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Abstract Single cell trajectory analysis is a computational
approach that orders cells along a pseudotime axis. This
temporal modeling approach allows the characterization of
transitional processes such as lineage development, response
to insult, and tissue regeneration. The concept can also be
applied to resolve spatial organization of cells within the
originating tissue. Known as temporal and spatial transcripto-
mics, respectively, these methods belong to the most powerful
analytical techniques for quantitative gene expression data
currently available. Here, we discuss three different ap-
proaches: principal component analysis, the ‘Monocle’ algo-
rithm, and self-organizing maps. We use a previously pub-
lished qRT-PCR dataset of single neuroblast cells isolated
from the developing mouse inner ear to highlight the basic
features of the three methods and their individual limitations,
as well as the distinct advantages that make them useful for
research on the inner ear. The complex developmental mor-
phogenesis of the inner ear and its specific challenges such as
the paucity of cells as well as important open questions such as
sensory hair cell regeneration render this organ a prime target
for single cell trajectory analysis strategies.
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Introduction

Organ development, disease progression, and regeneration are
examples of biological processes that affect the state and

identity of cells over time. In a simple case, this can describe
the transition from an unspecified progenitor cell to a more
specialized lineage-committed differentiated cell, for example
a sensory hair cell of the inner ear. Such a change can occur
unidirectionally or in bifurcating form as inner ear precursor
cells give rise to either neurons or to supporting cells and hair
cells, the two major types of inner ear sensory epithelia
(Fig. 1a). As development progresses, expression of progeni-
tor cell-associated genes will mostly decrease whereas markers
that confer cell-type identity, as well as cytomorphological and
physiological specializations, will become successively upreg-
ulated. These changes in gene expression are universally
translated in dissimilar transcriptomes (that is the mixture of
all RNAmolecules present in a cell at a given time) and can be
measured quantitatively using gene arrays, quantitative (q)RT-
PCR, or whole transcriptome shotgun sequencing platforms
(RNA-Seq). A typical approach to studying the dynamic be-
havior of development-associated gene expression has been
time-series experiments in which dissected tissues are sampled
from defined consecutive time points and collectively subject-
ed to quantitative expression analyses. Usually, this strategy
results in the identification of stage-specific markers and glob-
al genetic co-regulatory modules that may play a role in
orchestrating tissue development (Spellman et al. 1998;
reviewed in Bar-Joseph et al. 2012). Nevertheless, biological
systems are inherently dynamic and heterogeneous in nature
and consequently the aforementioned conventional investiga-
tions will fall short of accurately mirroring cellular progression
over time. The major difficulty arises from the fact that the
bulk of cell groups rather than individual cells are assessed,
which disregards cellular heterogeneity as a universal trait.
Inevitably, this leads to an incomplete picture of the develop-
mental process, as, for example gene-to-gene correlations in
small subsets of cells are challenging to identify in bulk
samples. Additionally, averaging artifacts can mask biologi-
cally relevant processes and can negatively interfere with
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correct data interpretation as shown in a number of studies
(Bengtsson et al. 2005; Levsky and Singer 2003; Toriello et al.
2008). Even in cases of presumed homogenous cell popula-
tions (e.g., cell lines or purified cell types), asynchronicity
effects will lead to a mixtures of cells where each member of
the group may execute the same developmental program, yet
at different paces. The study of single cells, on the other hand,
presents a promising alternative to sufficiently address some if
not all listed issues. Single-cell analysis allows for the discrim-
ination of distinct subpopulations of cells that are transitory in
character and delineate specific cell states within otherwise
homogeneously appearing populations. To better understand a
cell’s progression from one state to another, it is essential to
characterize the many and often obscure intermediate condi-
tions that connect both states. Resolving this process down to a
cell-to-cell scale and being able to record quantitative data puts
the researcher in a favorable position to start tackling the
conundrum of cellular differentiation.

Successful applications of single cell analysis require (1)
the ability to isolate individual cells from the tissue source,
and (2) a platform to process them rapidly and in parallel.
With the advent of fluorescence-activated cell sorting (FACS)
and the availability of different transgenic reporter mice, it is
now routine to selectively enrich for specific cellular subsets
of organs like the inner ear (Doetzlhofer et al. 2006; Herget
et al. 2013; Jan et al. 2011; Sinkkonen et al. 2011). Conven-
tional flow cytometers are capable of depositing individual
cells into single wells of multiwell plates for subsequent
analyses. Secondly, the introduction of microfluidic circuit
devices (Melin and Quake 2007; Whitesides 2006) has paved
the way for successful single cell applications in a number of
fields including cell culture and nucleic acid quantitation.
These ‘lab-on-a-chip’ instruments enable the simultaneous
and reliable measurement of hundreds of different parameters
in hundreds of individual cells (Blow 2009). Commercial
availability as well as numerous established methodologies
allow researchers to obtain quantitative gene expression data
in a matter of hours. Lastly, continuous advancements in next-
generation sequencing technologies (such as Illumina and Ion
Torrent platforms) have contributed further to the field, which
has led to a steady increase of cell-multiplexing capability and
decrease of overall expenses (Wang et al. 2009). For research
on the inner ear, this is good news all along because particu-
larly molecular studies have been hampered for decades by the
scarcity of tissue material.

