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Abstract The intermediate filament A- and B-type lamins are
key architectural components of the nuclear lamina, a protein-
aceous meshwork that lies underneath the inner nuclear mem-
brane. In the past decade, many different monogenic human
diseases have been linked to mutations in various components
of the nuclear lamina. Mutations in LMNA (encoding lamin A
and C) cause a variety of human diseases, collectively called
laminopathies. These include cardiomyopathies, muscular
dystrophies, lipodystrophies and progeroid syndromes. In ad-
dition, elevated levels of lamin B1, attributable to genomic
duplications of the LMNB1 locus, cause adult-onset autosomal
dominant leukodystrophy. The molecular mechanism(s) en-
abling the mutations and perturbations of the nuclear lamina to
give rise to such a wide variety of diseases that affect various
tissues remains unclear. The composition of the nuclear lam-
ina changes dynamically during development, between cell
types and even within the same cell during differentiation and
ageing. Here, we discuss the functional and cellular aspects of
lamina remodelling and their implications for the tissue-
specific nature of laminopathies.
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Nuclear lamina

The nucleus is the innermost sanctuary of every eukaryotic
cell. It is encapsulated by the nuclear envelope, a double
membrane structure consisting in the outer and inner nuclear
membranes. Transport between the cytoplasm and the nucleus
is facilitated by nuclear pore complexes (NPC), multimeric
structures that span both layers of the nuclear envelope. The
architectural integrity of the nucleus is maintained by the
nuclear lamina, a thick (20–50 nm) proteinaceous meshwork
that consists in type V intermediate filament proteins: the A-
and B-type lamins. Expression of A-type lamins is limited to
most somatic lineages, whereas B-type lamins are expressed
in pluripotent stem cells and in their differentiated progeny.

A- and B-type lamins have been identified only in meta-
zoans, a taxon including all multicellular animals arising
around 700–800 million years ago (Peter et al. 2012; Melcer
et al. 2007). Although plants harbour a nuclear lamina that is
similar in its organisation and structure to the lamina found in
multicellular animals, it is debatable whether its components
are lamin analogues (Ciska and Moreno Diaz de la Espina
2013). Nevertheless, even in unicellular eukaryotes such as
Dictyostelium or Trypanosomes, a lamina-type structure lines
the nuclear periphery, highlighting the importance of this
structural component in eukaryotic nuclei (Krüger et al.
2012; Batsios et al. 2012; DuBois et al. 2012). In addition to
supporting the structural integrity of the nucleus, the compo-
nents of the nuclear lamina play fundamental roles in sustain-
ing cellular physiology.

A-type lamins

Lamin A, lamin AΔ10, lamin C and lamin C2 are all gener-
ated by alternative splicing of a single transcript from the
LMNA gene. A-type lamins are absent in undifferentiated
pluripotent stem cells (Constantinescu et al. 2006) but are
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ubiquitously expressed in most somatic lineages, in particular
those of mesenchymal origin (Röber et al. 1989; Broers et al.
1997). Exceptions to this rule are the various neuronal and
hematopoietic lineages in which A-type lamins can be
expressed at low, or undetectable, levels (Röber et al. 1990;
Jung et al. 2012). LaminAΔ10 has been detected at low levels
in cancer cells (Machiels et al. 1996), whereas the expression
of lamin C2 is restricted to germ cells (Furukawa et al. 1994).
In human fibroblasts, both lamin A and C are expressed at
roughly equal levels but the relative amount of each isoform
can vary greatly between tissues. For instance, neuronal line-
ages express little to no lamin A, whereas lamin C can readily
be detected (Jung et al. 2012).

Lamin A (but not lamin C) undergoes extensive post-
translational processing: the C-terminal CaaX motif of lamin
A is farnesylated, cleaved, methylated and finally cleaved
again to form the mature form of lamin A. Deletion of the
protease involved in lamin A processing or mutations
impairing the cleavage site can lead to the accumulation of
permanently farnesylated, uncleaved pre-lamin A, and have
been associated with restrictive dermopathy (RD) and
Hutchinson-Gilford progeria syndrome (HGPS), respectively
(see below).

B-type lamins

B-type lamins are subjected to similar post-translational pro-
cessing. Both lamin B1 and B2 are farnesylated and cleaved at
the –aaX motif but, in contrast to lamin A, B-type lamins
undergo no further cleavage. Furthermore, lamin B1 and B2
are expressed in all cell types including embryonic stem cells
(ESC), whereas lamin A/C expression is restricted to somatic
lineages. Lamin B3 is a minor splice variant of lamin B2 and is
exclusively expressed in male germ cells (Furukawa and
Hotta 1993). B-type lamins are involved in various cellular
processes, including DNA replication (Moir et al. 1994), cell
cycle progression, chromatin remodelling and chromosome
organisation (Moir et al. 1994; Guelen et al. 2008; Solovei
et al. 2013), mitotic spindle assembly (Tsai et al. 2006; Kim
et al. 2011) and, as most recently found, senescence and

ageing (Dreesen et al. 2013a, 2013b; Shimi et al. 2011; Freund
et al. 2012; Shah et al. 2013; Sadaie et al. 2013).

