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what can we learn from neurochemistry and neural connectivity?
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Abstract A remarkable ability of animals that is critical for
survival is to detect and respond to to unexpected stimuli in an
ever-changing world. Auditory neurons that show stimulus-
specific adaptation (SSA), i.e., a decrease in their response to
frequently occurring stimuli while maintaining responsive-
ness when different stimuli are presented, might participate
in the coding of deviance occurrence. Traditionally, deviance
detection is measured by the mismatch negativity (MMN)
potential in studies of evoked local field potentials. We present
a review of the state-of-the-art of SSA in auditory subcortical
nuclei, i.e., the inferior colliculus and medial geniculate body
of the thalamus, and link the differential receptor distribution
and neural connectivity of those regions in which extreme
SSA has been found. Furthermore, we review both SSA and
MMN-like responses in auditory and non-auditory areas that
exhibit multimodal sensitivities that we suggest conform to a
distributed network encoding for deviance detection. The un-

derstanding of the neurochemistry and response similarities
across these different regions will contribute to a better under-
standing of the neural mechanism underlying deviance
detection.
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Introduction

In everyday life, animals are immersed in a continuous flow of
sounds arriving from multiple sources, and the auditory sys-
tem has the challenge of selecting those acoustic elements
relevant for the creation of perceptual constructs (Fishman
and Steinschneider 2010). One way of organizing the acoustic
scene is as follows: (1) retaining it in a form of sound objects
(Winkler et al. 2009), (2) storing the regularity of the objects in
a sensory memory trace, (3) generating predictions about
forthcoming events, and (4) comparing the subsequent incom-
ing sounds with these predictions (Friston 2005; Bendixen
et al. 2012). This is the current theoretical processing that
occurs in deviance detection (Näätänen et al. 1978, 2001) in
which biological systems identify new or deviant contextual
events in an otherwise monotonous auditory scene.

The occurrence of auditory deviance detection has been
classically associated with the human mismatch negativity
(MMN) potential of the event-related potentials (Näätänen
et al. 1978). MMN is classically measured by using an oddball
paradigm in which a low probability of appearance (deviant)
sound is randomly embedded within sequences of common
(standard) sounds. MMN is defined as the difference between
the event-related potentials evoked by the deviant (larger) and
the standard (smaller) sounds. Human MMN peaks between
the N1 (100 ms) and the P2 (180 ms) waves and can be
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interpreted as an enhancement of the N1 wave or as an inde-
pendent phenomenon. This differentiation is not trivial, be-
cause the N1 wave is attributed to basic auditory processing
occurring in the auditory cortex (AC; Hari et al. 1984; Maess
et al. 2007), and one of the current interpretations of MMN is
that adaptation is related to MMN generation (Fishman and
Steinschneider 2012; Fishman 2013). Two conceptually dif-
ferent hypotheses have been proposed to explain the neuronal
mechanisms that generateMMN. The first hypothesis is based
on the Bpredictive coding^ theory (Friston 2005) that postu-
lates that the brain performs Bayes-optimal sensory learning
under uncertainty (Friston 2009, 2012; Moran et al. 2013),
whereby the brain creates a prediction concerning the identity
of the next sound within an ongoing acoustic sequence based
on a memory trace generated by previous stimulation. The
violation of the memory-based regularity by a deviant sound
would allow the generation of error signals and, therefore,
MMN. On the other hand, some other authors (Jaaskelainen
et al. 2004; May and Tiitinen 2010) defend a second explana-
tion, namely the so-called Bneural adaptation^ hypothesis,
whereby MMN reflects the release from adaptation elicited
by the standard stimulus by the occurrence of a deviant sound.
As neurons activated by deviant sounds are stimulated much
less than neurons activated by standard sounds, such neurons
are consequently less adapted and would elicit a stronger re-
sponse. Thus, deviant sounds are going to elicit larger re-
sponses because adaptation for the standard sound would re-
duce the N1 wave. To establish the occurrence of Bdeviance
detection^, i.e., the degree of enhancement in neuronal activ-
ity evoked by the occurrence of a deviant sound that is adap-
tation-independent, Schröger and colleagues (Schröger and
Wolff 1996; Jacobsen and Schröger 2003) have designed a
paradigm to control for the probability of occurrence and
therefore for the adaptation elicited by the standard tone.
Control paradigms have been implemented in subsequent hu-
man (Opitz et al. 2005; Maess et al. 2007; Cacciaglia et al.
2015) and animal (rat: Taaseh et al. 2011; Harms et al. 2014)
studies. This approach has allowed researchers to separate the
signals contributing to MMN attributable to neuronal refrac-
toriness from those evoked by deviance occurrence.

MMN-like phenomena are well known to occur in several
different animals, including cats (Csepe et al. 1987a, 1987b;
Pincze et al. 2001, 2002), monkeys (Javitt et al. 1992, 1994;
Fishman and Steinschneider 2012), guinea pigs (Kraus et al.
1994a, 1994b; Christianson et al. 2014), rabbits (Ruusuvirta
et al. 1995a, 2010), rats (Ruusuvirta et al. 1998, 2013;
Astikainen et al. 2006, 2011; Nakamura et al. 2011; Jung
et al. 2013; Shiramatsu et al. 2013; Harms et al. 2014), and
mice (Siegel et al. 2003; Umbricht et al. 2005). Recently, it has
been reported that the rat brain is capable of generating
human-MMN-like responses, and moreover, that part of the
MMN signal is independent of adaptation driven by memory-
like processing (Astikainen et al. 2006; Harms et al. 2014). In

agreement with this study, true-deviance detection is also
reflected at the single neuron level in the rat AC (Taaseh
et al. 2011). Although deviance encoding has been largely
thought to involve pure cortical processing, an elegant and
recent study by Cacciaglia and colleagues (2015) has demon-
strated that the human inferior colliculus (IC) and medial
geniculate body (MGB) of the thalamus exhibit genuine
deviance detection. This study confirms previous data
indicating deviance detection at very short latency re-
sponses (∼30–40 ms) in auditory-evoked potentials
(Slabu et al. 2010, 2012).

Here, in an attempt to gain a better understanding of devi-
ance detection, we review the anatomy and immunocyto-
chemistry of the IC and MGB, since they might reveal the
general organizational principles of the subcortical network
for deviance detection. Likewise, we present data concerning
auditory mismatch responses in non-auditory subcortical
structures that might be part of the same network.