What is single cell trajectory analysis and why is it important?

Single cell trajectory analysis strives to utilize biological
heterogeneity among related cells that undergo changes over
time. A trajectory describes a directional path along which
individual cells can be arranged, such that their order repre-
sents for instance a temporally defined process. This can be

achieved by applyingmathematical analysis techniques aimed
at identifying patterns in high-dimensional data—the data
format distinctive of quantitative expression studies, such as
the output of multiplex single cell qRT-PCR or RNA-Seq
experiments. The reason why this strategy, that is generally
referred to as ‘temporal transcriptomics’, works can be ex-
plained by the fact that no two individual cells are exactly the
same even within most homogeneous cell populations.
Sources for such an omnipresent degree of cellular heteroge-
neity have been identified en masse in the past and seem to
have crucial impacts on cells of developing organs/organisms
in general (Arias and Hayward 2006; Hayashi et al. 2008;
Losick and Desplan 2008; Raj and van Oudenaarden 2008).
For instance, extrinsic stimuli may trigger non-uniform re-
sponses of cells in a clonal or isogenic cell population. Niche
compartments in vivo are illustrative examples in which cells
may have different access to environmental determinants.
Another example is cultured cells such as human myoblast
cells that undergo induced differentiation and may respond
differently based on cell-to-cell contact deviations or other
reasons (Trapnell et al. 2014). As a result, cells profiled
collectively at one static time point after the trigger always
differ from another depending on the kind and rate of re-
sponse. These often minuscule differences are reflected in
successive changes of global gene expression that can be used
to reconstruct temporal patterns (i.e. trajectories; Fig. 1b).

Compressing high-dimension data into a single dimension
by formulating an in silico progression model results in a
vector. Along it, individual cells are organized such that each
of them resides at a particular stage of the process and therefore
represents a singular pseudotime point. This means that, in a
traditional time-series experiment, each respective time point
would represent a separate time-series study by itself (for
example, time points 1, 2, and 3 in Fig. 1b). If cellular differ-
entiation is the underlying biological process, and if the genes
that are assayed construe the various steps of the process, then
there is a high likelihood that the resulting cell trajectory
derived from a single time point will describe cell differentia-
tion. Connecting trajectories of multiple time points can addi-
tionally enhance the biological integrity and coherence of the
model. Variably chosen time intervals (e.g., hours, days,
weeks) will lead to variable degrees of trajectory overlap and
as a result can describe the differentiation process over multiple
sampling time points across varying timescales (Fig. 1b). The
power of this approach is that it reveals the order of molecular
events as cells transit over time such as from a progenitor state
into a differentiating and subsequently into a differentiated
state. Quantitative information on select groups of genes (if
multiplex qRT-PCR is being used) or on all detectable genes
expressed in individual cells (for RNA-Seq datasets) is avail-
able for each single cell along the pseudotime-axis, and allows
the researcher to extract knowledge with unprecedented effi-
ciency and resolution. In turn, this contributes to a better
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understanding of how cells change from one state to another
during the time period investigated and enables the deciphering
of the mechanisms involved during these changes.

A possible limitation that could influence the sequence of
individual cells along a trajectory relates to the characteristic
process of transcription, which is stochastic to a certain extent
and can happen in bursts (Raj and van Oudenaarden 2008).
Specifically, the initiation of gene expression follows stochas-
tic principles leading to random differences in transcript levels
in cells that just start expressing a certain gene (van Roon et al.
1989). Additional random fluctuations in availability of pro-
teins and factors involved in mRNA synthesis at any given
time result in phenotypical differences between otherwise
identical cells (McAdams and Arkin 1997). Once mRNA
synthesis has reached a steady state, it is conceivable that the
concentration of a specific transcript in an individual cell
becomes mostly defined by the “burst” or pulse duration and
its frequency. The low and high limits of transcript concentra-
tions consequently are different in each individual cell and
differ for each individual gene (Fig. 2a–c). The question of
how much of the variation of gene expression levels between
individual cells can be attributed to biological-associated het-
erogeneity rather than just ‘noise’ requires the utilization of a
multidimensional approach that considers gene expression
data from many closely related cells as well as many genes.
In addition, the analysis methods described in this review do
not reduce quantitative gene expression information to a bi-
nary code, but consider distinct expression level ranges

(Fig. 2a–c), a principle that substantially increases the avail-
able complexity of relevant information. Ordering of cells
along a trajectory consequently does not rely on binary infor-
mation (i.e., on versus off) of a few genes, but takes into
consideration information extracted from the quantitative tran-
script measures of many genes. As a consequence, the more
genes of the assay (in case of multiplex single cell qRT-PCR)
or the more detectable genes with RNA-Seq are correlated
with a trajectory, the smaller the potential error introduced by
stochastic gene expression. With the same plausibility, sto-
chastic events will also even out with increasing sample sizes.
We conclude that, although stochastic gene expression could
affect the outcome of trajectory analyses at low sample sizes,
and when only a few genes are taken into consideration, its
effects become less significant and probably negligible as
sample size and gene number increase.

