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Abstract The majority of 5-HT (serotonin) in the body is
contained in enteroendocrine cells of the gastrointestinal mu-
cosa. From the time of their discovery over 80 years ago, the
5-HT-containing cells have been regarded as a class of cell that
is distinct from enteroendocrine cells that contain peptide
hormones. However, recent studies have cast doubt on the
concept of there being distinct classes of enteroendocrine
cells, each containing a single hormone or occasionally more
than one hormone. Instead, data are rapidly accumulating that
there are complex patterns of colocalisation of hormones that
identify multiple subclasses of enteroendocrine cells. In the
present work, multiple labelling immunohistochemistry is
used to investigate patterns of colocalisation of 5-HT with
enteric peptide hormones. Over 95 % of 5-HT cells in the
duodenum also contained cholecystokinin and about 40 %
of them also contained secretin. In the jejunum, about 75 %
of 5-HT cells contained cholecystokinin but not secretin and
25 % contained 5-HT plus both cholecystokinin and secretin.
Small proportions of 5-HT cells contained gastrin or somato-
statin in the stomach, PYYor GLP-1 in the small intestine and
GLP-1 or somatostatin in the large intestine. Rare or very rare
5-HT cells contained ghrelin (stomach), neurotensin (small
and large intestines), somatostatin (small intestine) and PYY
(in the large intestine). It is concluded that 5-HT-containing

enteroendocrine cells are heterogeneous in their chemical
coding and by implication in their functions.
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Introduction

The majority of 5-HT in the body is contained in or derived
from enteroendocrine cells (EEC) contained in the epithelial
lining of the gastrointestinal tract (Gershon 2013). 5-HT-
containing EEC, commonly referred to as enterochromaffin
(EC) cells, are the source of circulating 5-HT, mostly carried
by platelets and for the activation of adjacent enterocytes,
neurons (including the endings of extrinsic afferent neurons)
and immune cells within the gut wall (Mawe et al. 2006).

EEC have been classified into about 12 types, based on the
hormones that they contain (Rehfeld 2004). In most cases,
each cell type has been assumed to contain one hormone,
which has led to the naming of EEC by a simple letter code,
for example, G cells being gastrin-containing, S cells being
secretin-containing and I cells being cholecystokinin (CCK)-
containing. The exception is L cells that contain glucagon
gene products and peptide YY (PYY). It is now clear that
the one cell–one hormone (or hormone combination) classifi-
cation is no longer tenable (Helander and Fändriks 2012;
Gribble and Reimann 2015). For example, when cells express-
ing a reporter transgene under CCK promotor control are iso-
lated and molecularly analysed, it is found that CCK gene
transcripts are commonly co-expressed with secretin, GIP,
GLP-1, PYY and neurotensin transcripts and co-expression
of the peptide hormones has been confirmed by mass spec-
trometry and immunohistochemistry (Egerod et al. 2012).
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Isolation of GIP-expressing and GLP-expressing EEC and
correlated immunohistochemical analysis confirms overlaps
in expression of GIP, GLP-1, CCK, PYY and secretin
(Habib et al. 2012). Quantitative analysis of colocalisation of
the K cell marker, GIP and the L cell markers, GLP-1 and
PYY, in the mouse and pig gastrointestinal show that all pos-
sible combinations of these three hormones occur in EEC
(Cho et al. 2015).

Amongst EEC, EC cells were originally identified as a
unique cell type containing 5-HT (Vialli and Erspamer 1933;
Erspamer and Asero 1952). However, Roth and Gordon
(1990) reported that about 80 % of secretin immunoreactive
cells in the mouse duodenum were immunoreactive for 5-HT.
5-HT and CCK are also frequently colocalised in the mouse
proximal small intestine (Cho et al. 2014).

