protein (APP). APP is sequentially
processed by (3-secretase and y-secretase, producing Af3-
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variants that are 39-43 aa in length. While the most prevalent
forms are 40 and 42 aa long, mutations in the genes coding for
[3-secretase and y-secretase can shift the production towards
the 42 aa version (Scheuner et al. 1996). As in PD, AD pa-
thology is accompanied by alterations of the mitochondrial
fission/fusion equilibrium. The levels of Drpl and Fisl are
increased, whereas activity of Mfnl, Mfn2 and Opal are de-
creased (Calkins et al. 2011). In post-mortem AD brain tissue,
Ap co-localizes with Drpl, thereby triggering enhanced en-
zymatic activity (Manczak et al. 2011). Interestingly, a reduc-
tion of total PE has been observed in brain samples of AD
patients (Guan et al. 1999), although it remains to be evaluated
if these changes in lipid content contribute to defective mito-
chondrial dynamics in AD, as is the case for PD.

HD is caused by a CAG trinucleotide repeat extension in
exon 1 of the HTT gene, resulting in aggregation and a toxic
gain-of-function of the encoded protein Htt (DiFiglia et al.
1997). The wild-type as well as the mutant forms of Htt local-
ize to the OMM, but only mutated variants directly induce
mitochondrial membrane permeabilization (Choo et al.
2004). Mutated Htt further impacts mitochondrial function
by inhibiting mitochondrial respiratory complexes II, III and
IV, as shown in HD patients and transgenic mouse models (Gu
et al. 1996; Browne et al. 1997; Tabrizi et al. 2000). As with
Ap in AD, mutated Htt co-localizes with Drpl and increases
its enzymatic activity in HD patients as well as in neurons
derived from mouse models (Shirendeb et al. 2012; Song
et al. 2011). Thereby, Drpl and Htt seem to be recruited to
mitochondrial raft-like microdomains, which are enriched in
glycosphingolipids. This triggers the activation of Drpl and
subsequent excessive mitochondrial fragmentation (Squitieri
et al. 2011; Costa et al. 2010).

In Charcot-Marie-Tooth disease (CMT), a peripheral neu-
ropathy (Ziichner et al. 2004), mutations in Mfn?2 tilt the bal-
ance between mitochondrial fission and fusion, while mutated
variants of Opal are thought to be the main cause of dominant
optic atrophy (DOA), a degeneration of retinal ganglia cells,
resulting in an atrophy of the optical nerve (Alavi et al. 2007).
Even though both mutations affect mitochondrial dynamics,
they lead to different diseases with varying tissue specificities.
This might be due to differential expression patterns of these
proteins, and/or to functional differences and the grade of
redundancy between Mfnl and Mfn2 (Chen et al. 2005).
Since a small subset of CMT patients also develop DOA, a
recent study aimed to identify common key players and path-
ways underlying these disorders. Whole-exome sequencing of
patients with both diseases established mutations in the
SLC25A46 gene, coding for an Ugol-like protein, as a com-
mon feature of CMT and DOA. In a zebrafish model, deple-
tion of the SLC25A46 orthologue disrupted cellular transport
and distribution of mitochondria, possibly due to defects in
mitochondrial fission, and triggered neuronal degeneration
(Abrams et al. 2015). Altogether, the alteration of
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mitochondrial dynamics seems to be a common target in
which a diverse array of neurodegenerative processes con-
verge to exert cytotoxicity.

