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Abstract High glucose induces vascular smooth muscle cell
(SMC) dysfunction by generating oxidative stress attributable,
in part, to the up-regulated NADPH oxidases (Nox). We have
attempted to elucidate the high-glucose-generated molecular
signals that mediate this effect and hypothesize that products
of high-glucose-induced lipid peroxidation regulate Nox by

activating peroxisome proliferator-activated receptors
(PPARs). Human aortic SMCs were exposed to glucose
(5.5–25 mM) or 4-hydroxynonenal (1–25 μM, 4-HNE).
Lucigenin assay, real-time polymerase chain reaction, western
blot, and promoter analyses were employed to investigate
Nox. We found that high glucose generated an increase in
Nox activity and expression. It also promoted oxidative stress
that consequently induced lipid peroxidation, which resulted
in the production of 4-HNE. Pharmacological inhibition of
Nox activity significantly reduced the formation of high-
glucose-induced 4-HNE. Exposure of SMCs to non-
cytotoxic concentrations (1–10 μM) of 4-HNE alone mim-
icked the effect of high glucose incubation, whereas scaveng-
ing of 4-HNE by N-acetyl L-cysteine completely abolished
both the effects of high glucose and 4-HNE. The latter exerted
its effect by activating PPARα and PPARβ/δ, but not PPARγ,
as assessed pharmacologically by the inhibitory effect of se-
lective antagonists and following the silencing of the expres-
sion of these receptors. These new data indicate that 4-HNE,
generated following Nox activation, functions as an endoge-
nous activator of PPARα and PPARβ/δ. The newly discov-
ered “lipid peroxidation products–PPARs–Nox axis” repre-
sents a novel mechanism of Nox regulation and an additional
therapeutic target for oxidative stress in diabetes.
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Introduction

Hyperglycemia induces excess formation of reactive oxygen
species (ROS) and is a major contributor to the development
of diabetic complications, such as atherosclerosis, the main
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cause of mortality in diabetic patients (Gao and Mann 2009;
Heltianu et al. 2011). The oxidative environment has been
linked to the dysfunction of vascular endothelial and smooth
muscle cells (SMCs), which further promotes and accelerates
the development of atherosclerotic lesions. In these diseases,
the phenotypic alterations of vascular SMCs represent a mal-
adaptive response to diabetic stimuli and are considered to be
partially mediated by increased levels of ROS in the cells
(Csányi et al. 2009). Nevertheless, the molecular mechanisms
of hyperglycemia-induced excess ROS formation in SMCs
are not well defined.

Vascular NADPH oxidases (Nox) are a class of hetero-
oligomeric enzymes (Nox1-5) whose exclusive function is
the generation of ROS in a highly regulated manner.
Increased Nox-derived ROS formation is highly detrimental
in numerous pathologies, including diabetes mellitus.
Typically, SMCs express the Nox1, Nox4, and Nox5 subtypes
and a lower level of Nox2. The p22phox subunit is essential
for Nox1 and Nox4 activities, whereas Nox5 function is
calcium-dependent (Manea et al. 2008; Manea 2010).
Nonetheless, the specific role and contribution of each en-
zyme in SMCs has not yet been elucidated. However, Nox
expression and activity are reported to be significantly in-
creased in the vasculature of diabetic subjects and these
changes are associated with the development of macro- and
microvascular disorders (Sedeek et al. 2012a, 2012b). Since
all the members of the Nox family are major triggers of oxi-
dative stress and might play a prominent role in diabetes-
induced vasculopathies (Gao and Mann 2009; Manea et al.
2014), these enzymes and their up-stream regulators are con-
sidered major therapeutic targets (Kahles and Brandes 2012;
Krause et al. 2012).

Evidence is accumulating that the activation of peroxisome
proliferator-activated receptors (PPARα, −β/δ, and –γ) nega-
tively correlates with vascular inflammation and ROS gener-
ation by mechanisms that are not yet clear. In addition, PPARs
play key roles in the regulation of fatty acid metabolism and
energy homeostasis. PPARs are members of a nuclear hor-
mone receptor family comprising three major isoforms,
PPARα, PPARβ/δ, and PPARγ. They dimerize with the acti-
vated retinoid X receptor (RXR) and function as ligand-
activated transcription factors (Forman et al. 1997; Staels
and Fruchart 2005; Das and Chakrabarti 2006; Staels 2007;
Plutzky 2011).

Lipid peroxidation of polyunsaturated fatty acids (PUFAs)
is initiated by ROS and hydroxyl radicals and results, follow-
ing a series of non-enzymatic reactions, in the generation of 4-
hydroxy-2E-hexenal (4-HHE), 4-hydroxy-2E-nonenal (4-
HNE), and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE).
Evidence has accumulated suggesting that low and physiolog-
ical levels of these molecules function as signaling messen-
gers, most likely by activating PPARs (Riahi et al. 2010a,
2010b). Recently, 4-HNE and 4-HDDE have been reported

to activate PPARβ/δ in endothelial cells and pancreatic β-
cells (Riahi et al. 2010a, 2010b; Cohen et al. 2011). Whether
this mechanism takes place in other cells, such as SMCs, and
whether hyperglycemic conditions intensify the process re-
main unknown. Here, we have aimed at investigating the in-
teractions among 4-HNE (an important lipid peroxidation
end-product induced by high glucose), PPARs, and Nox-
induced ROS formation in human aortic SMCs. We provide
evidence that 4-HNE increases Nox expression and function
by activating PPARα and PPARβ/δ. This study highlights the
role of the PPAR family in redox sensing and redox control
mechanisms in vascular SMCs in diabetes.