Stimulus-specific adaptation

Using the same oddball paradigm as in human MMN studies,
Ulanovsky et al. (2003) have found that AC neurons of the cat
reduce their response to frequently occurring stimuli
(standard) but resume their firing when different rare stimuli
are presented (deviant). This neuronal response has been re-
ferred to as stimulus-specific adaptation (SSA; Movshon and
Lennie 1979). Later studies have demonstrated that SSA also
occurs in the IC (rat: Perez-Gonzalez et al. 2005; Malmierca
et al. 2009; Duque et al. 2012; Ayala et al. 2013) and theMGB
(mouse: Anderson et al. 2009; rat: Antunes et al. 2010). By
contrast, neurons in the cochlear nucleus lack SSA (rat: Ayala
et al. 2013), suggesting that the IC is the first auditory relay
station in which SSA occurs.

Throughout the auditory collicular, thalamic, and cortical
areas, SSA has several common characteristics that are similar
to the human MMN. SSA is a rapid phenomenon, with a time
scale of a few seconds (Ulanovsky et al. 2004; Malmierca
et al. 2009; Ayala and Malmierca 2013), and is highly sensi-
tive to stimulus statistics: the smaller the probability of occur-
rence for the deviant, the larger the SSA (Ulanovsky et al.
2003; Malmierca et al. 2009; Antunes et al. 2010; Zhao
et al. 2011; Ayala et al. 2013). These same studies have also
revealed that increasing the frequency contrast (the physical
separation between the two tones) or the presentation rate (the
speed to which the tones are repeated) evokes stronger SSA
responses, although SSA can be observed at interstimulus
intervals as long as 2000 ms (Ulanovsky et al. 2003;
Antunes et al. 2010; Ayala and Malmierca 2013, Fig. 1). As
SSA in the AC was first observed in the core region of the AC
(Ulanovsky et al. 2003), some authors proposed SSA emerged
in the AC as a high order feature that can be Binherited^ by the
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IC and the MGB via the corticofugal pathway (Nelken and
Ulanovsky 2007; Bäuerle et al. 2011). However, recent stud-
ies with the powerful technique of cortical cooling (Antunes
and Malmierca 2011; Anderson and Malmierca 2013) have
demonstrated that the corticofugal projections arising from the
core AC regions modulate, but do not generate, subcortical
SSA. Currently, SSA is thought to be created de novo at each
auditory station or to be transmitted in a cascade process from
low to higher order nuclei. In this review, we will describe
possible mechanisms involved in SSA, with special emphasis
on the anatomical substrate that might underlie the connectiv-
ity of SSA neurons and on the receptor distributions in the
subcortical nuclei of the IC and the MGB.

Throughout the following, SSAwill be used to describe a
specific reduction of the responses at a neuronal level, where-
as MMN (or MMN-like) will be used for differential re-
sponses observed at local field potentials. Conceptually, this
is different from deviance detection, which refers to an en-
hancement in the neuronal response evoked by the occurrence
of a rare sound and which is independent of adaptation.

SSA is not homogenously distributed in IC and MGB;
connectivity of lemniscal and non-lemniscal subdivisions

Auditory processing between the midbrain and the cortex is
carried by two parallel streams: the lemniscal (or primary) and
non-lemiscal (or secondary) pathways (Fig. 2; Andersen et al.

1980; Lee and Sherman 2010, 2011). The non-lemniscal sys-
tem comprises the lateral (LCIC), the rostral (RCIC), and the
dorsal cortex (DCIC; Loftus et al. 2008, 2010) of the IC and
the dorsal (MGBd) and medial subdivisions (MGBm) of the
MGB in the thalamus. On the other hand, the lemniscal sys-
tem comprises the central nucleus of the IC (CNIC) and the
ventral division of the MGB (MGBv). Across these subcorti-
cal nuclei, SSA responses are not homogenously distributed.
Neurons in the cortices of the IC (rat: Malmierca et al. 2009;
Duque et al. 2012; Ayala et al. 2013) and in the MGBd and
MGBm (mouse: Anderson et al. 2009; rat: Antunes et al.
2010) exhibit the strongest SSA responses. In agreement with
SSA data, a pioneering study by Kraus et al. (1994b) has
shown that auditory stimuli containing different frequencies
or intensities consistently produce a mismatched field poten-
tial in the non-lemniscal divisions of the thalamus but not in
the MGBv of the guinea pig (Fig. 3). Although such correla-
tion has not been confirmed in the rat AC (Fig. 3, Nakamura
et al. 2011; Jung et al. 2013; Shiramatsu et al. 2013), all these
data suggest that subcortical acoustic deviance detection is
primarily computed by neurons of the non-lemniscal pathway.

Lemniscal and non-lemniscal neurons differ in (1) their
response properties (cat: Aitkin et al. 1975; Calford 1983;
Calford and Aitkin 1983; Aitkin and Prain 1974; mouse:
Anderson and Linden 2011; rat: Lumani and Zhang 2010),
(2) their fine morphology, i.e., terminal size and arborization
pattern (Oliver 2005; rat: Malmierca et al. 1995; 2011;
Stebbings et al. 2014), and in (3) their set of afferent and

Fig. 1 Grand-average responses
of neurons in the inferior
colliculus (IC), the medial
geniculate body (MGB), and the
auditory cortex (AC). Averaged
peristimulus time histograms
(PSTH) for the entire population
of neurons recorded at various
frequency contrasts (Δf) for a
standard/deviant ratio of 90/10 %.
The mean firing rate elicited by
both stimuli (blue lines standard,
red lines deviant) increased at the
different Δf (Δf=0.04, 0.1, and
0.37; from left to right,
respectively). Black horizontal
lines under the PSTHs indicate
the duration of the stimulus:
230 ms for the AC study and
75ms for the IC andMGB studies
(modified from Ulanovsky et al.
2003; Malmierca et al. 2009;
Antunes et al. 2010)
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Fig. 3 Comparison of MMN-like responses through the lemniscal and
non-lemniscal regions of the medial geniculate body (MGB) and the
auditory cortex (AC). Top Grand average responses to standard (blue
lines) and deviant (red lines) stimuli recorded from the non-lemniscal
MGB (left caudomedial portion of the guinea pig equivalent to the cat
MGBm and MGBd) and the MGBv (right). Significant differences be-
tween the responses to standard and deviant stimuli are indicated by the
green boxes that appear under the various waves (green lines). Bottom