Mitochondrial quality control and mitophagy

The mitochondrial respiratory chain represents the main
source of cellular ROS and is decisively linked to neurode-
generation (Lionaki et al. 2015). Thus, mitochondrial quality
control mechanisms and the degradation of damaged mito-
chondria constitute cellular processes essential for the avoid-
ance of ROS-triggered neuronal decay. The selective autoph-
agic breakdown of mitochondria via mitophagy represents the
major pathway to degrade dysfunctional and impaired mito-
chondria (Wang and Klionsky 2011). Thereby, mitochondria
are engulfed and targeted to the lysosome/vacuole for degra-
dation and subsequent recycling by employing the core ma-
chinery of macroautophagy (Reggiori and Klionsky 2013).
The PD-associated E3 ligase parkin and the PTEN-induced
putative kinase 1 (PINK1) are involved in the regulation of
mitophagy. PINK1 is localized at the OMM, and can activate
parkin by phosphorylation (Kondapalli et al. 2012), which in
turn ubiquitinates numerous proteins, including OMM pro-
teins and autophagy receptors (Sarraf et al. 2013). This
ubiquitination is required for the ubiquitin-autophagy adaptor
protein p62 to guide the autophagic machinery to damaged
mitochondria, which are finally removed by mitophagy
(Nixon 2013). The mitochondrial lipid CL has recently been
connected to the induction of mitophagy and might represent
an “eat-me” signal for the recruitment of the autophagic ma-
chinery: the microtubule-associated protein-1 light chain 3
(LC3, mammalian homolog of yeast Atg8) interacts with ex-
ternalized CL on the OMM of damaged mitochondria, leading
to their mitophagic elimination (Chu et al. 2013).

Besides their role in mitophagy, PINK1 and parkin are
responsible for the generation of mitochondrial-derived vesi-
cles (MDVs), which are thought to represent the first line of
defence against oxidative damage in mitochondria
(McLelland et al. 2014). MDVs are structures 70—150 nm in
size, and contain either just OMM or OMM in combination
with IMM and matrix contents. They deliver their cargo to
peroxisomes or directly fuse with late endosomes as well as
with multivesicular bodies for subsequent degradation. MDVs
are enriched in oxidized proteins, which are thought to initiate
membrane curvature from inside due to oxidation-induced
changes of their aggregation or oligomerization properties
(Soubannier et al. 2012). Mutations in parkin inhibit both
MDV formation and mitophagy, which seem to be sequential-
ly involved in the reduction of oxidative damage (Jin and
Youle 2013). The mechanism of MDV formation might in-
volve conversion of CL to PA, resulting in outward bending of
this membrane region (Yurkova et al. 2008). A causative
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regulatory role of mitochondrial lipids in MDV formation
seems feasible, but remains to be analysed.

Lipid peroxidation and mitochondrial dysfunction

The increased generation of ROS within mitochondria, a com-
mon feature of all proteinopathies, leads to lipid peroxidation
(LPO) of mitochondrial FA. This generates reactive aldehydes
like hydroxynonenal-forms (HNE), which can alter mitochon-
drial proteins and mtDNA. While LPO also increases during
regular ageing (Squier 2001), it is considerably exacerbated in
AD, HD, PD and ALS, as seen by enhanced levels of HNE
and its adducts (Lee et al. 2011a; Montine et al. 1997; Yoritaka
et al. 1996; Perluigi et al. 2005). Brain samples from patients
with mild cognitive impairment already show elevated levels
of HNE, hinting at a role of LPO in very early stages of AD
(Butterfield et al. 2006; Reed et al. 2008, 2009). HNE is
known to modify several vital mitochondrial enzymes in
AD. As an example, aconitate hydratase, a mitochondrial fac-
tor involved in the Krebs cycle, represents a susceptible target
of LPO due to its sensitive Fe-S cluster (Perluigi et al. 2009).
In brain samples of AD patients, HNE covalently binds to
ATP5A1, a protein in the F1 subunit of the mitochondrial
ATP synthase, followed by a 30 % reduction in ATP synthase
activity and elevated production of ROS (Terni et al. 2010).
Moreover, the levels and activity of lipoamide dehydrogenase
(LADH) are significantly reduced in brain samples of AD
patients due to oxidative stress, and in vitro HNE-treatment
of mice brain homogenate decreases LADH activity (Hardas
etal. 2013). LADH is required for the reduction and resulting
activation of lipoic acid, a cofactor of several enzymes in-
volved in crucial mitochondrial energy-utilizing pathways
(e.g. pyruvate dehydrogenase and alpha-ketoglutarate dehy-
drogenase), and functions as a scavenger of free radicals in
aqueous and lipid phase (Packer and Cadenas 2010).