The range of effects that have been attributed to 5-HT
that is released from EEC and the diversity of receptors
that they express also suggest that EC cells might form
subpopulations with different functions and cell biologi-
cal properties. EEC-derived 5-HT influences gastrointes-
tinal motility, with some authors arguing that it is critical
for the induction of peristalsis (Bülbring and Crema
1958; Heredia et al. 2013; Smith and Gershon 2015)
and others arguing that it modulates peristalsis but is
not essential (Keating and Spencer 2010; Spencer et al.
2015) and yet others concluding that the role of mucosal
5-HT remains enigmatic (Bornstein 2012; Gribble and
Reimann 2015). 5-HT induces changes in motility and
secretion that are associated with elimination of toxins.
Noxious stimuli release 5-HT from EC, which acts on
mucosal vagal afferent endings to cause nausea and eme-
sis; effects that are counteracted by 5-HT3 receptor an-
tagonists (Andrews et al. 1998; Sanger and Andrews
2006; Hagbom et al. 2011). In the lower gut, 5-HT
may contribute to secretory diarrhoea, another defence
against toxins and 5HT3 antagonists aid in regularising
bowel function in diarrhoea-predominant irritable bowel
syndrome (Spiller and Garsed 2009). Other factors that
release 5-HT from EC cells include raised oxygen ten-
sion, bile salts, sweet and umami taste receptor stimu-
lants and the phytochemicals, thymol and eugenol
(Kidd et al. 2008; Haugen et al. 2012). Luminal recep-
tors on EC cells include Toll-like receptors, consistent
with roles of 5-HT in defence against toxins and patho-
gens (Bogunovic et al. 2007). EC cells also release 5-HT
in response to stimulation of receptors for neurotransmit-
ters and hormones (Kidd et al. 2006; Raghupathi et al.
2013). Furthermore, gut microbes stimulate 5-HT pro-
duction and release by EC cells (Reigstad et al. 2015;
Yano et al. 2015).

In the present study, we investigate the chemical coding of
5HT-containing cells throughout the length of the gut using
double and triple labelling immunohistochemistry.

Materials and methods

Animals and tissue preparation

All procedures were conducted according to the
National Health and Medical Research Council of
Australia guidelines and were approved by the
University of Melbourne Animal Experimentation
Ethics Committee. C57BL/6 mice, aged 8–10 weeks,
were housed in the Biomedical Animal Facility at the
University of Melbourne and were provided standard
chow and water ad libitum. Animals were rendered un-
conscious with CO2 gas and killed by decapitation.
Segments of gastric corpus and antrum, the first part
of the duodenum, 3 cm of proximal jejunum, distal
ileum 2 cm from the caecum, caecum, proximal colon
just distal to the caecum and distal colon between the
colonic flexure and the pelvic brim were removed. The
segments were cleaned of contents, opened along the
mesenteric attachment and pinned, mucosa up without
stretching, to balsa wood sheets in ice-cold phosphate-
buffered saline (PBS: 0.15 M NaCl in 0.01 M sodium
phosphate buffer, pH 7.2). The tissue was then placed
in fixative (2 % formaldehyde plus 0.2 % picric acid in
0.1 M sodium phosphate buffer, pH 7.2) overnight at
4 °C. The following day, tissues were cleared 3 times
(10 min) in dimethyl sulfoxide (DMSO) and then
washed 3 times (10 min) in PBS. Tissue was transferred
to PBS-sucrose-azide (PBS containing 0.1 % sodium
azide and 30 % sucrose as a cryoprotectant) and stored
at 4 °C. The next day, the tissue samples were placed in
PBS-sucrose-azide and OCT compound (Tissue Tek,
Elkhart, IN, USA) in a ratio of 1:1 for a further 24 h,
before being trimmed and embedded in 100 % OCT and
frozen in isopentane cooled with liquid nitrogen.