Auditory evoked potentials to deviant (red lines) and standard stimuli
(blue lines) elicited in a non-lemniscal region of the AC (left posterior
auditory field) and in the core region of the AC of the rat (right). Signif-
icant differences between the responses to standard and deviant stimuli
are indicated by the green boxes. Unlike the MGB, MMN-like waves in
the AC have not been shown to be spatially distributed (modified from
Kraus et al. 1994a; Jung et al. 2013)

Fig. 2 Topographic segregation of the lemniscal and non-lemniscal pro-
jections between the inferior colliculus (IC), medial geniculate body
(MGB) and auditory cortex (AC). The strongest SSA responses are dis-
tributed in the non-lemniscal subdivisions (shaded areas) of the IC
(DCIC dorsal cortex, LCIC lateral cortex, RCIC rostral cortex) and
MGB (MGBd dorsal subdivision, MGBm medial subdivision). On the
contrary, poor SSA responses are found in the lemniscal areas of the IC

(CNIC central nucleus) and MGB (MGBv ventral subdivision). At the
cortical level, the primary auditory cortex (A1) exhibits SSA responses
that remain to be addressed in areas beyond A1. The major bottom-up
projections between non-lemniscal (red) and lemniscal (blue) collicular,
thalamic, and cortical areas are illustrated by lines (modified from Escera
and Malmierca 2014)
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efferent projections (rat: Coleman and Clerici 1987;
Malmierca and Hackett 2010; for reviews, see Hu 2003; Lee
and Sherman 2011). Lemniscal neurons are tonotopically or-
ganized exhibiting fast and high-fidelity responses (cat: Miller
et al. 2001; rat: Malmierca et al. 2008), whereas non-lemniscal
neurons are not tonotopically organized and show longer la-
tencies and habituating responses to unvarying stimuli (cat:
Calford 1983; Calford and Aitkin 1983; rat: Bordi and
LeDoux 1994a, 1994b; Malmierca et al. 2009; guinea pig:
He and Hu 2002). Furthermore, non-lemniscal neurons show
broader frequency response areas, i.e., the combination of
frequencies and intensities capable of evoking a response
(Lennartz and Weinberger 1992; Perez-Gonzalez et al. 2005;
Malmierca et al. 2009; Duque et al. 2012; Ayala et al. 2013)
and respond preferentially to complex acoustic stimuli (cat:
Aitkin et al. 1975). Moreover, the basal discharge and re-
sponse strength are lower in the non-lemniscal than lemniscal
neurons of the IC (rat: Duque et al. 2012) and MGB (cat:
Aitkin and Prain 1974; Calford and Aitkin 1983).
Interestingly, both the bandwidth of the frequency responses
areas (rat: Duque et al. 2012; Ayala et al. 2013) and the onset
firing pattern (rat: Duque et al. 2012) correlates with the
strength of the SSA responses of IC neurons. Regarding their
connectivity, the CNIC primarily sends excitatory and inhib-
itory projections to the MGBv (for reviews, see Oliver and
Huerta 1992; Wenstrup 2005) with a high degree of topo-
graphic convergence (Lee and Sherman 2011), whereas the
cortices of the IC innervate primarily the MGBd and MGBm
(mouse: Romand and Ehret 1990; for reviews, see Hu 2003;
Wenstrup 2005). At the level of the MGB, two major afferent
streams arise en route to the auditory cortices (cat: Huang and
Winer 2000; for a review, see Hu 2003). Generally speaking,
secondary auditory cortices are targeted principally by non-
tonotopic subcortical areas that mainly terminate in layer 1,
whereas primary auditory cortices principally receive inputs
from tonotopic lemniscal areas that target mainly the middle
layers (cat: Kudo and Niimi 1980; Huang and Winer 2000;
Lee and Winer 2011; for a review, see Winer 1992).

Traditionally, the early sensory processing neuronal stages
are assumed to be unimodal and to operate independently of
each other. However, a growing body of evidence has changed
this classical view of the sensory hierarchical processing by
demonstrating the convergence of multimodal inputs in sub-
cortical nuclei (Stein and Meredith 1993; Stein and Stanford
2008) and early primary sensory cortices (Ghazanfar et al.
2005; Kayser and Logothetis 2007; Lakatos et al. 2007;
King and Walker 2012; for a review, see Kayser et al. 2012).
In agreement with the above-mentioned, another feature of the
non-lemniscal tectal and thalamic areas includes their dense
innervation by non-auditory afferents. For instance, the shell
area of the IC receives visual (rat and monkey: Itaya and Van
Hoesen 1982; rat: Yamauchi and Yamadori 1982; cat:
Mascetti and Strozzi 1988) and somatosensory (cat: Aitkin

et al. 1978, 1981; Coleman and Clerici 1987; for a review,
see Wu et al. 2014) inputs and projections from the substantia
nigra pars compacta lateralis (cat: Coleman and Clerici 1987),
globus pallidus (rat: Yasui et al. 1991; cat: Shinonaga et al.
1992), and the ventral tegmental area (rat: Herbert et al. 1997).
Likewise, the MGBd and MGBm are innervated by afferents
from the tegmental nuclei, spinothalamic tract, and superior
colliculus (cat: Graybiel 1972; rat: Ledoux et al. 1987; Iwata
et al. 1992). The efferent connections of the non-lemniscal
areas of the IC (cat: Aitkin et al. 1978; ferret: King et al.
1998) and MGB (cat: Shinonaga et al. 1994; rat: Doron and
Ledoux 1999; 2000) also display divergent projections to non-
auditory nuclei.

Together, these structural differences are associated with
the different functions exerted by the lemniscal and non-
lemniscal systems. The lemniscal pathway is associated pri-
marily with the relay of purely auditory information, whereas
the non-lemniscal pathway is part of an integrative system
primarily involved in multisensory integration, temporal pat-
tern recognition (cat: Kelly 1973; Layton et al. 1979), change
detection (guinea pig: Kraus et al. 1994a; rat: Malmierca et al.
2009), and certain forms of learning (guinea pig: Edeline and
Weinberger 1991; rat: Komura et al. 2001). Furthermore, the
multimodal afferent and efferent projections characterizing the
non-lemniscal pathway are potentially important for sound
localization, attending to salient stimuli, and mediating the
audio-visual integration of speech stimuli (human:
Champoux et al. 2006; for reviews, see Gruters and Groh
2012; Wu et al. 2014).

Major excitatory and inhibitory neurotransmitter
receptors

The distribution and expression of receptor subtypes for neu-
rotransmitters and neuromodulators show subtle differences in
the IC and MGB subdivisions (summarized in Table 1).