LPO is also associated with PD pathology. Parkin-deficient
mice exhibit increased levels of LPO and protein oxidation as
well as a reduction of certain proteins involved in mitochon-
drial function and oxidative stress response, including perox-
ide reductases (Palacino et al. 2004). The aggregation proper-
ties of o-synuclein might also be affected by HNE via cova-
lent binding and resulting conformational changes of the pro-
tein. HNE-induced modifications inhibit fibrillation due to the
formation of tightly packed soluble oligomers, which are
thought to represent the most toxic species of a-synuclein
(Qin et al. 2007).

The mutated variants of Htt directly induce mitochondrial
permeability transition pore opening, followed by the release
of cytochrome ¢ (Choo et al. 2004). These mitochondrial ab-
normalities are accompanied by an increase of HNE, which
co-localizes with mutant Htt inclusions in cell culture and
mouse models of HD. Supplementation with the LPO inhibi-
tor nordihydroguaiaretic acid expectedly decreases markers

for LPO, but also prevents pathological alterations of mito-
chondrial morphology, ATP depletion and cell death. These
data provide a causal link between LPO and mitochondrial
dysfunction in HD (Lee et al. 2011a). In rats, chronic injection
of N-methyl-D-aspartate (NMDA) causes a decreased activity
of mitochondrial complex I and II, as well as increased levels
of LPO markers in brain tissue (Kim et al. 2016), indicating a
role of LPO in excitotoxic neuronal cell death. Similarly,
excitotoxicity and LPO seem to be involved in ALS-
associated cell death (Kruman et al. 1999; Pedersen et al.
1998; Shibata et al. 2001; Ferrante et al. 1997). ALS has been
linked to mutations in the gene coding for the superoxide
dismutase 1 (SOD1), a protein with an anti-oxidative function
localized in the cytosol, the mitochondrial intermembrane
space and the nucleus, where it further promotes resistance
towards oxidative stress by acting as transcription factor
(Tsang et al. 2014). Overexpression of ALS-associated
SOD1 mutants leads to LPO, elevated intracellular Ca®*
levels, decreased mitochondrial Ca** levels and mitochondrial
dysfunction, thereby resulting in increased vulnerability to
excitotoxicity (Kruman et al. 1999). In sum, high levels of
LPO and the resulting reactive aldehydes correlate with and
might even be causative for the impairment of mitochondrial
integrity and function observed in different proteinopathies.

Pathological alterations in cholesterol and ceramide
metabolism

Although the mitochondrial membrane only contains minor
amounts of cholesterol, e.g. compared to the plasma mem-
brane, this lipid has a crucial impact on mitochondrial enzy-
matic activities and membrane permeability. Another class of
lipids involved in mitochondrial function are ceramides, mod-
ulating mitochondrial transmembrane potential, cytochrome ¢
release and mitochondrial dynamics (Stoica et al. 2003; Kong
et al. 2005; Spincemaille et al. 2014). Several studies have
linked alterations of cholesterol and ceramide metabolism to
AD. Thereby, enhanced production of A seems to play a
significant role. For instance, the inhibition of acyl-
coenzyme A cholesterol acyltransferase (ACAT), which catal-
yses the formation of cholesteryl esters from cholesterol and
long-chain FAs, results in a reduced cleavage of APP and
decreased levels of A (Puglielli et al. 2001). Depletion of
membrane cholesterol, which inhibits y-secretase activity,
might underlie the reduced cleavage of APP to AB (Wahrle
et al. 2002). On the other hand, increased cellular ceramide
levels have been reported for AD. A recent study in yeast and
neuronal cell culture demonstrates that treatment with platelet-
activating factor, which is neurotoxic and elevated in AD,
promotes mitochondrial dysfunction and ROS accumulation,
accompanied by an increase of ceramide levels (Kennedy
et al. 2016). Enhanced ceramide levels may lead to
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stabilization of (3-secretase and promotion of amyloidogenic
cleavage of APP to A3 (Puglielli et al. 2003). Since Af3 acti-
vates neuronal sphingomyelinase, resulting in an increase of
ceramides (Lee et al. 2004), a positive feedback loop might
exist, coupling A and ceramides in a vicious circle.
Interestingly, brain tissue of AD patients and A 3-treated neu-
rons display exacerbated oxidative stress, and a simultaneous
rise of cholesterol and ceramide levels. Since increased cer-
amide and membrane cholesterol levels are already observed
in patients with mild symptoms, those alterations might occur
early during AD pathogenesis (Cutler et al. 2004). In fact, a 3-
fold elevation of ceramides in post-mortem brains of AD pa-
tients at very mild stages of dementia has been reported (Han
et al. 2002). Furthermore, microarray analysis of AD brain
tissue has demonstrated an up-regulation of genes involved
in ceramide production, with a parallel down-regulation of
genes for glycosphingolipid production in the phase of mild
symptoms (Katsel et al. 2007). Altogether, an elevation of
both cholesterol and ceramides seems to amplify the same
pathway, resulting in the production of A[3. Notably, a simul-
taneous elevation of ceramide and cholesterol content is also
observed in ALS patients and in an ALS mouse model based
on mutated SOD1. This lipid accumulation is prevented by a
treatment with the serine palmitoyltransferase inhibitor
myriocin (Cutler et al. 2002).