Temporal transcriptomics in inner ear research

In the developing inner ear, we recently utilized trajectory
analysis to describe the lineage progression of neuroblasts
(Durruthy-Durruthy et al. 2014a). These neural precursor cells
are born in the ventro-anterior region of the otocyst, a transient-
ly existing vesicle that forms in mice during the 10th day post-
fertilization. They delaminate from the otocyst and migrate
ventro-medially. As development proceeds, neuroblasts accu-
mulate, proliferate, and eventually differentiate into the neurons
that ultimately form the ganglia innervating the organ of Corti

Fig. 1 Trajectory analysis: conceptual overview. a Trajectories describe
a directional route, which can serve as a model to describe cellular
differences. Shown is an unbranched as well as a branched (bifurcated)
type of trajectory. Single cells are organized along the vector and because
they gradually differ in their transcriptomes, they represent temporally
defined processes or spatial organization. b Schematic overview of a

simplified trajectory analysis workflow to resolve temporal dynamics of
a biological process. Individual cells are profiled at three distinct consec-
utive time points. Subsequently, cells are ordered along different trajec-
tories according to the experimental time points. Trajectories may be
merged to give rise to a joined vector that comprehensively describes
the biological process
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and the vestibular organs of the inner ear (Rubel and Fritzsch
2002). To analyze not only the neuroblast lineage but also the
cell population that constitutes the otocyst, we used a Pax2-Cre
transgenic mouse line to permanently label cells of the otic
lineage in a fluorescent reporter mouse line. A total of 384 cells
were sorted by FACS and subsequently examined by multiplex
qRT-PCR for expression of 96 preselected otic genes. A num-
ber of clustering approaches and dimension-reduction tech-
niques, such as principal component analysis (PCA), revealed
that about 30 % of all cells were of neuronal lineage identity
(Durruthy-Durruthy et al. 2014a). This group was further
partitioned into two related subgroups, one with prevalent
expression of genes found in early neuroblasts such as Neurog1
(Ma et al. 1998), whereas the second group was defined by
markers that become upregulated, as neuron precursors migrate
and differentiate, for example Isl1 (Li et al. 2004). PCA seeks
to identify the directions defined by vectors in multi-
dimensional variable space along which the variance of the
data is greatest. Known as principal components, these vectors
are ordered ascendingly according to their overall contribution
to variability. We noted that by far the majority of variability of
neuroblast-associated cells was preserved in the very first com-
ponent, which suggested that only one single dimension might
adequately visualize differences between cells. Upon projec-
tion of neuronal cells onto the first component, we interpreted
the resulting trajectory as a measure of time (Fig. 3a, b), as
described in Durruthy-Durruthy et al. (2014a). Cells ordered
along the pseudotime-line displayed the transition from an
early neuroblast state, likely representing the newly emerging

or early delaminating phase towards a differentiated state where
cells began displaying neural identity. Although most genes in
this particular study were not included to exclusively describe
the neuroblast lineage per se, we succeeded in identifying a
number of interesting co-regulatory motifs as well as regulatory
components indicated by expression of signaling pathway-
associated markers. Ultimately, a more targeted collection of
genes will be necessary to thoroughly resolve specific events of
neuroblast differentiation starting from the moment of cell fate
initiation, delamination, migration, accumulation, transient pro-
liferation, and bifurcation into cochlear and vestibular fates,
experiments that are currently under way.

The question that arises from this first example of single
cell trajectory analysis of otic derivatives is whether one-
dimensional PCA is robust enough to be applicable to other
biological systems inside and outside of the inner ear. In the
following section, we introduce alternative methods for estab-
lishing single cell trajectories and apply them to our existing
dataset from Durruthy-Durruthy et al. (2014a, b). We will
discuss the major differences between them as well as advan-
tages that each procedure offers for potential applications to
cell trajectories in the developing, regenerating, and mature
inner ear.