Excitatory neurotransmission is mediated by glutamate in
both the IC (cat: Adams and Wenthold 1979) and the MGB
(rat: Hu et al. 1994). Both ionotropic AMPA (α-amino-3-hy-
droxy-5-methylisoxazole-4-propionic acid) and NMDA (N-
methyl-D-aspartate) receptors intervene in the synaptic trans-
mission of the IC (rat: Ma et al. 2002; for a review, see Kelly
and Zhang 2002) and the MGB (rat: Hu et al. 1994), but
recordings from the non-lemniscal regions of the IC do not
provide evidence for pharmacological differences from the
CNIC (rat: Li et al. 1998, 1999). Immunostaining for AMPA
receptors is homogeneous throughout the IC (rat: Petralia and
Wenthold 1992; Gaza and Ribak 1997), although the presence
of the GluR2-3 AMPA subunit is more common in the non-
lemniscal regions of the IC (rat: Caicedo and Eybalin 1999).
Additionally, NMDA receptors are more common in the LCIC
and the DCIC (rat: Petralia et al. 1994). In accordance with the
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IC data, the presence of AMPA receptors in theMGB has been
proved to be homogeneous and moderate in quantity (rat: Sato
et al. 1993; Caicedo et al. 1998; for a review, see Parks 2000),
whereas the presence of NMDA receptors seems more prom-
inent in the non-lemniscal regions of the MGB (rat: Monaghan
and Cotman 1985; Hu et al. 1994). Immunohistochemical
studies have also demonstrated the presence of the metabotro-
pic glutamate receptor mGluR5 in the cortical regions of the IC
(rat: Abe et al. 1992; Shigemoto et al. 1993). Group I mGluRs,
including mGluR1 and mGluR5, are located mostly on post-
synaptic parts of cells and act by increasing NMDA activity.
Projections from the DCIC and LCIC to the non-lemniscal
regions of the MGB recruit mGluR (rat: Bartlett and Smith
2002; mice: Lee and Sherman 2010), as opposed to the mainly
ionotropic component of the postsynaptic receptors of the
MGBv (for a review, see Lee and Sherman 2011). As
NMDA receptors are classically linked to synaptic plasticity,
learning, and memory (Morris 2013), the testing of the role, if
any, that the NMDA receptors play on shaping SSAwould be
of great interest in future studies.

Inhibitory neurotransmission in the IC is mediated by both
gamma-aminobutryric acid (GABA) and glycine (for a review,
see Cant and Benson 2003). GABAA receptors are located in
more dorsal regions of the IC (gerbil: Sanes et al. 1987; bat:
Fubara et al. 1996; Lu and Jen 2001), whereas glycine puncta

are more prominent in the ventral region of the IC (cat: Adams
and Wenthold 1979; Saint Marie et al. 1989; rat: Merchan et al.
2005). Nevertheless, this is not the only pattern of distribution that
emerges with inhibition in the IC, as GABAergic neurons are also
organized in cluster modules in the DCIC and the LCIC (rat:
Chernock et al. 2004), with an unknown function. Additionally,
metabotropic GABAB receptors are present to a greater extent in
the CNIC and the LCIC (rat: Bowery et al. 1983; bat: Fubara et al.
1996; rat: Jamal et al. 2011, 2012). In the thalamus, inhibition in
theMGB is primarilymediated byGABAacting at bothGABAA

and GABAB receptors (rat: Bartlett and Smith 1999; Richardson
et al. 2011), because MGB lacks glycinergic receptors (rat: Aoki
et al. 1988; Friauf et al. 1997). GABAergic interneurons are vir-
tually absent in the rat MGB (only ~1 %:Winer and Larue 1996;
Bartlett and Smith 1999), but in this case, the nucleus receives
significant GABAergic projections from the IC (bat, rat, cat, and
monkey: Winer et al. 1996; rat: Peruzzi et al. 1997; mice and rat:
Ito et al. 2011) and the thalamic reticular nucleus (cat: Rouiller
et al. 1985).

Recent studies have addressed the effect of neuronal inhi-
bition on SSA by local manipulation of GABA neurotrans-
mission (Fig. 4). The blockade of the GABAA receptor by
using the specific antagonist gabazine elicits an overall in-
crease in the evoked and spontaneous activity in IC (rat:
Perez-Gonzalez et al. 2012) and MGB (rat: Duque et al.

Table 1 Main receptor distribution in the human inferior colliculus (IC)
and medial geniculate body (MGB) shown with density (− absent, + to
+++ increasing density levels, SSA stimulus-specific adaptation, CNIC
central nucleus of IC, LCIC lateral cortex, RCIC rostral cortex, DCIC
dorsal cortex,MGBv ventral division of MGB,MGBd dorsal subdivision

of MGB, MGBm medial subdivision of MGB, AMPA α-amino-3-hy-
droxy-5-methylisoxazole-4-propionic acid, NMDA N-methyl-D-aspar-
tate, GABA Gamma aminobutryic acid, nNOS Neural nitric oxide
synthase)

Transmitter type receptor IC MGB SSA implication

Lemniscal Non-lemniscal Lemniscal Non-lemniscal

CNIC DCIC LCIC RCIC MGBv MGBd MGBm

Glutamate AMPA Homogeneous Homogeneous Unlikely

NMDA + +++ + +++ Likely

mGluR − +++ − +++ Likely

GABA A Dorsal Clusters Homogeneous Gain control

B +++ + +++ + +++ +++ − Low

Glycine Ventral + − − − Unlikely, IC only

Acetylcholine Muscarinic − + + − Homogeneous Attention?

Nicotinic − +++ +++ − Homogeneous Attention?

Serotonin + +++ +++ +++ + +++ Unknown Attention?

Norepinephrine + +++ +++ +++ Unknown Learning?

Dopamine + +++ +++ +++ Very low Learning? IC only

Endocannabinoids Unknown Unknown Present Unknown Speculative

nNOS + +++ +++ +++ Unknown Speculative

Dynorphin + + +++ +++ Unknown Unknown

Enkephalin Homogeneous Unknown Unlikely

Substance P + +++ +++ +++ Unknown Speculative
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2014) neurons. This increase in neuronal discharge is inde-
pendent of the SSA sensitivity and their discharge pattern.
Together, these studies demonstrate that the blockade of
GABAA receptors of IC and MGB neurons with high SSA
sensitivity (typically located in non-lemniscal regions) does
not abolish SSA (rat: Perez-Gonzalez et al. 2012; Duque
et al. 2014), suggesting that the GABAergic system exerts a
gain control function on the neuronal responses. Furthermore,
the experiments performed in theMGB byDuque et al. (2014)
suggest that the ability of GABA to modulate SSA in the
MGB is likely to be mediated by the GABAA rather than by
the GABAB receptors. The effects of gaboxadol, a GABAA-
selective agonist that does not bind to GABAB receptors (rat:
Bowery et al. 1983), are no different from the effects elicited
by GABA on SSA inMGB.Moreover, as the highest levels of
SSA are found in the MGBm (rat: Antunes et al. 2010), an
area that lacks GABAB receptors (rat: Smith et al. 2007), these
metabotropic receptors do not seem to be involved in SSA
generation. However, any possible synergic effect as a result
of the co-application of antagonist or agonists of other subunit
or subtype receptors cannot be excluded.