The targeting of A to mitochondria is thought to be cru-
cially involved in A toxicity, and enrichment of cholesterol in
mitochondrial membranes seems to be associated with AD
pathology. Mitochondria from a mouse model for cholesterol
overload exhibit increased susceptibility to AB-induced oxi-
dative stress and cytochrome c release. Vice versa, mitochon-
drial cholesterol loading is increased in an AD mouse model
(Fernandez et al. 2009). A recent study suggests that this mi-
tochondrial accumulation of cholesterol is triggered by Af3-
induced ER stress, which increases cholesterol synthesis with-
in the ER and its trafficking to mitochondria. The increase in
mitochondrial cholesterol influx is accompanied by up-
regulation of the steroidogenic acute regulatory (StAR) pro-
tein (Barbero-Camps et al. 2014). This protein is involved in
the transport of cholesterol from ER to mitochondria via in-
teraction with the two mitochondria-associated membrane
proteins sigmal receptor and voltage-dependent anion-selec-
tive channel (VDAC) protein (Marriott et al. 2012).
Consistently, another study reports a two-fold increase in
exofacial leaflet-localized cholesterol in apolipoprotein E4
knock-in mice, compared to apolipoprotein E3 knock-in mice
(Hayashi et al. 2002), suggesting that the enhanced risk for
development of AD due to the apolipoprotein E4 allele is
caused by elevated levels of cholesterol, which results in an
exacerbated AB production, as mentioned above.

In HD, altered ceramide levels are also connected to imbal-
anced mitochondrial function. For instance, lymphoid cells
from HD patients display large mitochondrial aggregates,
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hyperpolarization of the mitochondrial membrane and chang-
es in the fission/fusion machinery, all of which can be reverted
with fumonisin B1, a ceramide synthase inhibitor and lipid
raft disruptor (Ciarlo et al. 2012). This is in line with the
ceramide-mediated activation of Drpl, promoting mitochon-
drial fission (Parra et al. 2008). Alterations in brain cholesterol
metabolism are also related to HD pathology. Mostly, general
cholesterol content is found to be decreased in HD (Leoni and
Caccia 2015). Membrane cholesterol loading determines
binding and aggregation of Htt. Thereby, aggregation as well
as insertion of Htt into membranes decreases with increasing
cholesterol content (Gao et al. 2015). A direct connection of
Htt toxicity and mitochondrial cholesterol content remains to
be established, but, interestingly, treatment with olesoxime, a
cholesterol-like compound, prevents Htt-induced increase of
mitochondrial membrane fluidity (Eckmann et al. 2014).
Similar neuroprotective effects of this drug have been reported
for ALS, and clinical trials have been successfully completed,
providing a potential new strategy for an effective therapy
(Martin 2010).