Limitations of PCA-based trajectory analyses

A disadvantage of one-dimensional PCA lies in its inability to
resolve processes following trends that are not of a unidirec-
tional nature. Lineage bifurcations, which are common events

Fig. 2 Violin plots of select transcript expression histograms in otic
vesicle/neuroblast cells. a Expression distributions for “housekeeping
genes” Actb and Gapdh in 382 individual cells isolated from the mouse
otocyst and delaminating neuroblasts. Note that all cells express the two
genes and that expression levels range between a low and high level on
the log2 scale of expression. b Expression distributions of Notch2 and
Pax2mRNA show a unimodal distribution of cells that express the genes
at different levels. A fraction of cells do not express these genes,

illustrated by the peaks centered at zero. c Examples for multimodal
expression such as Tbx2. MRNA is detectable in a majority of the 382
cells but with distinct peaks at different expression levels that likely
reflect biological heterogeneity and not simply noise. Likewise, Eya2
transcripts center around two distinct expression level maxima when
detected, indicating the presence of two distinct subpopulations of cells
(bimodal distribution)
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in developing organs, as well as disturbances that arise from
secondary and higher order biological processes, cannot be
ascribed by multi-dimensional data reduction to a single vec-
tor/trajectory. This is because one-dimensional PCA requires
the majority of variability inherent to the dataset to be repre-
sented by a single principal component. Therefore, in more
complex scenarios, it is important to acknowledge the inter-
laced structure of assorted biological sequences of events that
might take place in parallel and can fully or partially overlap.

Moreover, for some processes, we will not have a priori
knowledge about distinguishing genes making it challenging
to define differential trajectories. These conceptual difficulties
require alternative mathematical algorithms.

A specific example of aforementioned complexity ad-
dresses the study of sensory hair cell regeneration in non-
mammalian vertebrate utricles, an ongoing project in our
laboratory. Here, we presume that ototoxic insult resulting in
hair cell loss leads to a series of events orchestrated by dying

Fig. 3 Comparison of three different unsupervised, exploratory
approaches to study progression of otic neurogenesis over time along a
trajectory. a Schematic overview of the mathematical principle that
governs each of the following approaches: principal component
analysis (PCA, left), independent component analysis (ICA, center), and
self-organizing maps (right). For each case, hypothetical data points are
shown and their spread across a two-dimensional (2D) coordinate system.
Left: In PCA, red arrows indicate the two principal components (PC) of
the data and their orthogonal relationship. PC1 follows the direction of the
largest variability of the data. Center: Red arrows refer to the two
independent components of the data. The drawing suggests that they
present the original data more accurately than PCA as IC1 and IC2 are
not required to stand perpendicular to each other. Right: The final 2D-
lattice (red) of 9 neurons is shown as it spans across the 2D-data space

after the hypothetical training process of the artificial neural network.
Topological features of the data are preserved in the neuron-organization
of the self-organizing maps. b Visualization of expression data for three
marker genes for each of the three approaches. Top left: Adopted from
Durruthy-Durruthy et al. (2014a). Individual points represent cells and are
color-coded according to gene expression levels. Cells are ordered along
the first principal component vector. Right: Individual cells are shown in
red and organized across a pseudo-time axis after the ‘Monocle’ algo-
rithm. Distribution of cells is fitted (line) and shows additional informa-
tion of the dynamics of otic neurogenesis. Bottom left: Self-organizing
maps color-coded with mean expression levels for each of the three
markers. The map consists of 15 neurons of which each contains a
variable number of individual cells
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hair cells and surviving supporting cells that initiate a highly
efficient regenerative program. The chicken inner ear utilizes
two general mechanisms of hair cell regeneration (Adler and
Raphael 1996; Cafaro et al. 2007; Corwin and Cotanche 1988;
Roberson et al. 1992, 2004; Ryals and Rubel 1988): (1) the
direct conversion of supporting cells into hair cells, a process
also known as direct transdifferentiation, and (2) the asym-
metric division of supporting cells into new hair cells and
supporting cells. We hypothesize that both processes will be
carried out by different classes of supporting cells, but the time
course and genetic programs regulating initiation, progres-
sion, and termination of the different modes of hair cell
regeneration will transpire in distinctively different lineage
trajectories. We speculate direct transdifferentiation will fol-
low a unidirectional path, whereas asymmetric division of
supporting cells will be featured in more complex aspects of
the data with multiple biological processes implicated (cell
cycle re-entry, cell division, bifurcating lineage, and cell dif-
ferentiation). Unraveling these heterogeneous supporting cell
groups and assembling different lineage trajectories in this spe-
cific case will require new inventive analytical approaches that
go beyond simple cluster analysis followed by PCA. In this
review, we will not be able to solve the intricacies of hair cell
regeneration, although it has been part of an important and
highly relevant debate of our field. However, we are able to
highlight the potential of single cell analysis and how it can
profit our domain, as researchers will undoubtedly be confronted
with high-dimensional datasets in the upcoming years.