Materials and methods

Materials

Standard chemicals, antibodies, short interfering RNA
(siRNA), reagents, and molecular biology kits were obtained
from Sigma-Aldrich (Germany), Santa Cruz Biotechnology
(USA), Invitrogen (Austria), and Qiagen (Germany). The
pDR1-luc control plasmid was from Stratagene (Germany).

Cell culture

Human aortic SMCs were obtained and characterized as de-
scribed in Tîrziu et al. (1999). The cell line was established in
accordance with our institutional ethical guidelines. Confluent
quiescent cells (at passages 7–10) cultured for 24 h in fetal
bovine serum (FBS)-free Dulbecco’s modified Eagle’s
Medium (DMEM, 5.5 mMglucose). Tomimic hyperglycemia
conditions, the cells were further exposed for up to 24 h to
DMEM supplemented with normal (5.5 mM) or high (11–
25 mM) glucose concentrations without or with 1–25 μM 4-
HNE. Other experiments were performed under similar con-
ditions but in the absence/presence of selective PPAR antag-
onists or specific siRNA for PPARα, PPARβ/δ, or PPARγ.

Primary cultures of adult human aortic SMCs (Lonza,
Switzerland) were used to validate the data obtained with
the SMC line. The cells, which were grown to confluence
according to the supplier’s instructions, were treated as de-
scribed above.

This study was conducted in accordance with the ethical
principles for medical research involving human subjects
(World Medical Association Declaration of Helsinki), and
the local committee on human research approved the study
protocol.

Measurement of ROS production

NADPH oxidase-dependent O2
•- production was determined

in membrane fractions obtained from SMCs by lucigenin-
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enhanced chemiluminescence assay as previously described
(Ungvari et al. 2003; Touyz et al. 2002). Employing siRNA-
mediated silencing of Nox1, Nox4 or Nox5, we have shown
previously that each Nox subtype contributes to the overall
NADPH-dependent O2

•- formation in SMCs (Manea et al.
2012). However, the involvement of other NADPH-
dependent O2

•--generating oxidases should be considered.
Nox activity was calculated from the ratio of mean light units
to total protein level and expressed as arbitrary units. The
formation of O2

•- in intact SMCs was evaluated by the
dihydroethidium (DHE) method (Manea et al. 2010a).

Real-time polymerase chain reaction

mRNA levels were quantified by the amplification of cDNA
with SYBR Green I and the comparative CT method. The
sequences of oligonucleotide primers were as follows: Nox1
(NM_013955) forward: 5′-CACAAGAAAAATCCTTGGGT
CAA-3′, reverse: 5′-GACAGCAGATTGCGACACACA-3′;
Nox4 (NM_016931) forward: 5′-TGGCTGCCCATC TGGT
GAATG-3′, reverse: 5′-CAGCAGCCCTCCTGAAACAT
GC-3′; Nox5 (NM_024505) forward: 5′-CAGGCACCAG
AAAAGAAAGCAT-3′, reverse: 5′-ATGTTGTCTTGGAC
ACCTTCGA-3′; β-actin (NM_001101) forward: 5′- CTGG
CACCCAGCACAATG -3′, reverse: 5′- GCCGATCCACAC
GGAGTACT -3′. Optimized amplification conditions were
0.2 μM of each primer, 2.5 mM MgCl2, annealing at 60 °C,
and extension at 72 °C for 40 cycles. The gene expression
levels of Nox1, Nox4, and Nox5 were normalized to β-actin
and expressed as arbitrary units.

Western blot

Cell lysate preparation and western blot analysis were per-
formed as previously described (Manea et al. 2012; Manea
et al. 2013). Briefly, cultured SMCs were washed twice in
ice-cold phosphate-buffered saline before lysis in 2 x
Laemmli’s electrophoresis sample buffer (Serva, Germany)
and boiled for 20 min. Equal amounts of protein (50 μg) were
separated by 10 % SDS-polyacrylamide gel electrophoresis
(SDS-PAGE; for Nox1, Nox4, 4-HNE, PPARα, PPARβ/δ,
PPARγ) or 8 % SDS-PAGE (for Nox5) and electroblotted
onto nitrocellulose membranes (Biorad, USA). The mem-
branes were exposed to blocking reagent TBS Blotto A (sc-
2333) and then incubated overnight at 4 °C with primary
antibodies against Nox1 (rabbit polyclonal, sc-25545), Nox4
(goat polyclonal, sc-55142), Nox5 (goat polyclonal, sc-
34707), 4-HNE-protein adducts (goat polyclonal, sc-
130083), PPARα (rabbit polyclonal, sc-9000), PPARβ/δ (rab-
bit polyclonal, sc-7197), PPARγ (rabbit polyclonal, sc-7196),
or β-actin (mouse monoclonal, sc-47778). After being
washed with TRIS-buffered saline containing 0.05 % Tween
20, the membranes were exposed to horseradish peroxidase