Finally, ceramide signalling is also associated with defec-
tive mitochondria in the pathogenesis of PD.
Immunohistochemical assays with post-mortem samples of
PD patients hint at an activation of C2-ceramide-induced
apoptogenic signalling pathways (France-Lanord et al.
1997). Consistently, high levels of certain ceramide species
(lactosylceramide and monohexosylceramide) have been de-
tected in PD patients (Mielke et al. 2013). On the other hand,
mutations in the gene coding for glucocerebrosidase, respon-
sible for producing ceramide and glucose, are common genet-
ic risk factors for PD. During early stages of PD, both the
levels and activity of glucocerebrosidase seem to be de-
creased, particularly in areas of high «-synuclein prevalence.
Loss of this enzyme results in a drop of ceramide levels, re-
duced autophagy and high levels of a-synuclein (Murphy
et al. 2014). Further evidence for an involvement of ceramide
metabolism in PD comes from yeast models, in which inhibi-
tion of ceramide synthesis exacerbates x-synuclein cytotoxic-
ity (Lee et al. 2011b).

Mitochondria-associated membranes: a lipid point
of view

Lipid rafts as common targets in neurodegeneration

Oxidation of lipids or changes in their localization within spe-
cific subcellular compartments largely influence the formation
of lipid rafts, microdomains with a specialized protein setup,
and cause serious defects in cellular signalling. Comparison of
the lipid raft-associated proteome from AD mouse models
with that of age-matched control mice showed less than
20 % overlap (Chadwick et al. 2010), indicating profound



Cell Tissue Res (2017) 367:125-140

133

and complex changes in the composition of lipid rafts in the
course of AD-induced neurodegeneration. Similarly, the bind-
ing of an ALS-associated mutant form of SOD1 to lipid rafts is
accompanied by quantitative changes of numerous proteins
involved in vesicular transport, metabolism, protein degrada-
tion, cellular stress and apoptosis, when compared to the bind-
ing of wild-type SOD1 (Zhai et al. 2009). In addition, these
microdomains are associated with the aggregation of proteins
involved in AD (Rushworth and Hooper 2010), PD (Fortin
etal. 2004), HD (Valencia et al. 2010), ALS and prion disease
(Naslavsky et al. 1997). In mitochondria, raft-like microdo-
mains are mainly formed by CL and cholesterol, representing
a platform for apoptotic signals (Sorice et al. 2009). Such
mitochondrial microdomains also define sites of close prox-
imity between the ER and mitochondria. The ER-derived
membranes in contact with mitochondria differ completely
in lipid composition from the main ER, and are enriched in
enzymes for lipid biosynthesis (Rusinol et al. 1994; Stone
et al. 2009; Stone and Vance 2000). These sites, called
MAMs, have been described in yeast and mammals, and are
involved in lipid and Ca”* exchange between the ER and
mitochondria (Ardail et al. 1990; Simbeni et al. 1991).
Accumulating evidence indicates that modifications in this
ER-mitochondria connectivity contribute to mitochondrial
dysfunction and subsequent neuronal decay.

Composition of mitochondria-associated membranes

MAMs are enriched in cholesterol and sphingolipids, increas-
ing the thickness of these membranes (Monteiro et al. 2013).
They incorporate a distinct set of proteins that includes the
inositol 1,4,5-trisphosphate receptor (IP3R), originating from
the ER, as well as the mitochondrial channel VDAC, the
chaperones grp75 and sigma-1 receptor, the sorting protein
PACS-2, the mitochondrial fission factor Fisl, the ER protein
Bap31, the mitofusin Mfn2, the OMM protein PTPIP51 and
the vesicle-associated membrane protein B (VAPB) (Schon
and Area-Gomez 2013; Stoica et al. 2014). Within MAMs,
these proteins show a wide spectrum of different functions.
The VDAC is physically linked to IP3R via grp75, building
up a tether between ER and mitochondria (Szabadkai et al.
2006). The sigma-1 receptor is a ligand-operated chaperone,
influencing ER—mitochondrial Ca®* signalling (Hayashi and
Su 2007). Mfn2 is highly enriched in MAMs compared to the
OMM, and seems to tether the ER to mitochondria (de Brito
and Scorrano 2008). The physiological and pathological func-
tions of these proteins in MAMs are illustrated in Fig. 2.