Immunohistochemistry

Sections of 12 μm thickness were cut, air-dried for 1 h
on microscope slides (SuperFrostPlus®; Menzel-Glaser
#1.5; Thermo Fisher, Scoresby, Vic, Australia) and in-
cubated with 10 % normal horse serum for 30 min.
Sections were then incubated with mixtures of primary
antibodies (Table 1) for double or triple staining at 4 °C
overnight. The tissue was washed three times in PBS
and incubated in secondary antibody (Table 2) for 1 h
at room temperature. For staining nuclei, preparations
were washed once with PBS then twice with distilled
water and incubated for 5 min in Hoechst 33258 solu-
tion (Bisbenzimide–Blue, diluted to 10 μg/mL in dH2O)
and then washed 3 times with distilled water before
mounting with fluorescent mounting medium (Dako,
Carpinteria, CA, USA).
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Image analysis

Slides were examined using an AxioImager microscope
(Zeiss, Sydney, Australia) and high resolution confocal mi-
croscopy (Zeiss Meta510). For quantitative analysis, images
were captured using a V-Slide fluorescent slide scanner
(Zeiss). Images were exported and analysed off-line using
ImageJ (imagej.nih.gov/ij/). For quantitation of immunoreac-
tive cells, cells were counted in 3 sections from each sample
and this analysis was repeated in 3 animals. For counts of total
5-HT cell numbers, sections from 6 mice were used. EEC in
the crypts and villi were counted separately in the small intes-
tine. Cells were counted in the crypts in regions of sections in
which the crypt lumen was clearly defined and in the villi
where the villus core was obvious. Cells in ambiguous regions
at the crypt–villus interface were not counted. Counts in the
upper and lower villi as previously defined (Aiken et al. 1994)

were combined. Images were imported into CorelDraw
(Corel, Ottowa, Canada) for final preparation of figures.

Statistical analysis

Data were analysed using Prism 5.0 (GraphPad Software, San
Diego, CA, USA) and presented as mean ± SEM. Differences
were evaluated with 2-tailed Student’s t tests.

Results

5-HT immunoreactive cells were observed throughout the
length of the gastrointestinal tract, from the stomach to the
distal colon (Fig. 1). There were few immunoreactive 5-HT
cells in the corpus of the stomach (1.7±0.4 cells/mm2, n=6)
but they were abundant in the antrum (11.9±3.4 cells/mm2,

Table 1 Primary antibodies and
their respective dilutions, used in
the study

Target Host
species

Dilution Antibody code, source and/or reference Regions investigated

5-HT Goat 1 : 10,000 #20079; Incstar, Hudson,
WI, USA (Cho et al. 2014)

All

5-HT Rat 1 : 2000 YC5/45 (Costa et al. 1982) All

CCK Rabbit 1 : 2000 R183B (Cho et al. 2014) Duodenum and jejunum

Gastrin-CCK Mouse 1 : 2000 Gift from Drs J.H. Walsh and
H. Wong, University of
California at Los Angeles

Stomach

Ghrelin Rabbit 1 : 3000 #G-01 (Furness et al. 2011) Stomach

GLP-1 Rabbit 1 : 2000 #8912 (Cho et al. 2015) Small and large intestine

Neurotensin Rabbit 1 : 200 #7852, gift from Dr A.A. Shulkes,
University of Melbourne

Small and large intestine

PYY Chicken 1 : 1000 #GW22771 (Cho et al. 2015) Small and large intestine

Somatostatin Sheep 1 : 5000 Gift from Dr A.A. Shulkes,
University of Melbourne

Stomach, small intestine

Secretin Rabbit 1 : 2000 #H-06704, Lot: #00932; Phoenix
Pharma, Mannheim, B-W, Germany

Duodenum and jejunum

Secretin Goat 1 : 100 S-21, Santa Cruz Biotechnology,
Santa Cruz, CA, USA

Duodenum and jejunum

Table 2 Secondary antibodies,
their respective fluorochromes,
nuclear stain and dilutions used