‘Monocle’ and one-dimensional self-organizing maps as
alternatives

Other procedures to order cells or populations of cells on a
temporal scale exist and bypass the limitations of PCA-based
algorithms (el Amir et al. 2013; Bendall et al. 2011, 2014).

‘Monocle’ is a recently introduced method that places
whole-transcriptome profiles of single cells along an artificial
temporal curve in an orderly fashion (Trapnell et al. 2014).
Using individual primary human skeletal muscle myoblasts,
Trapnell and colleagues impressively showcased the power of
their unsupervised approach when applied to single cells by
improving temporal resolution during a dynamic biological
process such as differentiation. Assuming that cellular differ-
entiation can be described as a continuous procedure with
several intermediate states, ‘Monocle’ aims to model this
process by identifying a starting and end point(s) of cell
trajectories in high-dimensional space. As the number of
dimensions directly correlates with the number of genes by
which an individual cell is characterized, ‘Monocle’ imple-
ments—similarly to one-dimensional PCA—a dimension-
reduction step prior to cell ordering. Yet, instead of recogniz-
ing the principal components of the data structure, their ap-
proach attempts to establish the independent components of

the data using independent component analysis (ICA)
(Hyvarinen 1997; Hyvarinen and Oja 2000). Although ICA
is generally regarded as a generalization of PCA as it calcu-
lates vectors in multi-dimensional space as linear combina-
tions, both operations are fundamentally different from an
analytical perspective (Draper et al. 2003). Whereas PCA
assumes the data to be normally distributed and organized
linearly, ICA expects non-Gaussian data dispersion. Likewise,
the overall goal of PCA is to identify the direction in high-
dimensional space along which data variance is maximized so
that the lower-dimension data-projection error is minimized
(Jolliffe 2002). In contrast, ICA intends to minimize statistical
dependence among vectors (thus, they are as independent
from each other as possible) and coincidently maximize the
non-normal distribution of vector elements. As a result, com-
ponents derived from PCA have an associated importance
value (called eigenvalue), are arranged accordingly, and have
an orthogonal relationship, contrary to components computed
from ICA, which exhibit equal significance and are construct-
ed non-orthogonally (Fig. 3a, left, center). These mathemati-
cal differences can have far-reaching consequences in suc-
cessfully recognizing patterns in differentially structured bio-
logical data that relate to processes like differentiation, regen-
eration, or disease progression.

An additional criterion distinguishing ‘Monocle’ from 1D-
PCA is the modality of cell ordering. Whereas in PCA
(Fig. 3b, top left; Durruthy-Durruthy et al. 2014a), the se-
quence of cells along the trajectory is simply the result of data
projection, ‘Monocle’makes use of so-called minimum span-
ning trees to connect cells along the longest possible path
involving as many cells as possible (Trapnell et al. 2014).
This strategy is particularly useful in dissecting biological
processes that cannot be explained as unbranched processes
and may occur in parallel. Notably, during differentiation, a
progenitor cell may give rise to more than one lineage, leading
to two or more lineage trajectories. This level of complexity,
generally termed bifurcation, can be described using ‘Mono-
cle’. In addition, Monocle allows for subsequent cluster anal-
ysis comparing two or more groups of cells as a function of
pseudotime and identifying differentially expressed genes.

To test how the algorithm performs on datasets other than
those Trapnell and colleagues described in their study, we
utilized single cell qRT-PCR data from our neuroblast-
associated cell group that was assembled by a multitude of
clustering assessments. We focused on the three hallmark
genes that possibly best describe the progress of early inner
ear neurogenesis. The protocol involves the initial selection of
two input parameters, namely (1) the genes whose expression
data are used to ‘order’ all cells, and (2) the number of paths
on which one expects the cells to associate. ‘Ordering genes’
as the authors refer to them are supposed to comprise a group
of markers that best explain the dynamic behavior of the
biological process, hence their expression profiles across
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single cells vary considerably. We designated Neurog1,
Neurod1, and Isl1 for sequence determination, and visualized
their expression levels on three equivalent trajectories. Due to
the lack of distinctive markers, we chose only one trajectory
path without bifurcating attributes. In a similar manner to
published data (Durruthy-Durruthy et al. 2014a), neuroblast-
specifier Neurog1 becomes gradually downregulated along the
axis as one follows individual cells from left to right (Fig. 3b,
right). Markers that are expressed at later stages of otic
neurogenesis markedly label cells on the right side of the
model, mirroring the further advanced stage of maturation.
Interestingly, Neurod1 and Isl1 show a synchronous order of
events, defined by an increase of expression, followed by a
decrease, which is then again succeeded by marker upregula-
tion towards the end of the axis. Altogether, the trend of all
three markers, although not immediately detectable for
Neurod1 and Isl1 in our 1D-PCA model, coincides with our
published findings. Nonetheless, in this particular sample,
Monocle facilitates a readier assessment of differences in gene
expression along the trajectory.