In yeast, contacts between ER and mitochondria are formed
by the so-called ER—mitochondrial encounter structure
(ERMES), which consists of the peripheral OMM protein
Mdm12, forming a complex with Mdm10 and Mdm34, as
well as with Mmml, an integral ER-membrane protein
(Kornmann et al. 2009; Boldogh et al. 2003).

Glycerophospholipids, especially PC, are bound by Mdm12
and Mmm1, indicating the involvement of MAMs in mito-
chondrial PC import (AhYoung et al. 2015). In addition, the
Miro GTPase Geml and Psdl, as central enzymes in the bio-
synthesis of PE, also interact with the ERMES complex.
Interestingly, deletion of Geml1 is synthetically lethal in com-
bination with knockout of CRDI, which codes for the CL
synthase (Kornmann et al. 2009). While the role of the
ERMES complex in tethering ER and mitochondria is well
established, a direct function of this tether in phospholipid
transport has been controversially discussed (Tamura et al.
2014). Although some findings indicate that ERMES medi-
ates lipid exchange between ER and mitochondria (Kopec
et al. 2010; Kornmann et al. 2009; Voss et al. 2012), others
demonstrate an ERMES- and Gem1-independent transport of
PS between these organelles (Nguyen et al. 2012).
Furthermore, ERMES is suggested to function in the mainte-
nance of mitochondrial morphology (Nguyen et al. 2012;
Meisinger et al. 2004) to influence mtDNA replication
(Meeusen and Nunnari 2003), and to regulate mitochondrial
protein assembly (Meisinger et al. 2004). While the Miro
GTPase Gem1 is highly conserved, all other ERMES compo-
nents lack obvious homologs in higher eukaryotes (Lee and
Hong 2006). In mammals, two isoforms of the Miro GTPase
are known, Mirol and Miro2. Thereby, Mirol is suspected to
be part of a still unknown ERMES-like complex (Kommann
etal. 2011).

Mitochondria-associated membranes
in neurodegeneration

One of the first neurodegenerative diseases connected to de-
fects in MAMs was neuronal ceroid lipofuscinosis, which is
characterized by a mutation in the palmitoyl protein
thioesterase Clnl. In mouse models of this disease, lipids
and proteins were found to accumulate in storage bodies as a
result of MAM deficiencies (Vance et al. 1997). Since then,
alterations in MAMs have been found to play a role in several
neurodegenerative diseases, mostly as a result of defective
mitochondrial lipid homeostasis, malfunctioning of the mito-
chondrial fission/fusion machinery and disturbed mitochon-
drial Ca®* homeostasis (Vance 2014).

As mentioned earlier, the sequential processing of APP by
[3- and y-secretase generates A 3-variants that are implicated
in AD pathology. Interestingly, presenilin 1 and presenilin 2,
both components of the y-secretase complex, are enriched
within MAMs. In addition, hyperactive presenilins enlarge
the contact area between mitochondria and ER, thereby in-
creasing MAM function (Area-Gomez et al. 2009, 2012;
Zampese et al. 2011). Moreover, the AD-associated apolipo-
protein E4 allele also enhances MAM activity (Tambini et al.
2016). Finally, MAMs show high levels of ACAT1 as the
predominant isoform of the acyl-coenzyme A cholesterol
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Health

Presenilin

PTPIP51

Fig. 2 Mitochondria-associated membranes (MAMs) in health and neu-
rodegenerative diseases. A close contact between the ER and mitochon-
dria is crucial for mitochondrial function and morphology. This connec-
tivity is maintained by a specific tethering-complex of MAMs (green).
The proteins indicated in blue are additional components of these lipid
raft-like microdomains, involved in Ca®* homeostasis and balance of

acyltransferase, an important enzyme in cholesterol metabo-
lism (Rusinol et al. 1994; Area-Gomez et al. 2012) which is
required for APP processing and subsequent generation of A3
(Bryleva et al. 2010; Huttunen et al. 2009; Puglielli et al.
2001). In aggregate, these findings indicate a gain of both
function and area of MAMs in the pathogenesis of AD.

