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Abstract The small hive beetle, Aethina tumida, is an emerg-
ing pest of social bee colonies. A. tumida shows a specialized
life style for which olfaction seems to play a crucial role. To
better understand the olfactory system of the beetle, we used
immunohistochemistry and 3-D reconstruction to analyze
brain structures, especially the paired antennal lobes (AL),
which represent the first integration centers for odor informa-
tion in the insect brain. The basic neuroarchitecture of the
A. tumida brain compares well to the typical beetle and insect
brain. In comparison to other insects, the AL are relatively
large in relationship to other brain areas, suggesting that ol-
faction is of major importance for the beetle. The AL of both
sexes contain about 70 olfactory glomeruli with no obvious
size differences of the glomeruli between sexes. Similar to all
other insects including beetles, immunostaining with an anti-
serum against serotonin revealed a large cell that projects
from one AL to the contralateral AL to densely innervate all
glomeruli. Immunostaining with an antiserum against
tachykinin-related peptides (TKRP) revealed hitherto un-
known structures in the AL. Small TKRP-immunoreactive
spherical substructures are in both sexes evenly distributed

within all glomeruli. The source for these immunoreactive
islets is very likely a group of about 80 local AL interneurons.
We offer two hypotheses on the function of such structures.
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Introduction

The small hive beetle Aethina tumida (Murray 1867, Coleop-
tera: Nitidulidae) is a parasite and scavenger of colonies of
social bees (honeybees: Apis mellifera: cf. Neumann and
Elzen 2004; bumblebees: Bombus impatiens: Spiewok and
Neumann 2006; stingless bees: Trigona carbonaria: cf. Greco
et al. 2010 and Austroplebeia australis: cf. Halcroft et al.
2011). Both larvae and adults of the A. tumida feed on pollen,
honey and bee brood, leading to fermentation of the honey
and devastation of the combs, often resulting in the full struc-
tural collapse of the entire nest (Lundie 1940; Schmolke 1974;
Neumann and Elzen 2004). In its native range in sub-Saharan
Africa, A. tumida is a rather harmless parasite, mostly affect-
ing weak and stressed colonies (Lundie 1940; Hepburn and
Radloff 1998; Neumann and Elzen 2004; Neumann and Ellis
2008). However, A. tumida has become an invasive species. It
was introduced into the USA (1996), Egypt (2000), Australia
(2001) and into Europe twice (2004 and 2014; see Neumann
and Ellis 2008; Mutinelli et al. 2014) and now has well-
established new populations in North America and Australia
(Neumann and Elzen 2004; Neumann and Ellis 2008). In
these areas, A. tumida can be considered a significant pest of
managed honeybees (Neumann and Elzen 2004) and possibly
of wild bees (Neumann 2015).

To control this emerging pest, Neumann and Elzen (2004)
speculated about the possibility of a A. tumida pheromone that
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could be used for trapping systems. Indeed, male-produced
aggregation pheromones of other species in the family
Nitidulidae are known from Carpophilus obsoletus and are
used for pest control (Petroski et al. 1994). Today, a great
variety of insect pheromones (especially for Lepidoptera and
Coleoptera) are known and used for trapping systems (www.
pherobase.com). Although pheromone communication has
not yet been demonstrated in the small hive beetle, it has
been shown that A. tumida is highly attracted to volatiles
emitted by adult honey bees (A. mellifera), bumble bees
(Bombus impatiens), stored pollen, wax, brood, and honey
(Suazo et al. 2003; Graham et al. 2011; de Guzman et al.
2011). Furthermore, A. tumida prefer to fly before or after
dusk (Schmolke 1974) suggesting that visual cues are less
important than olfactory cues when it comes to locating
beehives for mating. Altogether, understanding the olfactory
system of A. tumida might be instrumental in controlling
this pest.

In insects, olfactory information is detected by olfactory
sensory neurons (OSNs) housed in olfactory sensilla on the
antenna and the maxillary palps (reviewed in Hansson and
Stensmyr 2011). They pass the information on to the neuronal
network in the antennal lobes (AL), the first integration cen-
ters for odor information in the insect brain. Typically, AL are
substructured in spheroidal compartments, the olfactory glo-
meruli. Typically, OSNs that express the same specific odor-
ant receptor converge onto the same glomerulus (Vosshall
et al. 2000). The glomerulus number ranges between about
40 in Diptera up to several hundred in Hymenoptera
(Schachtner et al. 2005; Mysore et al. 2009; Kuebler et al.
2010). In various orders of neopteran insects, including Cole-
optera, Dictyoptera, Diptera, Hymenoptera and Lepidoptera,
sexual dimorphic glomeruli have been described (Kondoh
et al. 2003; Kleineidam et al. 2005; Schachtner et al. 2005;
Hu et al. 2011). Such glomerular dimorphism may have been
evolved independently where it was needed, e.g., for long-
distance pheromone detection or for the detection of specific
odors like host plant volatiles or trail pheromone (Hansson
and Stensmyr 2011). In the AL, olfactory information is proc-
essed by local interneurons (LN) and relayed to projection
neurons (PN) that connect to other brain areas including the
mushroom bodies (MB) or the lateral horn (LH). Additionally,
the AL receives innervation from a few unique centrifugal
neurons (CN) that provide efferent input from other brain
areas (reviewed in Schachtner et al. 2005).