(HRP)-conjugated secondary antibodies for 40 min. Protein
bands were detected by using chemiluminescence substrate
solution (Pierce, Germany), and images were taken with a
digital detection system (ImageQuant LAS 4000, Fujifilm,
Japan). Quantification (TotalLab) of Nox proteins and 4-
HNE-modified proteins was performed by normalization to
β-actin protein and expressed as arbitrary units.

Transfection of siRNA

At 24 h prior to transfections, exponentially growing SMCs
were seeded at 4×105 cells (≈50 % confluence) in tissue cul-
ture plates (Ø 60 mm). Control (sc-37007), PPARα (sc-
36307), PPARβ/δ (sc-36305), or PPARγ (sc-29455) siRNA
(20 nM; Santa Cruz Biotechnology) were transfected into
SMC by using Hiperfect reagent according to the manufac-
turer’s protocol (Qiagen). Silencing efficiency was evaluated
by western blot at 48–72 h after siRNA transfection.

Transient transfection and luciferase assay

Transient transfection was performed as in Zalba et al. (2001)
by using Superfect reagent (Qiagen). Promoter activity was
calculated from the ratio of firefly luciferase to β-
galactosidase levels (Beta-Glo assay, Promega) and expressed
as arbitrary units.

Cell impedance measurements

To evaluate the effects of high glucose and 4-HNE on SMC
proliferation, the impedance-based assay for real-time moni-
toring of cell dynamics (xCELLigence, Roche) was
employed. SMCs were seeded at 5×103 cells/well in 16-well
E-Plates and, 24 h later, were exposed to 5.5 or 25 mM glu-
cose in the presence or absence of 1–25 μM 4-HNE. The
results were analyzed by using RTCA software. Notably, the
changes in cell impedance represented an overall index of
various biological processes, such as cell attachment, growth,
proliferation, migration, and matrix deposition.

MTT cell proliferation assay

To investigate the involvement of Nox in mediating high-
glucose-induced SMC proliferation, the Vybrant MTT cell
proliferation assay [MTT = 3-(4,5-dimethyl-thiazolyl-2)-2,5-
diphenol tetrazolium bromide] was used according to the
manufacturer’s protocol (Molecular Probes).

Statistical analysis

Data derived from a minimum of three independent experi-
ments were expressed as means±standard deviation (SD).
Statistical analysis was performed by one-way analysis of
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variance followed by Tukey’s post hoc test; P<0.05 was con-
sidered as statistically significant.

Results

High glucose increases Nox activity and expression in SMCs

Dose-response analysis was performed to evaluate the effects
of increasing concentrations of glucose on Nox expression

and function in human SMCs (Fig. 1). Glucose increased
Nox activity and expression of the various subtypes dose-
dependently. The maximal Nox-activating effect (≈1.4-1.6-
fold) was detected between 16.5 and 25 mM glucose in com-
parison with the 5.5 mM control (Fig. 1a). Similar patterns of
increased expression of mRNA and protein levels of Nox1,
Nox4, and Nox5 isotypes were detected (Fig. 1c–k).
Interestingly, Nox activity and expression remained at
11 mM glucose similar to those of the 5.5 mM control.
Since incubation with 25 mM glucose maximally increased

Fig. 1 High glucose concentration increases NADPH oxidase (Nox)
activity, up-regulates Nox expression, and induces smooth muscle cell
(SMC) proliferation. a Quiescent SMCs were exposed to the indicated
concentrations of glucose (24 h), and NADPH-dependent O2

•- production
was assessed by lucigenin-enhanced chemiluminescence. b SMCs were
plated at 5×103 cells/well on a 16-well plate and, after 24 h, were exposed
to increasing concentrations of glucose in a serum-free medium. Cell
impedance was monitored continuously for 48 h by using E-Plates
technology. The data are representative of three independent

experiments. c–h Up-regulation of Nox1, Nox4, and Nox5 mRNA (c–
e) and increase in protein levels (f–h) quantified by real-time polymerase
chain reaction (PCR) and western blot analyses, respectively, in cells
exposed to 5.5–25 mM glucose. i–k Representative immunoblots
depicting Nox1, Nox4, and Nox5 proteins following incubation of the
cells with increasing concentrations of glucose. n=4, *P<0.05,
**P<0.01. P-values were taken in relation to the cells exposed to
5.5 mM glucose
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Nox activity and expression, this concentration was used in
further experiments. We also found similar effects of high
glucose levels on O2

•- formation in SMCs by using the
lucigenin-based technique and the DHE assay (Electronic
Supplementary Material, Fig. S1a).