In PD models, overexpression of «-synuclein results in an
increase of the area of MAMSs and mitochondrial uptake of
Ca**. Consistently, depletion of o-synuclein leads to a re-
duced flow of Ca®* into mitochondria and a decreased ER—
mitochondria connectivity (Shavali et al. 2008; Martin et al.
2006; Cali et al. 2012). As mentioned above, a-synuclein
predominantly binds to phospholipids and liposomes of high
curvature, but also to lipid rafts (Davidson et al. 1998; Fortin
et al. 2004). Enrichment of membranes with CL enforces this
binding, depending on the nature of the respective acyl side
chains (Zigoneanu et al. 2012). In line with this, wild-type «-
synuclein binds to MAMs, which are enriched in CL.
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other cellular functions like mitochondrial fission/fusion processes.
Mutations of indicated proteins (depicted with a red flash) are involved
in the pathogenesis of specific neurodegenerative diseases, resulting in an
imbalance of fission/fusion processes, gain or loss of ER—mitochondria
contact area and impaired Ca®>* homeostasis. For a detailed description,
see main text

Interestingly, PD-associated mutant forms of a-synuclein dis-
play reduced binding to MAMs, accompanied by mitochon-
drial fragmentation. Co-expression of wild-type «-synuclein
can reduce this mitochondrial phenotype, indicating its phys-
iological function in MAM activity and mitochondrial dynam-
ics that is pathologically altered upon disease-related mutation
(Guardia-Laguarta et al. 2014).

MAMs further play a pivotal role in CMT, caused by mu-
tated Mfn2, which does not only govern mitochondrial fusion
but also seems to act as a tether between ER and mitochondria
(de Brito and Scorrano 2008; Ziichner et al. 2004). In addition,
MAMs seem to be involved in ALS as well. Mutated forms of
VAPB, interacting with the MAM-protein PTPIP51 to regu-
late mitochondrial Ca®* levels, cause familiar forms of ALS
(Nishimura et al. 2004). Loss of VAPB or PTPIP51 results ina
defect of mitochondrial Ca** uptake (De Vos et al. 2012).
Furthermore, ALS-associated SOD1 variants directly interact
with VDACI, another protein of the MAMs (Israelson et al.
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2010). In sum, the specific lipid composition within MAMs
governs the recruitment and activity of a distinct set of pro-
teins, and dysregulation of this sophisticated machinery af-
fects mitochondrial functions during neurodegeneration.

Concluding remarks

Mitochondrial dysfunction is a hallmark of many neurodegen-
erative diseases. Although seemingly accessible as a therapeu-
tic target, the complexity of the relationship between mito-
chondria and neurodegeneration makes it difficult to devise
an effective strategy. Indeed, disease-associated proteins inter-
act with an array of pathways, other proteins and macromol-
ecules, including lipids. As discussed in this review, neurode-
generative processes are tightly linked to lipid-controlled mi-
tochondrial function, including mitochondrial depolarisation
and fragmentation, production of ROS, cytochrome c release
and apoptotic cell death. As an early event in the pathogenesis
of neurodegenerative diseases, oxidative stress leads to LPO,
which impairs several mitochondrial enzymes, thereby
disrupting energy metabolism and Ca®* homeostasis. In addi-
tion, excitotoxicity as a common pathological mechanism in
neurodegeneration also involves oxidative changes of lipids.
Neurotoxic proteins alter mitochondrial lipid composition,
which is especially critical in lipid rafts and mitochondrial
raft-like microdomains. These domains are pivotal for the
function of organelle-interacting sites, such as MAMs, acting
as an essential communication and trafficking channel be-
tween the ER and mitochondria. Importantly, other
organelle-interacting sites in addition to MAMs might be also
affected during neurodegeneration. For instance, yeast mito-
chondria physically interact with vacuoles in the so-called
vacuole and mitochondria path. These contact sites work in
parallel to the ERMES complex, the yeast tether of MAMs, to
transport lipids between the endomembrane system and mito-
chondria (Elbaz-Alon et al. 2014). Further studies will be
needed to investigate if homologous contact sites exist in
mammalian cells, and if they play a role in neurodegenerative
diseases. However, changes in intracellular communication
via lipids, or in the characteristic lipid profile of mitochondrial
membranes, contribute decisively to cellular demise in neuro-
degenerative diseases.
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