As a reminder, regardless of the approach employed, the
series of cells along the trajectory does not necessarily indicate
how similar two cells are, nor does it allow determining a
particular stage of the process. It does, however, permit the
conclusion that a cell that precedes another cell is less ad-
vanced in the process of investigation, and vice versa.

Notwithstanding the fact that 1D-PCA and Monocle differ
in various mathematical ways, they have one commonality
that may limit their overall utility in recognizing additional
biologically relevant patterns: both assume the variables to
conform a linear relationship, which is not always the case and
prevents the identification of motifs that are of non-linear
character. A simple example is the correlative but non-linear
behavior of expression levels of two genes. A continuous
increase of expression of a specific gene could be accompa-
nied by a discontinuous (such as exponential or binary)
change of expression of the second gene.

As non-linear but correlated relationships have implications
in many biological systems, we propose as a third practical
alternative the use of self-organizing maps (SOMs), a subtype
of artificial neural networks (Kohonen et al. 2001). Neural
network terminology refers to a general operating principle
of the sensory nervous system where input signals are
projected onto particular territories in the brain. For instance,
neighboring photoreceptors in the retina when stimulated elicit
a response in the visual cortex of the cerebellum with a distinct
topographical arrangement. Surprisingly, SOMs have not been
as widely used as PCA in analysis of multivariate datasets
derived fromquantitative RNAmeasurements of single or bulk
cells. Tamayo and colleagues were one of the first to apply
SOMs to describe hematopoietic differentiation and yeast cell-
cycle regulation in several well-studied cell-line models (Ta-
mayo et al. 1999). Instead of classifying samples, the authors

were able to group genes in functionally related cohorts and
conclusively demonstrated how SOMs can greatly support
data interpretation. The key distinction to the afore-discussed
procedures is that dimension reduction in SOMs operates in a
topology-preserving mode. Thus, neighborhood relationships
and distance associations between single cells in high-
dimensional space are conserved when presented in a lower-
dimensional format. Considering data points (cells) positioned
in a multi-variable coordinate system with objects positioned
further away from each other the more different they are, may
effectively help in capturing dissimilarities. Usually, the low-
dimension space comprises a 2D-lattice that is composed of
interconnecting nodes (called neurons) which itself encom-
passes similar, classified objects, such as cells. The degree of
‘similarity’ thus refers to how close two cells are in multivar-
iate space where their location is exclusively determined by
their expression profiles (Fig. 3a, right).

A central feature of artificial neural networks is their capa-
bility to learn, unlike non-machine-learning algorithms such as
ICA or PCA. In SOMs, this learning phase happens adaptively
such that observations (i.e., cells) of an input layer are succes-
sively presented to a pre-defined number of adjoined neurons in
an output layer. Generally, the number of neurons is smaller
than the number of input cells. If expression data are provided,
this reiterative learning process ensures that nearby cells are
eventually classified in the same or adjacently located nodes/
neurons. After training and mapping is completed, the resulting
maps can serve as a platform for various clustering approaches
to identify distinct territories that distinguish groups of cells.

To illustrate the potential of this strategy, we tested the qRT-
PCR data from the identified neuroblast population. We chose
a one-dimensional 15 × 1 neuron-lattice as output layout and
exemplary visualized expression data of the previously intro-
duced neuroblast markers (Fig. 3b, bottom left). In compari-
son to 1D-PCA andMonocle, the output of this SOM analysis
shows an analogous expression distribution of all three genes,
characterized by contrasting gradients of markers Neurog1
and Isl1, and largely unchanged expression of Neurod1 across
all nodes. Even though one loses single cell resolution as
nodes represent classifier objects that include cells in close
high-dimension proximity, we conjecture that self-organizing
maps, especially when examining hundreds or thousands of
cells, will offer an invaluable tool to parse multivariate ex-
pression data from single cells of developing organs. Further-
more, SOMs are suitable for subsequent cluster analysis that
in turn may promote data interpretation.

Conclusion and outlook

The wonderfully complex morphology and physiology of the
inner ear offers a multitude of applications for single cell
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trajectory analysis. Trajectories do not necessarily have to be
of a temporal nature but could also be applied to systems with
spatial coordinates, a concept that is referred to as ‘spatial
transcriptomics’. Rather than early versus late, opposing ends
of the output curve could represent dorsal versus ventral, for
instance. Recent projects that utilize high-dimensional quan-
titative transcriptome data to reconstruct the mouse otocyst in
the form of a hollow sphere (Durruthy-Durruthy et al. 2014a,
b) illustrate how single cell spatial transcriptomics can have
the potential to greatly impact research in inner ear biology. A
prime example for another useful application of spatial tran-
scriptomics is the molecular analysis of the tonotopic organi-
zation of the cochlear duct in mammals. Gradual changes in
hair cell morphology as well as physiologically tonotopic
gradients along the basal-to-apical cochlear axis manifest
themselves in changes of hair cell mechanoelectrical trans-
duction channel properties, calcium buffers, and synapses
(Holton and Hudspeth 1983; Liberman et al. 2011; Mutai
et al. 2005; Ricci et al. 2000, 2003). Utilizing single cell
trajectory analysis of qRT-PCR or RNA-Seq data, these spa-
tially encrypted variations can be studied at high resolution.
We envision that such experiments can contribute to a better
understanding of how molecular gradients bestow hair cells
with highly specialized and gradually changing features,
allowing them to maintain physiological properties that are
in perfect alignment with their position along the cochlear
frequency map. Of course, this exploration will not halt at
inner and outer hair cells, it can be extended to analyze
different supporting cell subtypes as well as to study processes
that govern tonotopy establishment during development.