Antibody or stain Fluorochrome
associated

Dilution Source

Donkey anti-sheep Alexa Fluor® 594 1:1000 Invitrogen, Carlsbad, CA, USA

Donkey anti-rat FITC (495 nm) 1:100 Jackson Immuno Research Laboratories,
West Grove, PA, USA

Donkey anti-chicken Alexa Fluor® 488 1:500 Jackson Immuno Research Laboratories

Donkey anti-rabbit Alexa Fluor® 488 1:800 Invitrogen

Donkey anti-rabbit Alexa Fluor® 647 1:1000 Molecular Probes, Mulgrave, VIC, Australia

Donkey anti-mouse Alexa Fluor® 488 1:500 Molecular Probes

Hoechst bisbenzimide
33258

Bisbenzimide 10 μg/mL Sigma
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n=6). Expression of 5-HT decreased distally in the small
intestine (19.7 ± 1.9 cells/mm2 in duodenum to 11.6
±1.3cells/mm2 in the distal ileum, n=6) and increased again
in the large intestine (28.1± 2.3 cells/mm2 in the proximal
colon, n=6) (Fig. 1).

Colocalisation of 5-HTwith gastrin, ghrelin
and somatostatin in the stomach

Ghrelin immunoreactive cells were abundant in the corpus
and antrum of the stomach (46.2±3.4 and 73.6±8.5 cells/
mm2, respectively; both n=3). Previous studies have shown
that gastrin is not expressed in the corpus (Schubert and Peura
2008). Somatostatin was also found in both the gastric antrum
and corpus (1.4±0.5 in corpus and 4.2±0.9 cells/mm2 in the
antrum).

Very few cells were immunoreactive for both 5-HT and
either ghrelin (0.2±0.05 cells/mm2, n=3) (Fig. 3a), gastrin
(2.0 ± 0.9 cells/mm2, n= 3) (Figs. 2a, 3b) or somatostatin
(0.7±0.1 cells/mm2, n=3) (Fig. 3c).

Colocalisation of 5-HT, somatostatin, GLP-1, neurotensin
and PYY in the intestine

Compared to the stomach, there were more somatostatin im-
munoreactive cells in the small and large intestins with expres-
sion increasing slightly from duodenum to distal colon (6.4
± 3.5 cells/mm2 in the duodenum to 13.3 ± 5.1 cells/mm2,
n=3 in the distal colon) (Fig. 3d). The number of somatostatin
cells colocalised with 5-HT also increased distally (0.4±0.1
cells/mm2 in the duodenum to 5.1±2.4 cells/mm2, n=3 in the
distal colon) (Fig. 3d).

GLP-1 expression increased distally (from 13.2±3.6 in the
duodenum to 43.1±8.2 cells/mm2, n=3 in the distal colon)

(Fig. 3e). Small numbers of EEC that were immunoreactive
for both GLP-1 and 5-HT were observed throughout the in-
testine (2.2±0.8 cells/mm2, n=3 in the distal colon) (Figs. 2c,
3e). Some sections from the small intestine from each mouse
were triple stained for 5-HT, GLP-1 and somatostatin but no
triple labelled cells were found. Only rare cells were immuno-
reactive for both GLP-1 and somatostatin.

Neurotensin expression increased distally thoughout the
small intestine (Fig. 3f), with the maximum number of
neurotensin containing cells being found in the caecum
(14.9±4.3 cells/mm2, n=3); numbers of neurotensin positive
cells then decreased progressively along the colon (1.9±0.3
cells/mm2, n=3 in the distal colon) (Fig. 3f). Very few cells
contained both neurotensin and 5-HT (0.5± 0.3 cells/mm2,
n=3 in the distal colon) (Figs. 2b and 3f).

PYYexpression was fairly constant in the distal ileum (8.4
±0.4 cells/mm2, n=3) and large intestine (10.8± 0.9 cells/
mm2, n=3 in the proximal colon) (Fig. 3g). There were very
few cells containing both PYYand 5-HT (0.2±0.1 cells/mm2,
n=3 in the proximal colon) (Figs. 2d, 3g).