High glucose induces SMC proliferation

Since abnormal SMC proliferation represents a key patholog-
ical manifestation in diabetes-associated vascular complica-
tions, we searched for the effect of high glucose on cultured
SMCs by us ing the impedance-based rea l - t ime
(xCELLigence) system. Tomonitor the effects of high glucose
on SMCs proliferation, the cells were exposed to increasing
glucose concentrations (5.5 to 25 mM). Figure 1b shows that
exposure to increasing concentrations of glucose augmented
SMC proliferation in a dose-dependent manner. Lipid perox-
idation end-product 4-HNE (25 μM) was used as a negative
control of cell proliferation. The quantification of
xCELLigence data is presented in Electronic Supplementary
Material (Fig. S2a). To validate the impedance-based mea-
surements, MTT assays were employed to investigate the

effect of high glucose on SMC proliferation. The results
showed that high-glucose-induced SMC proliferation is par-
tially mediated by ROS, possibly generated by activated Nox
(Electronic Supplementary Material, Fig. S3). Figure 2 indi-
cates that high glucose also augmented the formation of 4-
HNE-modified proteins in SMCs via Nox-derived ROS. The
levels of 4-HNE-modified proteins were determined for an
indirect estimation of the cumulative generation of 4-HNE in
cultured SMCs exposed to normal and high glucose concen-
trations. Figure 2a shows that the exposure of SMCs to in-
creasing glucose levels for 24 h resulted in a steady glucose-
dependent increase in 4-HNE-protein adducts formation.

To investigate whether Nox-derived ROS mediated high-
glucose-induced 4-HNE formation, quiescent SMCs were ex-
posed to 5 or 25 mM glucose for 24 h in the absence or
presence of 1 μM apocynin (an inhibitor of Nox activity with
antioxidant properties), diphenyleneiodonium (DPI; a flavin-
containing oxidase inhibitor), or 2000 U/ml catalase-
polyethylene glycol (PEG-CAT; an intracellular scavenger of
H2O2). Western blot analysis revealed that all three agents
significantly reduced the level of high-glucose-induced 4-
HNE-protein adducts (Fig. 2b).

Fig. 2 High-glucose-induced accumulation of endogenous 4-HNE-
protein adducts in SMCs is mediated by Nox; exogenous 4-HNE has a
similar effect on cells. a Formation of 4-HNE-protein adducts as a result
of cell exposure to high glucose concentrations. b Quiescent SMCs were
exposed (24 h) to either normal 5.5 or 25 mM glucose in the absence or
presence of 1 μM apocynin, 1 μM diphenyleneiodonium (DPI), or
2000 U/ml catalase-polyethylene glycol (PEG-CAT). c Determination

of 4-HNE-protein adducts in SMCs treated with exogenous 4-HNE.
The cells were exposed to increasing concentrations of 4-HNE (1–
25 μM) in serum-free medium (24 h), and the formation of 4-HNE-
histidine adducts was assessed by Western blot. d, e Representative
immunoblots depicting 4-HNE-modified proteins (NAC N-acetyl-L-
cysteine). n=4, *P<0.05, **P<0.01. P-values were taken in relation to
cells exposed to 5.5 mM glucose or vehicle (ethanol)
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Exposure of SMCs to 4-HNE induced accumulation
of 4-HNE-protein adducts in a concentration-dependent
manner

To determine the range of high-glucose-induced 4-HNE for-
mation, cultured SMCs were exposed to increasing concentra-
tions of 4-HNE for 24 h in serum-free DMEM containing
5.5 mM glucose. Whereas the reactivity was low in vehicle-
treated cells, it significantly increased following exposure to
increasing concentrations of 4-HNE (Fig. 2c). The polyclonal
antibody against 4-HNE-histidine adducts intensely labeled
protein bands of ≈60 and ≈24 kDa (Fig. 2d). In particular,
the effect of 25 mM glucose on 4-HNE-modified proteins was
comparable with an acute exogenous cell stimulation with 1–
5 μM 4-HNE.

Since N-acetyl-L-cysteine (NAC) is an important antioxi-
dant that neutralizes ROS and is a scavenger of α,β-unsatu-
rated aldehydes, we used it to abolish the formation of 4-HNE
adducts. SMCs were exposed to 4-HNE (50 μM) for 24 h in
the absence or presence of 1 mM NAC. Under these circum-
stances, the formation of 4-HNE-protein adducts induced by
excessive addition of exogenous 4-HNE to the cultured cells
was abolished (Fig. 2e). The data indicated that NAC is a
reliable 4-HNE-scavenging agent.