Indeed, as metabotropic receptors (mainly GABAB) are
linked to calcium (Ca2+) signaling, Ca2+-binding proteins
(namely parvalbumin, calbindin, and calretinin) largely define
the lemniscal and non-lemniscal pathways (monkey: Jones
2003; human: Tardif et al. 2003; bats and birds: Covey and
Carr 2005; rat: Ouda and Syka 2012). In the IC, parvalbumin is
distributed throughout the subdivisions but with a larger pres-
ence in the CNIC (bat: Vater and Braun 1994; rat: Lohmann
and Friauf 1996; Ouda and Syka 2012). On the other hand,
calretinin- and calbindin-positive neurons are usually located
in the non-lemniscal regions of the IC (bat: Zettel et al. 1991;
rat: Ouda and Syka 2012). In the MGB, parvalbumin is also
associated with the lemniscal regions, whereas calbindin is
associated with the non-lemniscal regions (rabbit: de Venecia
et al. 1995; monkey: Molinari et al. 1995; mice: Cruikshank
et al. 2001). The parvalbumin (lemniscal) and calbindin/
calretinin (non-lemniscal) distributions are also maintained in
the AC (Banks and Smith 2011). The presence of these Ca2+-
related proteins might play a critical role in second messenger
systems (see: Neuronal mechanisms that might underlie SSA:
synaptic depression and retrograde signaling).

Finally, although the presence of glycine in the non-
lemniscal regions of the IC is small (Adams and Wenthold
1979; Merchan et al. 2005), the effect of glycinergic receptors
in IC neurons on SSA remains unknown. This is an important
point, because IC neurons show higher SSA sensitivity at high
frequencies (Duque et al. 2012), and glycine is more abundant
in the ventral region of the IC (Malmierca and Hackett 2010),
a region whose neurons are high-frequency tuned (Malmierca
et al. 2008). Thus, in order to have a global picture of the
mechanisms that might operate at subcortical SSA, several
open questions remain to be answered. Among others, these

include: what is the effect on SSA mediated by the combined
activation of the GABAA- and GABAB-receptors and
glycinergic receptors, and what is the role, if any, of the
NMDA-mediated excitation. Lastly, as will be explained in
the following sections, the interactions of any of these systems
with specific retrograde messengers could also be crucial to an
understanding of the mechanisms that generate SSA.

Neuromodulators in IC and MGB

Recent studies have envisaged a pivotal role of
neuromodulators on orienting attention and enhancing the
memory for novel stimuli (for reviews, see Ranganath and
Rainer 2003; Edeline 2012). Indeed, the four neuromodulatory
systems, namely cholinergic (Metherate et al. 2012), serotonin-
ergic (Hurley and Sullivan 2012), dopaminergic (Gittelman
et al. 2013), and noradrenergic (Manunta and Edeline 2004),
have been implicated in short-term plastic auditory phenomena
suggesting that they might also mediate SSA.

Acetylcholine has been implicated in predictive coding and
learning under uncertainty in humans (Moran et al. 2013).
Moreover, acetylcholine is known to exert frequency-
specific plasticity in both cortical (cat: Metherate and
Weinberger 1989) and subcortical (bat: Ji et al. 2001) neurons.
Cholinergic terminals are abundant in the DCIC and the LCIC
(guinea pig: Jain and Shore 2006; for a review, see Shore
2008), and the receptors in these regions are mainly nicotinic.
In the MGB, almost all the neurons present either muscarinic
and/or nicotinic receptors and are excited by acetylcholine
(cat: Tebecis 1970, 1972). Acetylcholine depolarizes most of
the neurons in the lemniscal MGBv through the muscarinic
receptors, whereas a large amount of the neurons in theMGBd
remain unaffected (rat: Varela and Sherman 2007; for a re-
view, see Varela 2014).

Serotoninergic projections to all the regions of the IC arise
from the raphe nuclei (bat: Hurley and Pollak 2005), although
fibers are denser in non-lemniscal regions such as the DCIC
and the LCIC (for reviews, see Hurley et al. 2002; Hurley and
Sullivan 2012). Raphe nuclei also present projections to the
MGB (monkey: Lavoie and Parent 1991; rat: Vertes et al.
2010), modulating the responses of many of the neurons in
the lemniscal MGBv and most of the neurons in the non-
lemniscal MGBd (guinea pig: Pape and McCormick
1989; cat: McCormick and Pape 1990; ferret: Monckton
and McCormick 2002; rat: Varela and Sherman 2009;
Varela 2014).

Attention during task engagement is known to modulate
neuronal responses (ferrets: Fritz et al. 2003, 2007), and thus,
attention mediated by either acetylcholine or serotonin might
produce this modulation, hence affecting the levels of SSA.
Indeed, recent work concerning SSA in the IC of the awake
mouse (Duque and Malmierca 2014) has demonstrated that
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the lower the spontaneous firing rates, the higher the SSA
sensitivity. As spontaneous activity can be modulated during
attention and can enhance signal detection (gerbils: Buran
et al. 2014), both neuromodulators might be involved in
SSA sensitivity. In view of the involvement acetylcholine
(Jones 2005) and serotonin (Kelly and Caspary 2005) in
arousal and attention, the effect of such neurotransmitters on
SSA might be more important than previously estimated, and
we need further studies in this field.