Colocalisation of 5-HT, CCK and secretin

The results showed that there were substantial populations of
5-HT/CCK/secretin cells and 5-HT/CCK cells but few cells
that were immunoreactive for only 5-HT in the proximal small
intestine (Figs. 4, 5). Colocalisation of 5-HT (goat antibody)
and secretin (rabbit antibody) was abundant in the duodenum
(9.0±2.5 cells/mm2, n=3) and jejunum (3.4±0.7 cells/mm2,
n=3). In the duodenum, 48.1±4.5 % of 5-HT cells were im-
munoreactive for secretin and 56.9±4.7 % of secretin cells
were immunoreactive for 5-HT.

A goat secretin antibody was used to triple stain CCK (rab-
bit antibody) and 5-HT (rat antibody). There were few secretin
immunoreactive cells in the crypts (1.4±0.5 cells/mm2, n=3)
(Fig. 5b), which confirms previous observations (Aiken et al.
1994). In these cells, secretin was co-localised with CCK. In
contrast, CCK cells and CCK cells containing 5-HT were
abundant in the crypts (7.9 ± 1.0 cells/mm2 and 5.7 ± 1.6
cells/mm2, respectively, in the duodenum, n=3).

In the villi, a large number of cells contained 5-HT, CCK
and secretin (duodenum: 8.6±0.8 cells/mm2, n=3) (Fig. 5a).
Analysis of sections triple stained for 5-HT, CCK and secretin
in the duodenum indicated that 25.2±3.4 % of CCK cells also
contained 5-HT and secretin and 32.3±3.8 % contained 5-HT
but not secretin. Of secretin cells, 51.0 ± 8.2 % contained
both CCK and 5-HT and 41.6 ± 6.5 % contained CCK
but not 5-HT, whereas very few secretin cells contained
5-HT without CCK (1.0 ± 1.0 %) or secretin alone (6.4
± 1.5 %, n= 3). This is consistent with our secretin/5-HT
double stain results where around half of secretin cells
(56.9 ± 4.7 %) contained 5-HT.

Fig. 1 Distribution of 5-HT immunoreactive enteroendocrine cell
populations along the mouse gastrointestinal tract. Total 5-HT cell
numbers per mm2 of mucosa, independent of whether they contained
other hormones, are plotted. Data are from analysis of 4 sections in
tissue samples from each of 6 mice. Cor gastric corpus; Ant gastric
antrum; Duo duodenum; Jej jejunum; D.il distal ileum; Cec caecum;
P.c proximal colon; D.c distal colon. Mean ± SEM, n= 6
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Summary of patterns of colocalisations of 5-HT
throughout the GI tract

The patterns of colocalisation throughout the stomach and
intestine are summarised in Fig. 6. Three types of
colocalisation were encountered: substantial proportions of
5-HT cells having colocalisation with CCK and CCK/
secretin in the duodenum and jejunum; small degrees of
colocalisation with gastrin and with somatostatin in the stom-
ach, with PYYor GLP1 in the small intestine and with GLP1
or somatostatin in the large intestine; and rare or very rare
colocalisation with ghrelin (stomach), neurotensin (small and

large intestines), PYY (in the large intestine) and somatostatin
(small intestine).