4-HNE increases Nox activity and expression in human SMCs

Following the above observations that 4-HNE-protein adducts
were generated in SMCs exposed to high glucose (25 mM) or
1–5 μM 4-HNE (acute exposure), we asked whether 4-HNE
alone could mimic the effects of long-term incubation with
high glucose in these cells. Therefore, SMCs were exposed
to increasing non-cytotoxic concentrations of 4-HNE (1–
10 μM) for 24 h, and then the Nox activity and mRNA and
protein levels were determined. Figure 3 shows that 4-HNE
dose-dependently stimulated the activity, up-regulated the
gene expression, and increased the protein level of each of
the Nox isoforms. The maximal effect on Nox activity (≈2-
fold) was observed with 5 or 10 μM 4-HNE, as assessed by
lucigenin assay. A similar stimulatory effect of 4-HNE on
intracellular O2

•- formation was confirmed by DHE assay
(Electronic Supplementary Material, Fig. S1b). Likewise, a
comparable regulatory pattern of Nox1, Nox4, and Nox5 gene
and protein expression levels was detected following incuba-
tion of the cells with 5 or 10 μM 4-HNE (Fig. 3c–k).

High concentration of 4-HNE is cytotoxic to human SMCs

To determine the effects of 4-HNE on SMC viability, the
impedance-based assay for real-time monitoring of cell dy-
namics (xCELLigence, Roche) was employed. SMCs were
exposed in a single step to increasing concentrations of 4-
HNE (1–25 μM), and the cell impedance was monitored

continuously for 48 h. Figure 3b shows that the exposure of
SMCs to 1–5 μM 4-HNE did not affect the rate of cell prolif-
eration; this was reduced in the presence of 10 μM 4-HNE
after 12 h incubation. However, high concentrations of 4-HNE
(e.g., 25 μM) were cytotoxic. FBS (10 %) was employed as a
positive control for SMC proliferation. The quantification of
xCELLigence data is shown in the Electronic Supplementary
Material (Fig. S2b). Collectively, the assay further supports
the observation that the cytotoxic threshold of 4-HNE is above
10 μM.

NAC decreases high-glucose- and 4-HNE-induced
augmented Nox activity and expression

NACwas employed to further investigate the idea that 4-HNE
is the messenger of the high-glucose-induced up-regulation of
Nox activity and expression. The cells were exposed to
5.5 mM or 25 mM glucose or 5 μM 4-HNE (5.5 mM
glucose-containing medium) in the absence or presence of
1 mM NAC, and Nox activity and mRNA levels were mea-
sured. Figures S4 and S5 (Electronic supplementary material)
show that NAC significantly reduced the increase of both
activity and mRNA expression in cells exposed to high-
glucose- or 4-HNE-induced augmented activity and expres-
sion of each Nox subtype. These findings indicate that,
among other intracellular mediators triggered by high glucose,
lipid peroxidation products such as 4-HNE play an important
role in the regulation of the Nox complex.

High glucose activates PPARs in SMCs

Based on previous reports that link 4-hydroxyalkenals to
PPAR activation (Coleman et al. 2007; Cohen et al. 2013),
we asked whether such a mechanism existed in SMCs ex-
posed to high glucose levels. To this end, we employed
transactivation assays by using a pDR1-luc control plasmid
carrying five repetitive and highly conserved peroxisome
proliferator response elements (PPRE) cloned up-stream of
the luciferase reporter gene. SMCs were transiently
transfected with the plasmid in medium containing 5.5 mM
glucose; at 24 h after transfection (baseline luciferase level),
the cells were further exposed for 24 h to either 5.5 or 25 mM
glucose, in the absence or presence of 5 μM of each PPAR
antagonist (PPARα - GW6471, PPARβ/δ - GSK0660,
PPARγ - GW9662) or NAC (1 mM). The results showed that
high glucose alone significantly up-regulated the luciferase
level directed by PPRE (≈1.8-fold) in comparison with the
5.5 mM glucose control, suggesting that various natural endog-
enous PPAR ligands are rapidly synthesized in response to high
glucose stimulation. The pharmacological inhibition of PPARα
or PPARβ/δ, but not of PPARγ, reduced significantly but also
differentially the high-glucose-induced PPRE-dependent
luciferase activity. Interestingly, the inhibition of PPARγ
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resulted in a slight reduction of high-glucose-induced DR1
activation. It is noteworthy that NAC completely abolished
the luciferase induction in all experimental settings
(Electronic Supplementary Material, Fig. S6).

4-HNE induces up-regulation of Nox via activation of PPARα
and PPARβ/δ

The finding that high glucose activates PPARs prompted
investigation into which of the various PPARs plays a role in
the 4-HNE-induced up-regulation of Nox activity and

expression. Quiescent SMCs were exposed (24 h) to 5 μM
4-HNE or to the vehicle (ethanol) in the absence or presence
of siRNA sequences directed against each of the three PPAR
isoforms. Figure 4a shows that 4-HNE-augmented Nox activ-
ity (≈two-fold) was differentially down-regulated by siRNA-
mediated silencing of the PPARα (≈40 %) and PPARβ/δ
(≈30 %). Likewise, pharmacological inhibition of PPARα or
PPARβ/δ significantly reduced the high-glucose-induced up-
regulation of NADPH oxidase-dependent O2

•- production
(Electronic Supplementary Material, Fig. S7). Silencing of
PPARα or PPARβ/δ led to a dissimilar reduction of 4-HNE-