The response of the neurons of the IC and the MGB are
also affected by catecholamines, mainly through
noradrenergic- (rat: Swanson and Hartman 1975; Foote et al.
1983; Klepper and Herbert 1991) and dopaminergic (rat, cat
and bat: Olazabal and Moore 1989; cat: Paloff and Usunoff
2000) fibers. The locus coeruleus is the main source of nor-
adrenaline for both the IC and the MGB (Aston-Jones 2004).
The dopaminergic innervation for the IC arises from neurons
in the substantia nigra (Moore and Bloom 1979; Olazabal and
Moore 1989), whereas the dopamine sources for the MGB are
highly diverse (macaque: Sanchez-Gonzalez et al. 2005).
Recent findings suggest that the noradrenergic direct projec-
tion from the locus coeruleus to the IC is mainly ipsilateral and
just reaches the non-lemniscal regions of the IC (rat: Klepper
and Herbert 1991; Hormigo et al. 2012). The dopaminergic
neurons identified in the IC also have a distinct distribution,
the largest number of dopaminergic neurons being located in
the LCIC and the DCIC (rat: Tong et al. 2005).

In summary, considering that (1) noradrenaline and dopa-
mine act as learning signals, and both neuromodulators are
released at times of novelty and uncertainty (Harley 2004),
and that (2) acetylcholine and serotonin mediate attention,
their involvement in SSA sensitivity might be critical. Since
SSA is a pre-attentive feature observed under anesthesia (rat:
Malmierca et al. 2009), in awake (mouse: Duque and
Malmierca 2014), and sleep-like states (rat: Nir et al. 2013),
SSA is probably affected by the variations in the levels of
neuromodulators occurring during these states. Thus, future
studies of the various modulatory substances will undoubtedly
shed light on the way that the brain learns to discriminate
potentially relevant sounds (Edeline 2012).

Neuronal mechanisms that might underlie SSA: synaptic
depression and retrograde signaling

Since GABAergic inhibition plays a key role in modulating SSA
rather than in its generation (Perez-Gonzalez et al. 2012; Duque
et al. 2014), a synaptic depression model (Grill-Spector et al.
2006; Briley and Krumbholz 2013) might be a more likely ex-
planation for SSA. In this model, the continuous activation of the
same set of neurons will eventually produce a specific decrease
of the neurotransmitter release at the presynaptic level, and con-
sequently, the postsynaptic neuron will not generate a response.

The frequency-specific adaptation channel theory supports this
model (Eytan et al. 2003; Mill et al. 2011a, 2011b; Taaseh et al.
2011; Nelken 2014) in which all the frequencies that are within
the same frequency channel will not evoke SSA, because they
are encoded by the same neurons. Although recent data from the
rat AC (Hershenhoren et al. 2014) suggest other, as yet un-
known, more complex mechanisms to explain SSA at the corti-
cal level, in the IC, SSA is not constant within the neuronal
receptive field of the neuron, and SSA sensitivity is stronger on
the high-frequency edge of the receptive field (Duque et al.
2012). This phenomenon presents interesting correlates in the
auditory nerve fibers (Westerman and Smith 1985) and the IC
(Dean et al. 2008) in which adaptation is also more prominent at
high frequencies. Together, these studies suggest that synaptic
depression (Chung et al. 2002; Rothman et al. 2009) might ex-
plain subcortical SSA, as it is an input-specific mechanism, and
neural responses depend upon the previous history of afferent
firing (Abbott et al. 1997; Rothman et al. 2009).

Moreover, as various retrograde signaling pathways can act at
the synaptic level (Regehr et al. 2009), synaptic depression does
not necessarily have to be a passive phenomenon (i.e., fatigue).
Retrograde signaling mediates short-term synaptic plasticity
(Regehr 2012), a likely explanation for synaptic depression
(Abbott and Regehr 2004): lipids (endocannabinoids), gases (ni-
tric oxide), peptides (i.e., met-enkephalin and/or dynorphin), and
conventional amino acid transmitters (i.e., glutamate and/or
GABA) can be released in an activation-dependent manner by
postsynaptic neurons and then act on the axon terminals of pre-
synaptic neurons (Regehr et al. 2009). The production and re-
lease of these messengers is regulated by the activation of post-
synaptic glutamatergic metabotropic receptors (Regehr et al.
2009) and/or by postsynaptic Ca2+ (de Jong and Verhage
2009), two components mainly located in the non-lemniscal re-
gions of the IC and the MGB (see above). In the mammalian
brain, the endocannabinoid signaling system is the best-
characterized retrograde signaling pathway and enables neurons
specifically to regulate the strength of their inputs in a retrograde
manner (Wilson and Nicoll 2002; Freund and Hajos 2003; Kano
et al. 2009). Endocannabinoid type-1 (CB1) receptors are
thought to be one of the most widely expressed G-protein-
coupled receptors in the brain (Herkenham et al. 1990). The
presynaptic localization of CB1 receptors and their inhibitory
effect on neurotransmitter release has been shown to be a general
feature of most axon terminals in the central nervous system
(Kano et al. 2009), suppressing synaptic strength for tens of
seconds (Wilson et al. 2001). The firing evoked by the standard
stimuli in an oddball paradigm can activate group I mGluR, thus
inducing endocannabinoid release (Chevaleyre et al. 2006) and
contributing to short-term synaptic plasticity (Castillo et al.
2012), as in the fast adaptation occurring in the neuronal firing
to the standard tone. Endocannabinoid signaling has been dem-
onstrated to act in the auditory pathway at the level of the co-
chlear nucleus (Zhao et al. 2009; Zhao and Tzounopoulos 2011),
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the superior olivary complex (Trattner et al. 2013), and the ex-
ternal cortex of the IC of the barn owl (Penzo and Pena 2009),
but its affect on auditory SSA remains unknown.

Much less is known about other retrograde neurotransmit-
ters. For example, the highest levels of nNOS (the neuronal
enzyme that synthesizes nitric oxide) are evident in the DCIC
and the LCIC, with much lower levels in the CNIC (Druga
and Syka 1993; Paloff and Hinova-Palova 1998; Coote and
Rees 2008). Few data are available for understanding the in-
volvement of nNOS in the MGB. As another example, immu-
nostaining for kappa (κ) opioid receptors (dynorphin) is sig-
nificantly higher in the LCIC, but delta (δ) opioid receptors
(met-enkephalins) are similarly distributed within the IC
(Aguilar et al. 2004; Tongjaroenbuangam et al. 2006). Thus,
the distribution of the opioid receptors cannot be correlated
with specific regions of the IC. The data regarding opioid
receptor distribution in the MGB are also sparse and difficult
to interpret. Lastly, we should mention the existence of exten-
sive labeling for fibers with both somatostatin and substance-P
in the DCIC and the LCIC, with somatostatin showing the
most extensive encircling of the CNIC (Wynne and
Robertson 1997). Interestingly, no significant fibers labeling
for either peptide have been observed within the CNIC
(Wynne and Robertson 1997). Unfortunately, the involvement
of retrograde signaling in SSA remains unknown, and much
work is needed to gain an understanding of the functions of
these systems in sound discrimination.