Discussion

The results indicate a heterogeneity of 5-HT-containing
enteroendocrine cell types and confirm that the historical clas-
sification of 5-HT cells as enterochromaffin cells, a class sep-
arate from other gastrointestinal endocrine cells (Vialli and
Erspamer 1933; Erspamer and Asero 1952), is outdated. Co-

Fig. 2 Examples of double
labelling of mouse
enteroendocrine cells expressing
5-HT. Colocalisation with gastrin
in the gastric antrum (a), with
neurotensin in the jejunum (b)
and glucagon-like peptide 1
(GLP-1) in the distal colon (c) are
shown. 5-HT and PYYare
generally not colocalised (d).
Arrows show locations of
immunoreactive cells, stars cells
immunoreactive for both 5-HT
and a peptide hormone. Scale
bars 20 μm

Cell Tissue Res (2016) 364:489–497 493



localisation of 5-HT with secretin (Roth and Gordon 1990)
and with CCK (Cho et al. 2014) has been previously

identified. Moreover, secretin has been reported in CCK cells
of CCK-eGFP transgenic mice and in CCK cells of human

Fig. 3 Quantitation of
colocalization of 5-HT and
peptide hormones in
enteroendocrine cell populations
of different areas of the
gastrointestinal tract using
immunohistochemistry. 5-HT and
(a) ghrelin, (b) gastrin and (c)
somatostatin in the stomach, (d)
somatostatin in the small and
large intestine and GLP-1 (e),
neurotensin (f) and PYY (g) in the
small and large intestine. Cor
gastric corpus;Ant gastric antrum;
Duo duodenum; Jej jejunum; D.il
distal ileum; Cec caecum; P.c
proximal colon; D.c distal colon.
Mean ± SEM, n= 3 mice

Fig. 4 Example of double labelling for 5-HTand secretin in the duodenal
villi (a, a’, a^). All combinations are seen, cells with both hormones
(stars) and cells with either hormone (arrows). An example of an
enteroendocrine cell that is immunoreactive for the three hormones, 5-

HT, cholecystokinin and secretin (b, b’, b^). Arrows show location of
immunoreactive cells with a single hormone, stars cells immunoreactive
for two or more hormones. Scale bar 20 μm
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duodenum (Egerod et al. 2012). In an earlier study,
colocalisation of CCK and secretin was reported in EEC of
the villi in the mouse proximal small intestine (Aiken et al.
1994). Our study expands these observations by showing that
almost all 5-HT-containing EEC of the mouse duodenum con-
tain either CCK (5-HT/CCK cells; 50–60 % of 5-HT cells) or
both CCK and secretin (5-HT/CCK/secretin cells; these were
40–50 % of 5-HT cells and were confined to the villi). Very
rare cells, fewer than 2 %, in these regions contained 5-HT but
not either CCK or secretin or both.

Thus, it might be postulated that 5-HT, CCK and secretin
act together in digestive control. 5-HT and CCK appear to
have synergistic effects. Nutrients infused into the upper small
intestine cause a vagus nerve-dependent increase in pancreatic
enzyme release that has both CCK-mediated and 5-HT-
mediated components (Li and Owyang 1996; Li et al. 2000).
In conscious rats, it was found that intraluminal rodent chow
evoked increases in pancreatic enzyme secretion that were
reduced by 54 % when CCK receptors were blocked and
92 % when both CCK and 5-HT receptors were blocked (Li
et al. 2000). Pancreatic responses to intraluminal nutrients
were prevented by cutting vagal afferents close to the brain
stem. In the case of secretin, its established effect to stimulate
bicarbonate release (Bayliss and Starling 1902) is mimicked

by 5-HT. Low doses of 5-HT (20–200 nmol/kg/h) infused into
the vasculature of the rat duodenum (Säfsten et al. 2006) or
direct application of 5-HT to the isolated duodenum from
mice increases bicarbonate secretion (Tuo and Isenberg
2003). Thus, synergistic effects of 5-HT and secretin released
from the same cells are predicted.

5-HT and CCK also have parallel effects on patterns of
movement of segments of guinea-pig duodenum and jejunum.
Mixing activity that was induced by luminal fat was mimicked
by increasing 5-HT availability (by inhibiting 5-HT uptake)
and by CCK (Ellis et al. 2013). Moreover, the stimulation of
mixing movements induced by intraluminal decanoic acid
was reduced by both 5-HT and by CCK receptor antagonists.
This points to a physiological role of CCK and 5-HT acting
together in inducing fed-state motility patterns in the proximal
small intestine.