Antennal lobes across insect species contain a wide range
of neuromediators including excitatory and inhibitory trans-
mitters like acetylcholine and GABA (e.g., Bicker 1999;
Homberg 2002; Schachtner et al. 2005; Berg et al. 2009;
Fusca et al. 2015). In addition, AL neurons contain
neuromediators like biogenic amines, gaseous signaling mol-
ecules like NO and a large variety of neuropeptides, suggest-
ing important involvement for proper olfactory behavior (e.g.,

Schachtner et al. 2005; Berg et al. 2007; Utz et al. 2008;
Carlsson et al. 2010; Binzer et al. 2014; Siju et al. 2014; Fusca
et al. 2015). For example, in moths and flies, serotonin (5HT)
is able to modulate the sensitivity of odors and sex phero-
mones (Linn and Roelofs 1986; Gatellier et al. 2004; Hill
et al. 2003; Kloppenburg and Hildebrand 1995; Dacks et al.
2009). Another example are the tachykinin-related neuropep-
tides (TKRP), controlling olfactory sensitivity and locomotor
activity in the fruit fly Drosophila melanogaster (Ignell et al.
2009; Winther et al. 2006; Winther and Ignell 2010).

Typically, neuromediators are distributed across all glo-
meruli of the AL (Schachtner et al. 2005; Carlsson et al.
2010; Binzer et al. 2014; Neupert et al. 2012; Siju et al.
2014). However, there are exceptions in which only one or
several glomeruli receive innervations by neurons that ex-
press specific neuromediators like serotonin in the ant
(Camponotus laevigatus; Dacks et al. 2006), short neuropep-
tide F (sNPF) in the mosquito (Aedes aegypti; Siju et al.
2014) and in the fly (Drosophila melanogaster; Carlsson
et al. 2010), or serotonin and several neuropeptides in collem-
bolans (Kollmann et al. 2011a).

The life cycle of A. tumida involves long-distance dispersal
to new food sources (Neumann et al. 2012), preferentially
after dusk (cf. Neumann and Elzen 2004). Therefore, olfaction
seems to play a pivotal role for the adult beetles (reviewed in
Neumann and Elzen 2004). Given that olfaction is that impor-
tant for the behavior of the animal, the anatomy of the brain,
especially of the central olfactory pathway, might very likely
reflect this importance. We hypothesize that brain neuropils
involved in processing of olfactory information should be en-
larged in relationship to other brain areas.We also hypothesize
that a sequential invasion of bee colonies, as was postulated by
Elzen et al. (2000), with males first and females following
could be reflected by specialized glomeruli, e.g., sexual di-
morphic glomeruli as described for several other insect spe-
cies. In addition, we are looking for any specialization in the
central olfactory pathway that could reflect the special life
style of A. tumida.

Materials and Methods

Experimental animals

Adult Aethina tumida were collected from naturally infested
colonies of the African honeybee subspecies Apis mellifera
scutellata at the experimental farm of the Department of Zo-
ology and Entomology, University of Pretoria, South Africa.
After collection, the beetles were immediately sexed follow-
ing a routine procedure (Neumann et al. 2013). According to
European legislation, import of live A. tumida to Germany is
illegal (Commission Decisions EC No 2003/881 and Com-
mission Regulation (EC) N° 1398/2003). Therefore, the
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beetles were decapitated in Pretoria and the heads were fixed
for 12 h at 4 °C in 4%FA (formaldehyde FA; Roth, Karlsruhe,
Germany) in PBS (phosphate-buffered saline, 0.01 M, pH
7.4). They were rinsed for 15 min in PBS and afterwards
stored in PBS in glass vials in a customized cooling device
and then sent by express delivery to the Philipps University of
Marburg (Marburg, Germany).

Immunohistochemistry

Primary antibodies In the current study, we used antibodies
against the synaptic vesicle protein synapsin, the biogenic
amine serotonin and an antiserum recognizing tachykinin-
related peptides (summarized in Table 1).

The monoclonal antibody from mouse against a fusion
protein consisting of a glutathione-S-transferase and the first
amino acids of the presynaptic vesicle protein synapsin I cod-
ed by its 5′-end (SYNORF1; 3C11, #151101) was used to
selectively label neuropilar areas. It was used in combination
with one additional primary antibody raised in rabbit. The
synapsin antibody was kindly provided by Dr. Erich Buchner
(University of Würzburg, Germany). This antibody was first
described by Klagges et al. (1996) and has been used in many
insect studies to label neuropilar areas (e.g., Utz et al. 2008;
Heuer et al. 2012; Binzer et al. 2014). The antibody was used
at a dilution of 1:100.

The polyclonal antiserum against serotonin (5HT) was
raised in rabbit against paraformaldehyde-coupled conjugates
of BSA (bovine serum albumin) and 5HT (DiaSorin,
Dietzenbach, Germany). Its specificity for the insect nervous
system has been shown in several studies (e.g., Dacks et al.
2006). It was used at a dilution of 1:5000.

The polyclonal TKRP antiserum was kindly provided by
Dr. H. Agricola (University of Jena, Germany). It was raised
in rabbits against locustatachykinin-2 (Lom-TK II,
APLSGFYGVRamide) glutaraldehyde-conjugated to bovine
thyroglobulin (Veenstra et al. 1995). The antiserum is also
known to detect tachykinin-related peptides (TKRPs; consen-
sus sequence FXGXRamide) in other insects (e.g., Vitzthum
and Homberg 1998; Heuer et al. 2012; Binzer et al. 2014). In
beetles, specificity for the anti-TKRP antiserum has so far
been confirmed in Tribolium castaneum by preabsorption of
the antiserum with synthetic Lom-TK II (Binzer et al. 2014).
In the current study, we used the anti-TKRP antiserum to

reveal morphological structures of the brain of A. tumida. It
was used at a dilution of 1:2000.

Secondary antibodiesGoat anti-mouse antibodies conjugat-
ed to Cy5 (GAM-Cy5) and goat anti-rabbit antibodies con-
jugated to Cy3 (GAR-Cy3) were used as secondary anti-
bodies (each 1:300; Jackson ImmunoResearch, Westgrove,
PA, USA).