Fig. 3 Exposure of human aortic SMCs to exogenous 4-HNE increases
Nox activity and expression. a Quiescent SMC were exposed to
increasing concentrations of 4-HNE (24 h), and the NADPH-dependent
O2

• - produc t ion was de te rmined by luc igenin-enhanced
chemiluminescence assay. b Analysis of SMC viability in response to
4-HNE stimulation by the E-Plates assay. c–h Concentration-dependent

up-regulation of Nox1, Nox4, and Nox5mRNA content (c-e) and protein
levels (f–h) in 1–10 μM 4-HNE-treated cells. i–k Representative
immunoblots depicting Nox protein regulation in response to
exogenous 4-HNE. n=4, *P<0.05, **P<0.01, ***P<0.001. P-values
were taken in relation to cells exposed to vehicle (ethanol)
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augmented Nox1, Nox4, and Nox5 mRNA and proteins.
PPARγ silencing did not significantly affect the activity and
expression of the Nox complex (Fig. 4c–k). No changes in

Nox expression and activity were found in C siRNA-
transfected cells. The decrease in PPAR proteins upon
siRNA transfection in SMCs was confirmed by western blot

Fig. 4 Production of 4-HNE-induced NADPH-dependent O2
•- and

expression of Nox in human aortic SMCs is mediated by peroxisome
proliferator-activated receptor-α (PPARα) and PPARβ/δ. Silencing of
PPARα or PPARβ/δ down-regulates 4-HNE-induced Nox activity (a)
and the mRNA (c–e) and protein (f–k) levels of Nox subtypes. b
Representative immunoblots depicting the decrease in PPAR proteins
upon short interfering RNA (siRNA) transfection in SMCs. Quiescent

cells were exposed (24 h) to 5 μM 4-HNE in the absence or presence
of siRNA sequences directed to silencing the expression of various PPAR
subtypes. NADPH-dependent O2

•- production was determined by
lucigenin-enhanced chemiluminescence. Nox gene and protein
expression were assayed by real-time PCR and western blot,
respectively. n=4–5, *P<0.05. P-values were taken in relation to
siRNA-transfected cells (C siRNA)
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(Fig. 4b). Furthermore, in other experiments, the cells were
treated with specific PPAR antagonists. We observed that
pharmacological inhibition of PPARα and PPARβ/δ resulted
in a similar pattern of Nox regulation (data not shown). The
data obtained in the SMC line were further validated in pri-
mary cultures of human aortic SMCs, by employing the same
selective PPAR antagonists. The results obtained were com-
parable and showed that Nox activity and the mRNA levels of
each Nox subtype were similarly regulated in both primary
cultures and the SMC line (Electronic Supplementary
Material, Fig. S8).

Sequence analysis of human Nox1, Nox4, and Nox5 gene
promoters

To further investigate the involvement of PPARs in the regu-
lation of Nox subtype transcription, we performed in silico
analysis (TRANSFAC) of the human Nox1, Nox4, and
Nox5 proximal promoter regions. Interestingly, in silico pre-
diction revealed the absence of typical PPRE within the pro-
moter region of each Nox subtype. In addition to the previ-
ously indicated GAS, NF-kB, and C/EBP elements (Manea
et al. 2010a, 2010b, 2012; Manea et al. 2014), the program
identified the existence of highly conserved Sp1 binding sites
(Electronic Supplementary Material, Fig. S9).

Discussion

Elevated oxidative stress attributable to the enhanced expres-
sion of vascular Nox enzymes has been reported in diabetic
patients and in several experimental models of diabetes (Ding
et al. 2007; Manea 2011; Sedeek et al. 2012a, 2012b; Gray
et al. 2013). The molecular pathways of Nox regulation and
the precise function of Nox-derived ROS have not yet been
completely defined. Hitherto, no data have been available on
the role and regulation of Nox5 in diabetes. Oxidative-stress-
induced phenotypic alterations of SMCs have been reported to
promote and accelerate the development of atherosclerotic
lesions (Manea et al. 2008). Since oxidative stress is a com-
mon occurrence in atherosclerosis and diabetes, we have set
up experiments to investigate the mediators and the signaling
pathway involved in high-glucose-induced Nox and the role
of glucose-derived 4-HNE in Nox function in SMCs.

The main findings of this study are: (1) high glucose con-
ditions (mimicking diabetes) increase NADPH oxidase-
dependent O2

•- production and Nox expression, in particular
that of Nox1, Nox4, and Nox5 in SMCs (both the cell line and
primary human cultures); (2) this is the first report showing
that Nox5 is up-regulated by high glucose; (3) Nox-derived
ROS contribute to 4-HNE generation; (4) in turn, 4-HNE
plays a key role in the up-regulation of Nox expression and
activity, and (5) high glucose up-regulates Nox expression via

4-HNE-activated PPARα and PPARβ/δ. A representation of
the major findings of this study is presented in Fig. 5.