The ability to profile thousands of genes in individual cells
has remarkably improved our understanding of organ devel-
opment (Brunskill et al. 2014; Durruthy-Durruthy et al.
2014a), tissue homeostasis (Buczacki et al. 2013), and regen-
eration (Pina et al. 2012) in various biological systems.
Whereas nowadays expression profiles of hundreds of single
cells are routinely assayed in one experiment, soon this num-
ber will climb to the thousands, if not much higher. Method-
ologies that are proficient at dealing with this mounting data
are needed, and their successful implementation will inevita-
bly determine the pace and direction of the development of
single cell research in the future.

The concept discussed here of computationally constructed
single cell trajectories may be universally applied and is
(hopefully) particularly promising for the inner ear research
community. Understanding lineage formation and progres-
sion, such as of the prosensory domain cells in the vestibular
system, the cochlea, as well as the aforementioned
neuroblasts, are prerequisites in developing cell-based thera-
peutic approaches. Likewise, we envision that this methodol-
ogy will allow researchers to identify the distinct steps that
initiate, execute, maintain, and terminate the process of hair
cell regeneration in the non-mammalian inner ear. This

knowledge, in turn, when paired with future studies conducted
in mammals, which in the adult show dysfunctional regener-
ative abilities, could indeed speed up the process of finding
novel cures for hearing loss. There are many additional pos-
sibilities, and we would like to conclude with advising over-
excited researchers like ourselves to exploit different existing
and emerging novel data analysis methods, which without
doubt will increasingly improve our understanding of biology
and favorably impact the progress of medicine in future years.

References

Adler HJ, Raphael Y (1996) New hair cells arise from supporting cell
conversion in the acoustically damaged chick inner ear. Neurosci
Lett 205:17–20

Arias AM, Hayward P (2006) Filtering transcriptional noise during
development: concepts and mechanisms. Nat Rev Genet 7:34–44

Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic
biological processes using time-series gene expression data. Nat Rev
Genet 13:552–564

Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R,
Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS,
Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011)
Single-cell mass cytometry of differential immune and drug re-
sponses across a human hematopoietic continuum. Science 332:
687–696

Bendall SC, Davis KL, el Amir AD, Tadmor MD, Simonds EF, Chen TJ,
Shenfeld DK, Nolan GP, Pe’er D (2014) Single-cell trajectory
detection uncovers progression and regulatory coordination in hu-
man B cell development. Cell 157:714–725

Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expres-
sion profiling in single cells from the pancreatic islets of Langerhans
reveals lognormal distribution of mRNA levels. Genome Res 15:
1388–1392

Blow N (2009) Microfluidics: the great divide. Nat Methods 6:683–685
Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014)

Single cell dissection of early kidney development: multilineage
priming. Development 141:3093–3101

Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L,
Kemp R, Winton DJ (2013) Intestinal label-retaining cells are se-
cretory precursors expressing Lgr5. Nature 495:65–69

Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated
progenitors and differentiating hair cells during avian hair cell
regeneration. Dev Dyn 236:156–170

Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after
acoustic trauma. Science 240:1772–1774

Doetzlhofer A, White P, Lee YS, Groves A, Segil N (2006) Prospective
identification and purification of hair cell and supporting cell pro-
genitors from the embryonic cochlea. Brain Res 1091:282–288

Draper BA, Kyungim B, Stewart Bartlett M, Beveridge JR (2003)
Regognizing faces with PCA and ICA. Comp Vision Image
Underst 91:115–137

Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD,
Altman R, Heller S (2014a) Reconstruction of the mouse otocyst
and early neuroblast lineage at single-cell resolution. Cell 157:964–
978

Durruthy-Durruthy R, Gottlieb A, Heller S (2014b) Three-dimensional
computational reconstruction of tissues with hollow spherical mor-
phologies using single cell gene expression data. Nat Protocols. doi:
10.1038/nprot.2015.022