Whole mount double immunostainings Brains of A. tumida
were dissected out of the head capsule, fixed overnight at 4 °C
in 4 % FA in PBS, followed by rinsing (4×10 min) with PBS
at RT (room temperature). Afterwards, brains were preincu-
bated for 2 days in PBT (PBS containing 0.3 % Triton-X 100;
Sigma Aldrich, Steinheim, Germany) with 5 % NGS (normal
goat serum; Jackson ImmunoResearch). The primary anti-
body anti-synapsin (1:100) was used in combination with
the anti Lom-TK II (1:5000) or anti 5HT antiserum (1:2000)
diluted in PBT with 1 % NGS. Brains were incubated for
2 days at 4 °C. After rinsing (4×10 min) with PBT at RT,
brains were incubated in secondary antibodies (GAM-Cy5
andGAR-Cy3; 1:300) in PBTwith 1%NGS at 4 °C for 2 days
in the dark. After rinsing (6×10 min) with PBT at RT and
washing in distilled H2O for 10 min, brains were dehydrated
in an ascending alcohol series (30, 50, 70, 90, 95 %, 2×100 %
ethanol, 5 min each). Followed by clearing the tissue in meth-
yl salicylate (10 min; Merck, Darmstadt, Germany) the brains
were finally mounted in resin (Permount; Fisher Scientific,
Pittsburgh, PA, USA). During the immunostaining procedure,
all washing and incubation steps were performed on a labora-
tory orbital shaker (MS 3 digital; IKA, Staufen, Gemany).

Data processing

Fluorescence was analyzed with a confocal laser scanning
microscope (Leica TCS SP5 Microsystems; Leica, Wetzlar,
Germany), with the object lenses ×20 oil objective (HCX PL
APO lambda blue ×20/ NA=0.70 ImmUV, working distance:
260 μm; Leica), ×40 oil objective (HCXPLAPO lambda blue
×40/ NA=1.25 Oil UV, working distance: 100 μm; Leica),
and ×63 glycerol objective (HCX PL APO ×63/ NA=1.30
Glyc 21 °C CS working distance: 260 μm; Leica). We
scanned with a resolution of 1024×1024 or 512×512 pixels,
a line average of 2, speed of 200 Hz, a digital zoom of 1–2,

Table 1 List of antibodies used, including dilution, source, donor and reference for each antibody

Name, anti- Shortcut Dilution Source Donor Reference

D. melanogaster Synapsin I α-Synapsin 1:100 Mouse Dr. Buchner Klagges et al. 1996

Serotonin α-5HT 1:2000 Rabbit DiaSorin –

Locusta migratoria Tachykinin II α-Lom-TK II 1:5000 Rabbit Dr. Agricola Veenstra et al. 1995
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and z-steps varying from 0.5 to 1.0 μm for detailed scans and
from 3.0 to 5.0 μm for overview scans.

Image segmentation, reconstruction and visualization

Brain structures were 3-D reconstructed using AMIRA 5.2
(Visage Imaging, Berlin, Germany). Segmentation and
reconstruction were performed according to Kurylas et al.
(2008) and El Jundi et al. (2009). In short, data of the CLSM
image stacks were opened in the segmentation editor of
AMIRA. From all three spatial directions (lateral to lateral,
anterior to posterior and dorsal to ventral) of the respective
structure, 3–12 layers (depending on the size of the structure)
were labeled and finally wrapped to obtain a voxel-based 3-D
model. By using the tool BSurfaceGen^, we transferred the
voxel-based 3-D model into a polygonal surface model. Stan-
dard color codes were used for the reconstructed neuropils
(Brandt et al. 2005). For further global processing (i.e., con-
trast and brightness optimization) and final figure arrange-
ments, snapshots were taken in AMIRA and subsequently
processed in Corel Draw 13 (Corel, Ottawa, ON, Canada).
Diagrams generated with Excel XP (Microsoft, Redmond,
WA, USA) were imported and revised in Corel Draw 13 with-
out any further modification. For statistical analyses, we used
a two-tailed t test in Origin 6.0 (OriginLab, Northampton,
MA, USA) and Excel XP.

Results

General organization of the brain

A 3-D reconstruction of the brain of Aethina tumida was cre-
ated based on confocal sections of an adult female stained with
anti-synapsin antibody (Fig. 1) (movie of a rotating 3-D re-
construction and a camera path through the synapsin staining
of a brain can be found in the digital supplements, ESM 1
and 2; 3-D reconstructions of single male and female AL
can be found in ESM 3). The brain contains all typical
neuropils known from most insects including neuropils of
the optic lobes, the antennal lobes, mushroom body and
neuropils of the central complex (e.g., Drosophila
melanogaster, Rein et al. 2002; honeybee Apis mellifera,
Brandt et al. 2005; desert locust Schistocerca gregaria,
Kurylas et al. 2008; sphinx moth Manduca sexta, el Jundi
et al. 2009; red flour beetle Tribolium castaneum, Dreyer
et al. 2010). We reconstructed all neuropils that were clearly
identifiable and separable (8 paired and 3 unpaired neuropils).

In the optical lobes, we reconstructed the paired medulla
(Me), lobula (Lo), lobula plate (LoP) and accessory medulla
(aMe). The central complex is located in the center of the
protocerebrum. Its reconstruction includes the unpaired upper
and lower unit of the central body (CBU, CBL), the paired

Noduli (No) and the dorso-posteriorly located unpaired
protocerebral bridge (PB).