Detection of acoustic deviance in non-auditory nuclei

Beyond the auditory pathway, stronger neuronal responses to
deviant sounds have also been found in some non-auditory

�Fig. 4 Effect of neuronal inhibition on the SSA responses in IC and
MGB neurons. a Dot raster plots obtained after an oddball paradigm
for a pair of frequencies in an IC neuron. The dot rasters refer to the
control (left), gabazine (GBZN, middle), and recovery (right)
conditions. Frequencies are shown as insets over the control condition.
The first row shows f1/f2 as a standard/deviant, whereas the second row
shows the reverse condition (f2/f1 as standard/deviant). The black line
lying under the dot rasters represents the stimulus duration. Common
SSA index (CSI) values are shown over each condition. The mean
peristimulus time histograms from both dot rasters are shown in the
third row (Spk spike). b Dot raster plots obtained after an oddball
paradigm for a pair of frequencies in an MGB neuron. Same format as
in a. c Box plot of the CSI values for the population of neurons of the IC
before, during, and after the application of GBZN. d Box plot of the CSI
values for the population of neurons of theMGB before, during, and after
the application of GBZN and GABA. In both cases, asterisks indicate
significant differences (Friedman test, P<0.01). e In the absence of
inhibition, neurons respond to deviants (orange) and standards (light
blue) with high firing rates, and thus the deviant to standard ratio is
small. f Inhibition reduces the responses to both deviants (red) and
standards (dark blue) increasing the deviant to standard ratio and thus
enhancing SSA. a, c, e, f: modified from Perez-Gonzalez et al. (2012). b,
d: modified from Duque et al. (2014)
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nuclei, including the substantia nigra (Minks et al. 2014), hip-
pocampus (Ruusuvirta et al. 1995b, 1995c), basal ganglia
(Mikell et al. 2014), optic tectum (Reches and Gutfreund
2008), and thalamic reticular nucleus (Yu et al. 2009). As
mentioned in the previous section, some of these nuclei have
anatomical connections with the non-lemniscal auditory
subdivisions.

The substantia nigra is typically involved in sensorimo-
tor coordination. However, recently, a study in humans by
Mikell et al. (2014) has demonstrated that novel sounds
evoke a greater firing rate compared with the activity fol-
lowing standard tones in substantia nigra neurons. The re-
sponse following the deviant presentations displays a bi-
phasic temporal pattern with peaks at approximately 300
and 500 ms (Fig. 5a). Interestingly, an inverse correlation
occurs between the firing rate and the strength of the
novelty response across all recorded neurons, i.e., neurons
sensitive to deviant stimulus exhibit slow firing, whereas
neurons with the highest firing rates are suppressed by
the novel stimuli. Mikell and colleagues (2014) speculate
that the substantia nigra neurons that discriminate deviant
and standard tones correspond to dopaminergic neurons,
since previous studies indicate dopaminergic neurons are
sensitive to novelty (Bunzeck and Düzel 2006). Moreover,
the former authors further suggest that the other group of
substantia nigra neurons with high and tonic firing rates
suppressed by the deviant tone correspond to GABAergic
interneurons that are known to inhibit the local dopaminer-
gic neurons (Tepper et al. 1995). Interestingly, the response
in the substantia nigra, i.e., the first peak of the increased
activity following novel sounds (250–350 ms after stimulus
onset), occurs concurrently with the onset of the
hippocampally-dependent potential P300, a scalp-recorded
potential linked to novelty detection. Notably, MMN-like
responses to pitch (Ruusuvirta et al. 1995b, 1995c; 1996),
duration (Rosburg et al. 2007; Ruusuvirta et al. 2013), and
frequency deviants (Ruusuvirta et al. 2010) have been re-
corded across the hippocampus in animal studies. The hip-
pocampus is associated with involuntary attention switches
toward auditory changes of high magnitude. Ruusuvirta
et al. (2013) have found that MMN responses to duration
deviants are elicited across the three hippocampal areas,
i.e., CA1, dentate gyrus, and subiculum in anesthetized rats.
In a previous report from the same group (Ruusuvirta et al.
2010), higher amplitude local field potentials in response to
frequency deviants have been recorded in the CA1 of
awake animals. The MMN response to frequency and du-
ration deviants occurs within a similar time window, at 36–
80 and 51.5–89 ms post-stimulus, respectively.

Recently, other non-auditory nuclei have been implicated
in acoustic deviance detection. The subthalamic nucleus is
integrated into the basal ganglia system, and traditionally, it
is considered to play a role in cortical motor control regulation

(Rektor et al. 2001). Minks et al. (2014) have demonstrated
that deviant pure tones elicit MMN-like responses in the

Fig. 5 Response to acoustic deviants in non-auditory subcortical nuclei.
a Normalized firing response of neurons of the substantia nigra. Novel
sound evoked a greater response (red line) compared with standard tones
(blue line) over the 250–350 ms interval and over 500–600 ms (black
lines regions of *P<0.05; modified from Mikell et al. 2014). b Optic
tectum neuronal SSA responses to average binaural sound intensity
(ABSI, 30 dB gap), frequency (Freq, 2 kHz gap), interaural level
difference (ILD, 15 dB gap), and interaural time difference (ITD, 40 μs
gap). Top gray line is the response to a rarely presented stimulus, black
line the response to a frequently presented stimulus, bottom gray line the
difference between the two, arrowheads stimulus onset, black ticks
latency of the population response to the frequent stimulus, gray ticks
latency of the difference signal (taken from Reches and Gutfreund
2008). c Entopallium neuronal responses to deviant occurrences (green
lines) together with the corresponding responses to frequent occurrences
(blue lines) of auditory, visual, and bimodal stimulus (modified from
Reches et al. 2010)
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subthalamic nuclei by using intracranial electroencephalo-
graph recordings in humans. The responses are evident in
the far-field potentials (intracerebral electrodes referenced to
the extracranial electrode) and near-field potentials (intracere-
bral contacts referenced to one another within the subthalamic
nuclei) with a similar average time-to-peak, i.e., 202 and
214 ms, respectively.