56 Cell Tissue Res (2015) 361:49–57

http://dx.doi.org/10.1038/nprot.2015.022


el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall
SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D (2013)
viSNE enables visualization of high dimensional single-cell data
and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol
31:545–552

Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium
and heterogeneity of mouse pluripotent stem cells with distinct
functional and epigenetic states. Cell Stem Cell 3:391–401

HergetM, ScheibingerM, Guo Z, Jan TA, Adams CM,ChengAG, Heller
S (2013) A simple method for purification of vestibular hair cells
and non-sensory cells, and application for proteomic analysis. PLoS
ONE 8:e66026

Holton T, Hudspeth AJ (1983) A micromechanical contribution to co-
chlear tuning and tonotopic organization. Science 222:508–510

Hyvarinen A (1997) Independent component analysis byminimization of
mutual information, vol Report A46. Helsinki University of
Technology, Helsinki

Hyvarinen A, Oja E (2000) Independent component analysis: algorithms
and applications. Neural Netw 13:411–430

Jan TA, Chai R, Sayyid ZN, Cheng AG (2011) Isolating LacZ-expressing
cells from mouse inner ear tissues using flow cytometry. J Vis Exp
e3432

Jolliffe IT (2002) Principal Component Analysis. Springer, New York
Kohonen T, Kaski S, Somervuo P, Lagus K, Oja M, Paatero V (2001)

Self-organizing maps. Springer Series in Information Sciences, vol
30. Springer, Berlin, pp 114–122

Levsky JM, Singer RH (2003) Gene expression and the myth of the
average cell. Trends Cell Biol 13:4–6

Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S (2004) Islet-1
expression in the developing chicken inner ear. J Comp Neurol
477:1–10

Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of
ribbon size and AMPA receptor expression underlie sensitivity
differences among cochlear-nerve/hair-cell synapses. J Neurosci
31:801–808

Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–
68

Ma Q, Chen Z, del Barco BI, de la Pompa JL, Anderson DJ (1998)
neurogenin1 is essential for the determination of neuronal precursors
for proximal cranial sensory ganglia. Neuron 20:469–482

McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expres-
sion. Proc Natl Acad Sci U S A 94:814–819

Melin J, Quake SR (2007) Microfluidic large-scale integration: the evo-
lution of design rules for biological automation. Annu Rev Biophys
Biomol Struct 36:213–231

Mutai H, Mann S, Heller S (2005) Identification of chicken transmem-
brane channel-like (TMC) genes: expression analysis in the cochlea.
Neuroscience 132:1115–1122

Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S, Teles J, Peterson C,
Enver T (2012) Inferring rules of lineage commitment in
haematopoiesis. Nat Cell Biol 14:287–294

Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic
gene expression and its consequences. Cell 135:216–226

Ricci AJ, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of
calcium signalling in turtle auditory hair cells. J Physiol 524(Pt 2):
423–436

Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the
conductance of the hair cell mechanotransducer channel. Neuron 40:
983–990

Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing
production of sensory cells in the vestibular epithelium of the chick.
Hear Res 57:166–174

Roberson DW, Alosi JA, Cotanche DA (2004) Direct transdifferentiation
gives rise to the earliest new hair cells in regenerating avian auditory
epithelium. J Neurosci Res 78:461–471

Rubel EW, Fritzsch B (2002) Auditory system development: primary
auditory neurons and their targets. Annu Rev Neurosci 25:51–101

Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma
in adult Coturnix quail. Science 240:1774–1776

Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F,
Sinkkonen W, Cheng AG, Oshima K, Heller S (2011) Intrinsic
regenerative potential of murine cochlear supporting cells. Sci Rep
1:26

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B (1998) Comprehensive identifi-
cation of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander ES, Golub TR (1999) Interpreting patterns of gene expres-
sion with self-organizing maps: methods and application to hema-
topoietic differentiation. Proc Natl Acad Sci U S A 96:2907–2912

Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi
CR, Mathies RA (2008) Integrated microfluidic bioprocessor for
single-cell gene expression analysis. Proc Natl Acad Sci U S A 105:
20173–20178

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M,
Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat Biotechnol 32:381–386

van Roon MA, Aten JA, van Oven CH, Charles R, Lamers WH (1989)
The initiation of hepatocyte-specific gene expression within embry-
onic hepatocytes is a stochastic event. Dev Biol 136:508–516

Wang Z, GersteinM, SnyderM (2009) RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 10:57–63

Whitesides GM (2006) The origins and the future of microfluidics.
Nature 442:368–373

Cell Tissue Res (2015) 361:49–57 57


	Applications for single cell trajectory analysis in inner ear development and regeneration
	Abstract
	Introduction
	What is single cell trajectory analysis and why is it important?
	Temporal transcriptomics in inner ear research
	Limitations of PCA-based trajectory analyses
	‘Monocle’ and one-dimensional self-organizing maps as alternatives

	Conclusion and outlook
	References