The paired mushrooms bodies are placed lateral to both
sides of the central complex. We reconstructed calyx (Ca)
and pedunculus (Pe) separately. The Pe contains the vertical
lobe (vL) and medial lobe (mL). The Pe and the lobes are
separated into an inner core region, which is densely stained
with synapsin antibody (Fig. 1; non-transparent-shaped part of
the MB) and a less densely anti-synapsin stained exterior re-
gion (Fig. 1; transparent-shaped part of the MB).

Organization of the antennal lobe

In total, we analyzed 12 ALs of 7 males and 9 ALs of 5
females. Characteristically for insects (Schachtner et al.
2005), in A. tumida the AL are organized in small, spherical
substructures, the olfactory glomeruli, which are arranged
around a central coarse neuropil. The small hive beetle pos-
sesses 72.0±3.9 glomeruli per AL in males (n=12 ALs) and
71.1±3.4 glomeruli per AL in females (n=9 ALs) (p=0.588).

The average size of one glomerulus is 10.7±1.8 μm3 in
males (n=12 ALs / n=864 glomeruli) and 10.1±1.8 μm3 in
females (n=9 ALs / n=640 glomeruli). For approximation of
the AL size, the volumes of all glomeruli within the AL were
summed; extraglomerular space and central coarse neuropil
were not included. Mean volume of male AL is 730.0±
120.5 μm3 (n=12 ALs), compared to 719.2±114.9 μm3 in
females (n=9 ALs). Taken together, male and female ALs of
A. tumida were statistically indifferent in regard of glomeruli
number (p=0.588), overall glomeruli size (p=0.875), or on
the level of the AL volume (p=0.997).

It is known from several insect species that conspicuously
larger glomeruli appear in one of the sexes, typically at the
entrance site of the antennal nerve (Schachtner et al. 2005; Hu
et al. 2011). To verify whether this might also be true for the
small hive beetle, we grouped the different-sized glomeruli of
males (n=12 ALs; n=864 glomeruli) and females (n=9 ALs;
n=640 glomeruli) according to their volume (0–999 μm3=
group 0; 1000–1999 μm3=group 1; …35,000–35,999 μm3=
group 35), followed by analyzing the relative abundance of
these different size groups (Fig. 2) (data of glomeruli from all
ALs of one sex were pooled). No conspicuous sexual dimor-
phism could be seen. Middle-sized glomeruli with a volume
between 4000 μm3 and 11,999 μm3 seemed to be the most
common ones, while small glomeruli (between 1000 and
2999 μm3) and large glomeruli (between 17,000 and 20,
999 μm3) were less abundant. In addition, a varying number
of a few larger glomeruli (between 21,000 and 35,999 μm3)
occur in both sexes. Analysis of the position of the three larg-
est glomeruli per AL revealed that they are not clustered and
that they distribute randomly within the anterior half of the
AL, with no particular correlation to the site where the anten-
nal nerve enters the AL.
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In summary, we found no evidence for any sexual dimor-
phism in the AL on the level of AL size, glomerulus number
and individual or overall glomerulus size.

Tachykinin-related peptides in the antennal lobes

Immunostaining with the anti TKRP antiserum in A. tumida
revealed small, spherical substructures within all glomeruli
(Fig. 3; see also ESM 4). In the anti-synapsin staining, these
internal substructures are only slightly more strongly labeled
in comparison to the surrounding neuropil of the glomerulus
(Fig. 5b, c). Each AL contains about 230 of these

substructures (males: 245.7±14.3, n=3 ALs; females:
224.6±19.1, n=5 ALs). We did not find a sexual dimor-
phism (p=0.154). All observed glomeruli contain between
one and ten substructures, which are never attached to the
outer rim of a glomerulus but usually distributed evenly
across the glomerular volume (Fig. 3; ESM 4). In both
sexes, the number of substructures in a glomerulus corre-
lates with the volume of the glomerulus (males: n=3 ALs,
n=224 glomeruli, R2=0.99; females: n=5 ALs, n=350 glo-
meruli, R2=0.95 (Fig. 4).

The staining of TKRP-ir glomerular substructures most
likely originates from a set of about 80±18 (n=6 ALs) neurons

Fig. 1 3-D reconstruction of the
female brain of Aethina tumida in
a anterior, b dorsal, and c
posterior view. The neuropils
were reconstructed with the
AMIRA tools SurfaceGen and
SurfaceView. The color code of
the labeled neuropils is consistent
with Brandt et al. (2005). AL
antennal lobe, Ca Calyx, CBL
lower unit of the central body,
CBU upper unit of the central
body, aMe accessory medulla, Lo
lobula, LoP lobula plate, Me
medulla, No noduli, PB
protocerebral bridge and Pe
pedunculus with lobes.
Orientation bars: a = anterior,
d = dorsal, m = median,
p = posterior, v = ventral. Scale
bar 100 μm
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located laterally in the AL (Fig. 3d–f, arrowheads), presumably
exclusively local interneurons, which project their pro-
cesses into the AL (Fig. 3d–f, arrows; see also electronic
supplementary material, ESM 5). As the antennal nerve shows
no immunoreactivity to the TKRP antibody, we exclude that

the staining of TKRP-ir glomerular substructures originates
from OSNs. We also did not find any TKRP-ir fibers leaving
the AL or entering the AL from other brain regions, excluding
that the TKRP-ir glomerular substructures originate from
projection neurons (PN) or centrifugal neurons (CN).