Our experiments have revealed that, in SMCs, high glucose
enhances NADPH oxidase-dependent O2

•- production, and that
this condition is associated with significant elevations in Nox1,
Nox4, and Nox5 expression levels and cell proliferation.
Moreover, the data provide evidence that high-glucose-induced
Nox expression is mediated by ROS, as demonstrated by the
inhibitory effects of NAC (a potent antioxidant), which among
its other functions, scavenges lipid peroxidation products, such
as 4-HNE. Therefore, we assume that the highly reactive 4-HNE
mediates, at least in part, the regulatory effects of high glucose.

The role of oxidative-stress-induced lipid peroxidation in
diabetes is well-documented (Manea and Simionescu 2012).
The peroxidation of hydroperoxy derivatives of n-3 and n-6
PUFAs is initiated by ROS attack and ultimately generates
chemically reactive 4-hydroxyalkenals (Staels and Fruchart
2005; Cohen et al. 2012, 2013). Our study clearly shows that
exposure of SMCs to high glucose concentrations induces
progressive accumulation of 4-HNE-protein adducts.

Reportedly, activated Nox increases the rate of 4-HNE for-
mation in monocytes (Kimura et al. 2005). To investigate the
role of activated Nox in high-glucose-induced 4-HNE forma-
tion in SMCs, apocynin and DPI were employed. Our results
showed that both compounds significantly inhibited the for-
mation of 4-HNE. Mechanistically, apocynin blocks the as-
sembly of Nox1- and Nox2-NADPH oxidases into active
O2

•--generating complexes (Schlüter et al. 2008; Stefanska
and Pawliczak 2008). Since SMCs typically express the
Nox1, Nox4, and Nox5 isoforms, the inhibitory effect of
apocynin is probably attributable to Nox1-containing Nox,
rather than Nox4, which is constitutively active, and Nox5,
which is Ca2+-dependent. Although apocynin is widely
employed as a pharmacological inhibitor of Nox function,
evidence exists that this compound is not a specific inhibitor
of Nox activity but an antioxidant (Heumüller et al. 2008).
Therefore, the involvement of other sources of ROS should
also be considered when using apocynin. DPI, which binds to
and inhibits flavin-containing oxidases (Ellmark et al. 2005),
including all members of the Nox family, also reduces the
formation of 4-HNE-protein adducts in high-glucose-
exposed SMCs. In addition, the formation of 4-HNE is greatly
decreased by PEG-CAT, a scavenger of intracellular H2O2

potentially generated by activated Nox4. Together, these data
indicate that, in high-glucose-exposed SMCs, the generated
Nox-derived ROS play a major role in lipid peroxidation.

Evidence exists that, in SMCs, Nox-derived ROS are in-
duced by oxidized PUFAs (Li et al. 2003), and 4-HNE activates
Nox in macrophages by mechanisms that are not completely
defined (Yun et al. 2010). Our results extend these findings to
SMCs, in which we report that 4-HNE increases NADPH
oxidase-dependent O2

•- production in a concentration-
dependent manner. In addition, we provide novel supporting
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data that the gene and protein levels of each Nox isoform are
up-regulated in response to 4-HNE stimulation.

Some reports have shown that, at low and non-cytotoxic
concentrations, 4-HNE functions as a natural activator of
PPARβ/δ (Coleman et al. 2007; Russo 2009), whereas the
progressive accumulation of 4-HNE-protein adducts alters
normal cell functions leading ultimately to cell death (Cohen
et al. 2011). PPARs regulate gene expression following
dimeriziation with RXR and binding of the heterodimer to
specific DNA sequence elements, the PPRE (Gross and
Staels 2007). Most of the endogenous PPAR ligands are be-
lieved to be fatty acids or their derivatives, and a variety of
naturally-occurring PPAR ligands are thought to be generated
during cellular metabolic activities (Gervois et al. 2004).
Consequently, in order to search for a role of PPARs in medi-
ating high glucose signaling in SMCs, we have employed
transactivation assays; these have demonstrated that high glu-
cose induces PPAR-associated transcriptional responses. In
addition, we have found that PPARα, PPARβ/δ, and
PPARγ are differentially activated in response to high glu-
cose. In particular, NAC blunts the high-glucose-induced
PPRE-mediated luciferase level, suggesting that the activation
of PPARs is redox-sensitive.

Compelling evidence has demonstrated the beneficial ef-
fects of diverse PPAR agonists in reducing oxidative stress
and in improving vascular function in several animal models
(Calkin et al. 2006; Quintela et al. 2012). These studies indi-
cate that various PPAR agonists negatively regulate Nox ex-
pression and the ensuing ROS production and oxidative stress.
Nevertheless, despite the large amount of existing data, uncer-
tainty remains as to whether Nox are direct targets of PPARs,
or whether their expression and function is controlled by in-
direct transcriptional mechanisms. These reports might also
indicate that PPAR agonists induce systemic production of
negative regulators of Nox.

In contrast, the genetic ablation of PPARα has been shown
to abolish hypertension and to reduce atherosclerosis in hy-
pertensive mice (Tordjman et al. 2007). These data bring into

question the precise role of PPARs and the interpretation of
the biological significance of PPAR-mediated mechanisms in
the vasculature (Yagil and Yagil 2007).