CCK and 5-HT possibly also act together in causing satiety.
CCK is well established as a gastrointestinal hormone that is
released by nutrients and stimulates vagal afferent endings in
the gut to induce satiety (Morley 1990). 5-HT, 5-HT receptor
stimulants and increased availability of 5-HT (caused by
inhibiting its metabolism) all decrease food intake and antag-
onists of 5-HT receptors increase feeding (Blundell 1986;
Cooper and Dourish 1990). Although 5-HT causes nausea

Fig. 5 Quantitation of the
coexpression of 5-HT, CCK and
secretin using
immunohistochemistry in (a) the
villi and (b) the crypts of the
duodenal and jejunal mucosa.
Mean ± SEM, n= 3 mice

Fig. 6 Analysis of 5-HT sub-populations in the stomach, small intestine
and large intestine. For each combination of hormone, the total numbers
of 5-HT cells have been scaled to 100 %. In the stomach, overlap with
ghrelin (Ghr) is very rare and there are small proportions of 5-HT cells
containing gastrin (Gas) or somatostatin (Som). In the duodenum (Duo)
and jejunum (Jej), significant proportions of 5-HT cells also contained

cholecystokinin (CCK) or CCK plus secretin (Sec). Other hormones,
glucagon like peptide 1 (GLP-1), somatostatin, neurotensin (NT) and
peptide YY (PYY) had low frequencies of overlap with 5-HT in the
small intestine. 5-HT was contained in a few cells that also contained
peptide hormones in the large intestine. Error bars SEM, n= 3 mice
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(Sanger and Andrews 2006), which in itself reduces the desire
for food, it has been argued that the effects that manipulating
the 5-HT system have on food intake are independent of the
induction of nausea (Blundell 1986). It is feasible that only
when there are high levels of 5-HT release, for example after
ingestion of toxins (Hagbom et al. 2011), is there induction of
nausea.

In the present work, we found low degrees of overlap of 5-
HTwith some hormones, such as gastrin or somatostatin in the
stomach and PYY in the small intestine, or very low incidence
of colocalisation (e.g., ghrelin, GLP-1 or neurotensin). Other
recent studies have also found low-level overlaps, for example
5% of CCK cells express glucagon-like insulinotropic peptide
(Egerod et al. 2012). It has been suggested that low-incidence
hormone overlaps in the same EEC reflect that cells that ex-
press more than one hormone in an early developmental stage,
will with maturation express one hormone (Roth et al. 1992).
However, more mature cells, which have migrated to the villi,
also show co-localisation (Egerod et al. 2012), so this cannot
be the entire explanation.

It has been suggested that there are different EEC lineages.
Roth et al. (1992) deduced that 5-HTcells were in one lineage
and that CCK, GLP-1, PYY and neurotensin cells were in
another. More recently, Egerod (2012) provided evidence for
a CCK, secretin, GIP, GLP-1, PYY and neurotensin lineage
that is separate from a somatostatin lineage, although if cells
with gip gene expression (Venus labelled) are separated by
FACS, cells with somatostatin gene (sst) are encountered
(Habib et al. 2012). Manipulation of the transcription factors,
Arx and Pax4, also distinguishes a somatostatin cell lineage
and a 5-HT lineage from the CCK, secretin, GIP, GLP-1, PYY
and neurotensin lineage (Beucher et al. 2012). Thus, the cur-
rent work suggests that 5-HT is expressed by more than one
EEC lineage.

In conclusion, 5-HT is colocalised with many gut hor-
mones and has particularly frequent overlaps with CCK and
secretin in the duodenum and jejunum. It is not justified to
maintain the separate enterochromaffin terminology to distin-
guish 5-HT-containing EEC from other EEC. The roles of 5-
HT-containing EEC of different gut regions are likely to be
different and the lineages to which they belong also differ.
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