Fig. 2 Relative abundance of different sized glomeruli of both sexes of
Aethina tumida. The x-axis represents the different glomerular volumes,
shown as volume groups (0–999 μm3=group 0; 1000–1999 μm3=group

1; …35,000–35,999 μm3=group 35). The y-axis represents the relative
abundance in percent of the different size groups

Fig. 3 The antennal lobe (AL) of
Aethina tumida stained with an
antibody against synapsin (green)
and Lom TKII (magenta). a
Single optical section of an AL.
Several individual glomeruli
(G1–G6, dotted lines), containing
TKRP-ir glomerular substruc-
tures. b, c 3-D reconstructions of
glomerular substructures (b) and
of the glomeruli (c) of the set of
glomeruli outlined in (a). d–f
Staining with antibodies against
synapsin (e) and TKRP (f) and
overlay of both (d; synapsin in
green, TKRP in magenta)
showing TKRP-ir local AL
interneurons (arrowheads) and
their axons (arrows) projecting
into the core area of the AL
(asterisk), from where they give
rise to TKRP-ir substructures.
Boxed areas in (d) and (f) are
enhanced in brightness and
contrast to better visualize fibers
of the local AL interneurons.
Orientation bars in (a) valid for
all subfigures: l=lateral, d=
dorsal. Scale bars 50 μm
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Serotonin in the antennal lobes

All glomeruli of one AL are innervated by axons branching
from one, brightly stained main fiber, entering the AL at its
medio-ventral side (Fig. 5a, unfilled arrowheads). The origin
of this 5HT-ir main fiber is most likely a single cell body,
dorso-lateral to the AL at the contralateral side (as demonstrat-
ed in Fig. 5a; arrow). The primary neurite runs through the AL
without obvious branching and exits the AL at its dorsal side
(Fig. 5a, filled arrowheads). From here, the fiber runs dorsally
and crosses to the contralateral hemisphere of the superior
protocerebrum where a divergent branch forms putative den-
dritic arborizations. The main fiber continues ventrally, to en-
ter the contralateral AL (Fig. 5a, unfilled arrowheads). The
TKRP-ir glomerular substructures are not innervated by the
5HT-ir branches although some are touched just at their sur-
face (Fig. 5b–d).

Discussion

General organization of the A. tumida brain

The overall anatomy of the brain of A. tumida (Fig. 1) com-
pares well to other beetle brains regarding major neuropils
including the optical lobes (OL), antennal lobes (AL), mush-
room bodies (MB) and central body complex (CBX) (e.g.,
Van Haeften 1993; Breidbach and Wegerhoff 1994; Larsson
et al. 2004; Dreyer et al. 2010; Hu et al. 2011).

The OL of A. tumida contain the paired medulla (Me),
lobula (Lo), lobula plate (LoP) and accessory medulla (aMe).
The LoP has so far only been found in Ephemeroptera,
Trichoptera, Coleoptera, Lepidoptera, Diptera (Strausfeld
2005) and Heteroptera (Settembrini and Villar 2005). The
AL consists of about 70 glomeruli, which seems to be a typical
number for beetles; there are about 70 glomeruli in the red
flour beetle Tribolium castaneum (Dreyer et al. 2010), about
60 glomeruli in the scarab beetle Holotrichia diomphalia (Hu
et al. 2011), and about 70 glomeruli in the cockchafer
Melolontha hippocastani (third instar; Weissteiner et al.
2012). The AL will be discussed in more detail below. The
paired MB contains the calyx (Ca) and the pedunculus (Pe),
which is divided in the vertical and medial lobe (vL and mL).
The Pe, vL and mL can be separated in a densely synapsin-
stained core region and a less densely stained exterior region.
This separation is in accordance with observations in the red
flour beetle (Zhao et al. 2008; Binzer et al. 2014) and the
African scarabid beetle Pachnoda marginata (Larsson et al.
2004). The medial part of the right mL is overlapping the
medial part of the left mL, as has been observed in other beetles
like T. castaneum (Dreyer et al. 2010) or the blind cave beetle
Neaphaenops tellkampfii (Ghaffar et al. 1984). The unpaired
central complex (CBX) can be separated into the protocerebral
bridge (PB) and the central body (CB), which consists in the
upper and lower unit (CBU and CBL), as well as the paired
noduli (NO). This organization of the CBX is paralleled in
other beetles like T. castaneum (Dreyer et al. 2010) or the
mealworm beetle Tenebrio molitor (Breidbach and Wegerhoff
1994), as well as in many other insects (Homberg 2008).

Fig. 4 Abundance of glomerular substructures (x-axis) in relation to
glomerulus size (y-axis). Numbers at the base of the bars represent
sample number (number of glomeruli). The diagram shows a linear

relationship between glomerulus size and number of glomerular
substructures, with a coefficient of determination of 0.95 for male and
0.99 for female animals
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Comparison with relative brain neuropil volumes of other
insects reveals that the AL of A. tumida are comparably large,
only surpassed by T. castaneum and the Madeira cockroach
Rhyparobia maderae (Table 2). The AL of A. tumida take up
about a fifth of the compared relative neuropil volumes, re-
sembling the ratio found in T. castaneum, while the relative
AL volume of R. maderae is even larger. T. castaneum is
considered as an insect relying dominantly on olfactory cues
(Dreyer et al. 2010), as are cockroaches (Periplaneta
americana, Sakura and Mizunami 2001). In summary, this
result supports the hypothesis that, for A. tumida, similar as
stated for T. castaneum, olfactory cues are of major impor-
tance for their specialized behavior.