SSA responses have been also found in the optic tectum,
which is the avian homolog of the superior colliculus of mam-
mals. The optic tectum is involved in orienting gaze toward
salient stimuli and receives auditory inputs primarily from the
cortices of the IC (Gutfreund 2012). In an elegant study per-
formed by Reches and Gutfreund (2008), SSA responses to
more than one acoustic feature, i.e., sound frequencies, ampli-
tudes, and interaural and interlevel time difference, were found
in the single- and multi-unit activity of the optic tectum neurons
(Fig. 5b). All acoustic features elicited a similar pattern of ad-
aptation developed several milliseconds after the onset of the
response. Interestingly, neurons of the IC exhibited SSA only to
sound frequency but showed a higher neuronal hyperacuity.
These results led the authors to suggest that neurons in higher-
level centers of the ascending gaze control system, such as the
optic tectum where the IC neurons project to, encompass SSA
to multiple acoustic features and not only to one single acoustic
dimension as occurs in the IC of the barn own.

The studies highlighted above clearly demonstrate that de-
viance detection is a widely distributed neuronal network that
goes beyond the auditory pathway (Ranganath and Rainer
2003). At the same time, these studies lead to questions re-
garding the possibility of whether these neuronal structures
play an active role in the genesis of deviance detection or
simply reflect adaptive neuronal processes taking place at their
projecting sources. To gain information in order to permit a
direct comparison with the SSA studies, an interesting project
would be to record the responses of a single neuron to various
acoustic stimuli in the hippocampus, subthalamic nuclei, or
superior colliculus under the same paradigms as those used in
the auditory SSA studies (Ulanovsky et al. 2003; Malmierca
et al. 2009; Yaron et al. 2012).

Multisensory responses and deviance detection

Neurons showing SSA also participate in multisensory pro-
cessing since information integrated across various sensory
modalities can greatly enhance our ability to detect, discrimi-
nate, or respond to relevant sensory events (for reviews, see
Stein and Meredith 1993; Gleiss and Kayser 2012). As de-
scribed previously, the non-lemniscal subdivisions of the IC
and MGB in which the strongest SSA responses are found
receive afferent projections not only from auditory nuclei,
but also from visual and somatosensory nuclei (Wu et al.
2014). Indeed, several studies indicate that other subcortical

nuclei involved in deviance detection also engage multimodal
sensitivities. Neurons with multimodal sensitivity exhibit
suprathreshold responses to stimuli from more than one sen-
sory modality, and often the response of these neurons is
stronger to combined stimuli than to the most effective
single-modality stimulus (Meredith et al. 2012). Examples of
auditory neurons whose sensitivity differs significantly when
they are stimulated by bimodal (e.g., audiovisual) stimuli are
summarized below. Yu et al. (2009) have found SSA re-
sponses in the thalamic reticular nucleus, a multimodal area
mainly conformed by GABAergic neurons and have shown
that MGB acoustic responses are modulated in a cross-modal
manner by a preceding light stimulus. This modulation of the
auditory responses is abolished by the inactivation of the tha-
lamic reticular nucleus. Moreover, eye position has been dem-
onstrated to modulate auditory responses as early as in the
shell area of the IC of primates (Groh et al. 2001; for reviews,
see Gruters and Groh 2012; Wu et al. 2014).

Likewise, other subcortical non-auditory structures that are
particularly sensitive to deviant sound also exhibit multimodal
sensitivities. Neurons in the substantia nigra are responsive to
visual, auditory, and somatosensory stimulation (Nagy et al.
2005; Chudler et al. 1995) exhibiting multisensory response
enhancements (Nagy et al. 2006). In the barn owl, optic tec-
tum neurons show multisensory enhancement (Zahar et al.
2009) and SSA for visual stimuli, in addition to SSA for sound
frequency deviants (Reches and Gutfreund 2008). Moreover,
Reches et al. (2010) have performed a pioneering study dem-
onstrating that a bimodal stimulus enhances the SSA re-
sponses of entopallium neurons, a forebrain structure of the
barn owl (Fig. 5c). This enhancement occurs only when the
auditory and visual stimuli are congruent in space and time
(Reches et al. 2010). Whether the same multimodal enhance-
ment of the auditory SSA responses occurs at early subcortical
processing stages remains to be determined in future studies.

The superior colliculus is also of special interest for the
exploration of SSA, because (1) the optic tectum (which is
its avian homolog) encompasses SSA for multiple acoustic
parameters and for visual stimulus (Reches and Gutfreund
2008) and (2) the basic principles of multisensory integration
have been revealed in single-cell studies in the superior
colliculus (Stein and Wallace 1996; Stein and Stanford
2008; Meredith et al. 2012). Interestingly, neurons of the su-
perior colliculus of the anesthetized cat with little or no spon-
taneous activity and weak sensory responses have the ability
to exhibit large multisensory response enhancements in com-
parison with the poor response enhancements exhibited by
superior colliculus neurons with modest spontaneous activity
and robust sensory responses (Perrault et al. 2003). The re-
sponse features of the ongoing multisensory enhancement of
the superior colliculus resemble the poor response of the IC
neurons showing strong SSA (Duque et al. 2012) and those of
substantia nigra neurons sensitive to deviant stimulation
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(Mikell et al. 2014). Finally, the tegmental nucleus is another
multisensory structure (Koyama et al. 1994; Reese et al. 1995)
in which acoustic SSA is likely to occur (Schofield et al.
2011), since its neurons attenuate or even abolish their re-
sponse to repetitive auditory stimulation (Koyama et al.
1994). Furthermore, tegmental nucleus neurons project to
the IC and receive projections from the AC (Schofield 2010).

All the above-mentioned studies support the notion that the
subcortical nuclei engaged in auditory deviance detection con-
stitute a neuronal microcircuitry based on the convergence of
inputs from various sensory modalities that might act as early
integration centers to enhance deviance detection. This wealth
of data sets forth a promising field in which to explore and
determine whether subcortical neurons allow better deviance
coding under multisensory compared with unimodal
conditions.

Final remarks

We have reviewed evidence of MMN-like and SSA responses
occurring in the shell area of the IC and MGB and in non-
auditory nuclei and suggest that they conform to a distributed
subcortical network for deviance detection. Likewise, the to-
pographic distribution of SSA in the shell areas of the IC and
MGB suggests that the microcircuitry and neurochemistry of
the non-lemniscal areas exert a critical role in the generation
and modulation of SSA in these nuclei. Further studies com-
bining physiological, anatomical, and molecular approaches
will broaden our understanding of the microcircuits of SSA in
the auditory and non-auditory nuclei. Moreover, these studies
will contribute to the determination of the similar or different
contribution of each nucleus to the processing of deviant
sounds and to the triggering of the cascade of neuronal pro-
cesses that allow animals to adapt rapidly to environmental
changes.
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