Moreover, an interesting mechanism whereby PPARα ag-
onists up-regulate Nox expression and activity has been pre-
viously demonstrated in both human and murine macro-
phages, and the activity and expression of Nox are lower in
macrophages derived from PPARα-deficient mice (Teissier
et al. 2004). Other thanmacrophages, PRARα agonists induce
Nox-derived ROS and enhance cardiomyogenesis of mouse
embryonic stem cells (Sharifpanah et al. 2008). Thus far, the
direct involvement of the PPARβ/δ or PPARγ isoform in the
regulation of Nox enzymes has not been investigated. In this
context, the precise role and the mechanisms of action of
PPAR members in cardiovascular cells remain elusive and
require further attention (Lalloyer et al. 2011).

These studies have thus prompted us to investigate whether
members of the PPAR family play a role in mediating 4-HNE-
induced Nox expression in high-glucose-exposed human vas-
cular SMCs. In order to ascertain the role played by the
PPARs in the 4-HNE effect on Nox complexes, we have used
various pharmacological agents and molecular interventions.
Our results show that the inhibition and silencing of either
PPARα or PPARβ/δ reduces significantly but also differen-
tially 4-HNE-induced NADPH oxidase-dependent O2

•- pro-
duction and the expression of Nox1/4/5 in both the SMC line
and primary cultures of human vascular SMCs in which com-
parable PPARα- and PPARβ/δ-dependent mechanisms medi-
ate the 4-HNE effects on Nox gene expression. In contrast, a
dissimilar regulation was detected at the protein level in the
SMC line. The silencing of PPARα or PPARβ/δ significantly
decreases the Nox1 protein in 4-HNE-exposed cells.
Although we have detected significant down-regulation in
Nox4 and Nox5 mRNA expression in cells treated with spe-
cific siRNA sequences directed against PPARα or PPARβ/δ
isoforms, no significant changes in the Nox4 protein level have
been determined. Conversely, the expression of Nox5 protein
is regulated by 4-HNE-activated PPARβ/δ. These results

Fig. 5 Representation of the high-glucose-induced “lipid peroxidation
products–PPARs–Nox axis” leading to ROS formation in human
vascular SMCs. High glucose induces the formation of 4-HNE in
SMCs via redox-sensitive mechanisms as demonstrated by the
inhibitory effects of DPI, apocynin, PEG-CAT, and NAC.

Pharmacological inhibition/silencing of PPARα or PPARβ/δ diminishes
4-HNE-induced activity and the expression of Nox. This concept
represents a novel mechanism of Nox regulation and the ensuing ROS
formation in vascular SMCs exposed to hyperglycemia-mimicking
conditions
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suggest that, in addition to PPARs, alternative signaling path-
ways, transcription factors, and mRNA processing mecha-
nisms are involved in the regulation of Nox4 and Nox5 protein
expression in response to 4-HNE stimulation. Our data also
suggest that PPARγ is not involved in these activities.

To further investigate the molecular basis of Nox regulation
by PPARs, we searched for the existence of PPRE within
Nox1, Nox4, and Nox5 proximal promoter regions.
However, in silico analysis has revealed that human Nox
proximal promoters do not possess typical PPRE, and that
most likely PPARα and PPARβ/δ regulate Nox expression
by indirect transcriptional mechanisms. Of note, in addition
to prototypical ligand-dependent transactivation activity, var-
ious pathways of PPAR-induced gene regulation exist (Ricote
and Glass 2007). Reportedly, all PPARs can interact under
physiological and different pathophysiological conditions
with the Sp1 transcription factor (Gizard et al. 2005;
Okazaki et al. 2010). In good agreement with these results,
the existence of Sp1-binding sites has been predicted within
human Nox1, Nox4, and Nox5 gene promoters by in silico
analysis. In addition, we have reported that the Nox5 gene is
positively regulated by Sp1 (Manea et al. 2012). Nevertheless,
the precise nature of PPAR-Nox promoter interactions needs
further elucidation. In addition to the major catalytic compo-
nents (e.g., Nox1, Nox4, Nox5), the potential regulation of
p22phox, the cytosolic regulatory subunits, and the
expression-dependent and expression-independent mecha-
nisms affecting Nox activity should be considered.

Collectively, the present data indicate the existence of a 4-
HNE–PPAR-Nox axis in human vascular SMCs exposed to
hyperglycemic-like conditions. Nevertheless, the role and the
biological significance of the PPAR-dependent transcriptional
regulation of Nox in diabetes remains to be further character-
ized in vivo. Based on previous findings (Teissier et al. 2004;
Riahi et al. 2010a, 2010b) and on the results reported here, we
can reliably propose that the 4-HNE generated via Nox acti-
vation functions as an endogenous activator of PPARα and
PPARβ/δ. Furthermore, the exploration of the novel “lipid
peroxidation products–PPARs–Nox axis” might lead to the
discovery of alternative molecular mechanisms of ROS regu-
lation and ensuing novel or additional therapeutic targets for
oxidative-stress-related disorders.
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