The relative volumes of the MB are remarkably smaller in
A. tumida (11.5 %) compared to T. castaneum but still larger
than in the majority of compared insects (Table 2). MBs are
higher integrative centers of the insect brain that are best
known for their involvement in olfactory learning (e.g.,
McGuire et al. 2001; Menzel 2001; Heisenberg 2003; Davis
2004). However, insect MB are not solely higher centers of
the olfactory pathway but are involved in the integration and
processing of a broad range of sensory modalities including
processing of visual, gustatory and mechanosensory informa-
tion as well as contributions to sleep regulation, place memory
and temperature preference (reviewed in Heuer et al.
2012). Farris and Roberts (2005) demonstrated that generalist
plant-feeding scarab beetles (Scarabaeidae) have larger MB,
while specialist dung-feeding scarab beetles have smaller MB.
Interestingly, this difference in MB volume is independent of
size and glomerulus number of the AL, the primary input
olfactory neuropil of the MB. This observation may offer a
possible explanation for the difference inMB volume between
feeding specialist A. tumida and feeding generalist
T. castaneum, which evolved as saprophytic insects and natu-
rally occur under the bark of trees, in rotten wood and infre-
quently in the nests of some Hymenoptera (Sokoloff 1977;
Grimm 2001; Arnaud et al. 2005).

In A. tumida, the OLs are with about two-thirds of the
relative neuropil volume, larger than the OLs of Tribolium.
In insects, larger OLs typically correlate with larger complex
eyes (e.g., Ghaffar et al. 1984; Gronenberg and Liebig 1999;
Ehmer and Gronenberg 2004; Beutel et al. 2005; Kuebler et al.

2010). Tribolium has relative small compound eyes (80–83
ommatidia per eye; Friedrich et al. 1996) compared to other
insect species including A. tumida.

�Fig. 5 Antennal lobe (AL) of Aethina tumida stained with anti-synapsin
(green) and anti-serotonin (magenta) antibodies. a The maximum
projection shows the branching of a single serotonin immunoreactive
(5HT-ir) fiber, entering the AL at the dorsal site (unfilled arrowheads).
Dorso-lateral to the AL, a single 5HT-ir cell body can be observed
(arrow) projecting dorsal (filled arrowheads) without any branching or
varicosities out of the AL. b–d Single optical section of an AL. The
glomerular substructures in the AL glomeruli are distinctly brighter
stained with the synapsin antibody than the surrounding area of the
glomeruli (b, c dotted lines). 5HT-ir fibers clearly stay outside the
glomerular substructures (d). Orientation bars: m=median, d= dorsal.
Scale bars 20 μm
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The role of the central body is probably best described as a
central coordinator in sensory and motor integration (for re-
views, see Strauss 2002; Wessnitzer and Webb 2006;
Homberg 2008).With 4.8%, the relative volume of the central
body of A. tumida is smaller than the same structure in
Tribolium and Heliothis virescens but still larger than in the
fly, honey bee, locust, cockroach or two Lepidoptera species.
This suggests for the two beetles a more prominent function of
the central complex than in most other insects. In this context,
it would be interesting to have more comparable central com-
plex volumes of other Coleoptera with different lifestyles,
e.g., water beetles or non-flying beetles.

Olfactory driven behavior and sexual dimorphism

Males of the related beetle Carpophilus obsoletus release an
aggregation pheromone that attracts both sexes (Petroski et al.
1994), leading to the hypothesis that a similar pheromone
could guide A. tumida into host beehives that have already
been parasitized (Elzen et al. 2000; Neumann and Elzen
2004). However, a sequential arrival of male and female
A. tumida could not be observed (Spiewok and Neumann
2012). This does not rule out sex-specific differences in olfac-
tion; females seem to be more responsive to beehive volatiles
than males (Suazo et al. 2003) and this might be reflected in a
sexual dimorphism of the olfactory system of A. tumida.

Sexual dimorphism has been described in various insect
species on different levels of the olfactory pathway ranging
from the periphery to the central nervous system including the
antenna (e.g., beetles: Kaissling 1971; Âgren 1985; Allsopp
1990; Renou et al. 1998; Diptera: Clements 1999; Ruther et al.
2000; Stocker 2001; Hymenoptera: Streinzer et al. 2013;
moths: Schneider 1992; Rospars and Hildebrand 2000;
Huetteroth and Schachtner 2005), the specificity, number
and/or distribution of olfactory receptors (e.g., moths: Miura

et al. 2009; Nakagawa et al. 2005; or Diptera: Bohbot et al.
2007), the morphology and number of glomeruli in the AL
(Kondoh et al. 2003; Schachtner et al. 2005; Hu et al. 2011;
Kelber et al. 2010; Streinzer et al. 2013) and higher order
brain structures (e.g., Drosophila: Cachero et al. 2010). De-
tailed analyses of the antennae of A. tumida are missing. So
far, there is no evidence that demonstrates a sexual dimor-
phism at the level of the antenna of the small hive beetle and
information on the distribution of olfactory receptors for bee-
tles is rare. For T. castaneum, transcription analyses of female
and male antenna show no sexual dimorphism in the expres-
sion of odorant receptors (Dippel et al., in preparation); data
for the small hive beetle are so far lacking.

Differently sized sexual dimorphic glomeruli have been ob-
served in a wide range of insects, including beetles, cockroaches,
bees, ants, moths, flies, and mosquitoes (Schachtner et al. 2005;
Vosshall and Stocker 2007; Hu et al. 2011). Typically, these are
one up to five glomeruli of a so-called Bmacroglomerular
complex^ in males to detect sex pheromones or in ants to detect
trail pheromones, or Bfemale sex-specific glomeruli^ to detect
host plants for oviposition. Such glomeruli are normally posi-
tioned at the entrance area of the antennal nerve into the AL
(Hansson 1997; Anton and Homberg 1999; Rospars and
Hildebrand 2000; Schachtner et al. 2005; Kleineidam et al.
2005). Hu et al. (2011) demonstrated such a sexual dimorphism
for the first time in a beetle, identifying a singlemacroglomerulus
in the AL of the Korean black chafer (Holotrichia diomphalia).
The current study addresses the AL morphology of A. tumida in
detail but neither male macroglomeruli nor female sex-specific
glomeruli could be found.

A difference in number of glomeruli between sexes is com-
mon among insects. Yellow fever mosquito females have one
additional glomerulus (Ignell et al. 2005) and Pieris brassicae
female butterflies have three glomeruli more than their male
counterparts (Rospars 1983). In hymenopterans, female

Table 2 Comparison of relative neuropil volume of Aethina tumida
with eight different insect species including sex and sample number
(Drosophila melanogaster, Rein et al. 2002; Apis mellifera, Brandt
et al. 2005; Schistocerca gregaria, Kurylas et al. 2008; Rhyparobia
maderae, Wei et al. 2010; Manduca sexta, el Jundi et al. 2009; Godyris
zavaleta, Montgomery and Ott 2014; Heliothis virescens, Kvello et al.

2009, Tribolium castaneum, Dreyer et al. 2010; and Aethina tumida, this
work). With exception of the lobula plate, only neuropils with
complements in all examined animals were compared (medulla, lobula
complex, and lobula plate; antennal lobes, mushroom calyces and
pedunculi and the upper and lower unit of the central body)

Order Diptera Hymenoptera Orthoptera Blattodea Lepidoptera Coleoptera

Species D.melanogaster A. mellifera S. gregaria R.maderae M. sexta G.zavaleta H.Virescens T. castaneum A.tumida

Sex ♀ Forager ♂ ♂ ♀ ♂ ♂/♀ ♀ ♀ ♂ ♀

N 28 20 10 20 12 12 8/8 10 20 20 1

AL (%) 9.5 8.5 9.7 35.6 12.8 15.0 8.7 15.7 22.4 24.5 21.6

MB (%) 7.5 32.7 16.0 37.2 6.9 6.8 6.1 13.6 21.9 23.8 11.5

OL (%) 79.6 57.9 72.6 23.0 79.4 77.3 84.4 64.5 50.1 45.1 62.1

CB (%) 3.4 0.9 1.7 4.2 0.9 0.9 0.8 6.1 5.6 6.6 4.8
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honeybee workers possess about 160 glomeruli compared to
about 106 glomeruli in males (Arnold et al. 1985; Flanagan
andMercer 1989; Brockmann and Brückner 2001). In beetles,
varying glomerulus numbers between sexes have so far not
been described. In A. tumida, we found with about 70 glomer-
uli in both sexes no sexual dimorphism. In summary, the ab-
sence of a sexual dimorphism in the AL of A. tumida does not
favor the work of Spiewok and Neumann (2012) or of Neu-
mann and Elzen (2004) and can on this level of analysis not
add to a better understanding of why female A. tumida re-
spond more strongly to beehive volatiles than males (Suazo
et al. 2003). A detailed analysis of the A. tumida antenna
including distribution of olfactory sensillae and the identifica-
tion and distribution of olfactory receptors would be neces-
sary. Such insights could be helpful to create/optimize olfac-
tory beetle traps. In addition, analysis of higher brain centers
in the olfactory pathway includingmushroom body and lateral
horn might provide additional insights.

Serotonin-ir neuron in the AL

The observed innervation of all glomeruli of one AL by only
one 5HT-ir cell body is common among insects (Dacks et al.
2006), as well as for ancestral hexapods, as observed in col-
lembolans (Kollmann et al. 2011a). The described anatomy of
the 5HT-ir neuron has been described for Coleoptera before and
can also be found in Lepidoptera, Trichoptera, non-
Schizophoran Diptera and Neuroptera (Dacks et al. 2006),
and is very likely also true for aphids (Kollmann et al.
2011b). A side branch of the 5HT-ir neuron into the ipsilateral
lateral protocerebrum as observed in many insects (including
Coleoptera; Dacks et al. 2006) could not be found in A. tumida.

Glomerular substructures

Immunostaining with an antiserum recognizing tachykinin-
related peptides (TKRPs) resulted in the discovery of small,
spherical substructures, which are evenly distributed among
all glomeruli, with no obvious difference between both sexes.
These substructures seem to originate from a cluster of cell
bodies, presumably local interneurons, lateral in the AL. Im-
munostaining with the same antiserum in two other beetles,
Tenebrio molitor (Wegerhoff et al. 1996) and T. castaneum
(Binzer et al. 2014), resulted in a cluster of local interneurons
located in a similar position lateral in the AL. They provide the
glomeruli with a dense meshwork of projections but did not
give rise to spheroidal structures as described here. Similar to
A. tumida, the antiserum did not reveal fibers in the antennal
nerve or fibers belonging to either projection or centrifugal
neurons (Wegerhoff et al. 1996; Binzer et al. 2014). Similarly,
in all other insects where TKRP stainings were performed, the
antisera labeled only local interneurons in the AL and no other
neuron types (Schachtner et al. 2005; Carlsson et al. 2010;

Neupert et al. 2012; Binzer et al. 2014; Siju et al. 2014). In
summary and in contrast to all other insects examined before,
the TKRP positive local neurons provide each glomerulus
with particular islet-like projections.

In ALs of insects, all or only a subpopulation of glomeruli
can be the target of individual neurons or of populations of
neurons and a variety of innervation patterns of olfactory
glomeruli by AL neurons (LNs, PNs) or CNs has so far been
described either by filling of single neurons or by immuno-
staining (summarized in Fig. 6; reviewed in Schachtner et al.
2005; Seki and Kanzaki 2008; Husch et al. 2009; Carlsson
et al. 2010; Chou et al. 2010; Seki et al. 2010; Neupert et al.
2012; Binzer et al. 2014; Siju et al. 2014). Comparing the
different patterns of glomerulus supply via central neurons
(CNs, LNs, PNs), innervation can occur (a) only at the surface,
(b) scattered throughout the whole glomerulus, (c) or only
through parts of the glomerulus, (d) up to massive dense inner-
vation of the whole, or (e) a distinct area of a glomerulus, or (f)
as described in this study, through islet-like projections, which
are evenly distributed throughout the glomerulus (Fig. 6).
From our analysis, we cannot distinguish, whether an individ-
ual islet structure is supplied via a single axon or by more
axons and whether islets of a single glomerulus are innervated
by several or only by one neuron as suggested in Fig. 6f.

The role of LNs in the AL network is to shape the olfactory
representation within and between the olfactory glomeruli to
eventually form the output profile of the PNs via complex
inhibitory and excitatory interactions (Stopfer et al. 1997;
Sachse and Galizia 2002; Wilson and Laurent 2005; Olsen
et al. 2007, 2010; Root et al. 2007; Shang et al. 2007;
Silbering and Galizia 2007; Olsen and Wilson 2008; Okada
et al. 2009; Tanaka et al. 2009; Chou et al. 2010; Seki et al.
2010; Wilson 2013; Nagel et al. 2015). It is interesting that the
small hive beetle developed, at least for a subpopulation of
LNs, a morphologically different pattern of glomerulus inner-
vation compared to other insects. With the available data, we
can only speculate on the function of the islet-like innervation.

We offer two hypotheses. Our first hypothesis argues that
the islet-like innervation is another effective way to provide
the glomerular network with information carried by
neuromediators, e.g., neuropeptides. Such neuromediators
can act as paracrine neurohormones, affecting a broad area
surrounding the release site, also known as Bvolume transmis-
sion”, in contrast to Bwiring^ (Agnati et al. 1995; Nässel
2002). Considering the facts that the islet number is linearly
correlated to glomerulus volume (Fig. 4) and that they are
evenly distributed in each glomerulus, the islet contents could
affect the glomerulus network over prolonged periods of time
or in an otherwise temporally unique fashion. Our second
hypothesis interprets the islets as a specific adaptation of the
beetles to their lifestyle to cope with the complex chemical
communication in a beehive with an olfactory system of a
beetle. The TKRP immunostaining unmasks a group of LNs,
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which are part of such a particular network. It is known that
chemical communicationmainly based on pheromones is very
important for bees (Slessor et al. 2005; Trhlin and Rajchard
2011). To manage this olfactory task, worker bees have about
64,000 OSNs (Esslen and Kaissling 1976), a large number of
glomeruli (152–166 per AL in workers; Arnold et al. 1985)
and about 170 ORs (Robertson and Wanner 2006). For a par-
asitic insect living in a beehive survival and breeding success
may highly depend on the ability to understand at least parts of
the chemical communication of its host. As the repertoire of
the beetle is restricted to about 70 glomeruli per AL, the islets

could be part of a system that allows the beetle to compensate
for this disadvantage by expanding the glomerular coding
space. The genome sequence of another beetle, T. castaneum,
revealed a much higher number of functional ORs than olfac-
tory glomeruli and it is still enigmatic what role these surplus
ORs could play. The islets could be innervated by OSNs car-
rying different ORs than the OSNs that principally innervate
the glomerulus. Following this line, the islets would function-
ally stand as specific Bglomeruli^ within the ordinary glomer-
uli and thus exaggerate the potential of the olfactory system of
the beetle to cope with a more complex odor environment.
The synapsin immunostaining is slightly stronger than in the
surrounding parts of the glomeruli, suggesting a higher syn-
aptic density within the islets. This argues for specialized
zones with high synaptic communication between the in-
volved neurons. If these islet-like zones are targeted by spe-
cialized OSNs and/or LNs, PNs remain to be shown in the
future by backfills from the antenna and a thorough analysis of
intrinsic end extrinsic antennal lobe neurons.

Summary

Analyzing the brain of A. tumida by means of immunohisto-
chemistry and 3-D reconstruction revealed a basic brain
neuroarchitecture comparable to other beetle and insect brains.
In relationship to other brain areas and in comparison to other
insects, the AL are relatively large, suggesting that olfaction is
of major importance for the beetle. The AL of both sexes house
about 70 glomeruli with no obvious size differences of the
glomeruli between males and females. In accordance to what
is typically found in other insects, staining with a 5HT antise-
rum revealed a large cell that projects from one AL to the
contralateral AL to densely innervate all glomeruli. Immuno-
staining with an antiserum recognizing TKRPs revealed small
spherical substructures, which are in both sexes evenly distrib-
uted among all olfactory glomeruli. The source for the TKRP-ir
structures is very likely a group of about 80 local AL interneu-
rons. The number of substructures ranges between one and ten
and correlates linearly with the volume of the glomeruli. In
total, one AL contains about 230 of these islets. For this unusu-
al finding, we offer two hypotheses. First, these evenly distrib-
uted substructures could act asmassive releasing sites to deliver
the neuromediator throughout the particular glomerulus. Sec-
ond, the islets act as specialized subcompartments that expand
the functional coding space of the beetle’s olfactory system.
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Fig. 6 Schematic drawing of the principal innervation pattern of
glomeruli. a Glomeruli are just sparsely innervated at the surface. b The
innervation is scattered through the whole glomerulus. c The innervation
is just scattered through a distinct area of the glomerulus. d The whole
glomerulus is densely innervated by fine branches, which appears in
immunohistological stainings as a bright, uniform staining. e A distinct
area of the glomerulus is densely innervated by fine branches. fBranching
appears just in several, small, distinct areas of the glomerulus (glomerular
substructures), which are evenly distributed throughout the glomerulus
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