Diseases associated with mutations in nuclear lamina
proteins

The number of known mutations in components of the nuclear
lamina and lamina-associated factors is currently well over 400,
resulting in a multitude of different diseases collectively termed
laminopathies. Although partial overlaps occur in the clinical
symptoms of the various laminopathies, they are extremely
heterogeneous. This is particularly striking as many of them
are caused by single point mutations in the LMNA gene. Muta-
tions in LMNA can cause various muscular dystrophies (Emery-
Dreifuss muscular dystrophy [EDMD], limb girdle muscular
dystrophy [LGMD]), as well as lipodystrophy (familial partial
lipodystrophy [FPLD]), dilated cardiomyopathy (DCM), neu-
ropathy (Charcot-Marie-Tooth [CMT], autosomal dominant leu-
kodystrophy [ADLD]), skin pathology (restrictive dermopathy
[RD]), bone disease (mandibuloacral dysplasia [MAD]) and
accelerated ageing/progeroid syndromes (Hutchinson Gilford
progeria syndrome [HGPS] and atypical Werner syndrome)
(Worman and Bonne 2007; Burke and Stewart 2014).

Mutations in LMNA: HGPS

Arguably, one of the best-studied laminopathy is the early-
onset accelerated ageing syndrome HGPS, initially described
by Jonathan Hutchinson and Hastings Gilford in 1886-87.
Children with progeria appear normal at birth but start to
develop symptoms including thinning of the skin and alopecia
after 2–3 years of age, and die in their mid-teens because of
cardiovascular failure (De Sandre-Giovannoli et al. 2003;
Eriksson et al. 2003). HGPS is caused by a de novo autosomal
dominant mutation in LMNA (c.1824C→T) giving rise to an
aberrantly spliced, truncated form of lamin A, called progerin.
At the cellular level, the most obvious phenotype of HGPS is
the presence of morphologically abnormal nuclei (Fig. 1;
Goldman et al. 2004; Eriksson et al. 2003). Nuclear

Fig. 1 Three-dimensional
rendering of the nuclear lamina in
(a) wild-type and (b) HGPS
fibroblast nuclei by three-
dimensional structured-
illumination super-resolution
microscopy. Staining: lamin
A/C antibody. Bar 6 μm
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architecture defects can be corrected by introducing modified
oligonucleotides that target the activated cryptic splice site,
prevent aberrant splicing and thereby suppress expression of
the mutant protein (Scaffidi and Misteli 2005). Nuclear shape
can also be restored by treating HGPS-derived cells with
farnesyltransferase inhibitors (FTIs), drugs that inhibit lamin
A and progerin farnesylation (Capell et al. 2005; Toth et al.
2005). FTIs were used in the first clinical trial for progeria
patients and some beneficial effects have been reported
(Couzin-Frankel 2012; Gordon et al. 2014).

Recent studies have demonstrated that the inhibition of the
N-acetyltransferase activity of NAT10 towards cytoplasmic
microtubules, by a small molecule called “remodelin”, is also
able to restore nuclear shape in HGPS or lamin-A-depleted
cells. In addition, remodelin appears to improve the prolifer-
ation of HGPS cells (Larrieu et al. 2014). Interestingly, cells
treated with both remodelin and FTI do not exhibit additional
improvements in comparison with cells treated with either
remodelin or FTI alone. This suggests that remodelin and
FTIs do not act synergistically, but rather target a common
pathway. In wild-type cells, FTIs have also been shown to
affect microtubule dynamics and to cause nuclear abnormal-
ities that can be prevented in the presence of remodelin
(Suzuki et al. 1998; Verstraeten et al. 2011; Larrieu et al.
2014). Thus, both FTI and NAT10-modifying compounds
might share parts of their mechanism of action with respect
to nuclear shape.

Nuclear abnormalities are certainly a major phenotype of
HGPS but there is more to progerin than meets the eye.
Shortly after the HGPS mutation was identified, fibroblasts
from HGPS patients were shown to exhibit increased DNA
damage (Liu et al. 2005, 2006; Musich et al. 2009). Although
treatment with FTIs or remodelin improves the aberrant nu-
clear shape of HGPS fibroblasts, only remodelin reduces
DNA damage. These results suggest that nuclear morphology
defects and DNA damage are independent phenotypes arising
from progerin expression (Liu et al. 2005, 2006; Musich et al.
2009). Indeed, consistent with the persistent activation of
DNA damage checkpoints, progeric fibroblasts exhibit a lim-
ited proliferative capacity and have significantly shorter telo-
meres than age-matched controls (Decker et al. 2009; Allsopp
et al. 1992). In addition, the ectopic expression of progerin in
wild-type fibroblasts inhibits their proliferation and triggers
premature senescence (Benson et al. 2010). However,
progerin-induced proliferative inhibition is alleviated by telo-
merase activation and, to some extent, by the inactivation of
the p53 pathway (Kudlow et al. 2008). These results have
provided the first evidence that progerin directly or indirectly
damages telomeres, thereby activating p53, in a manner that
can be alleviated by telomerase. More recently, Benson and
colleagues extended these results by showing that the DNA
damage foci in progerin-expressing cells co-localise with
human TRF1, a component of the telomere-associated

shelterin complex (Benson et al. 2010). Telomere-specific
DNA damage is particularly detrimental for cells as it cannot
be repaired by conventional DNA repair pathways and thus,
triggers permanent growth arrest.

What is the physiological relevance of these findings and
how does the accelerated ageing in HGPS patients relate to
normal ageing? Increased DNA damage is a hallmark of cells
undergoing senescence because of shortened or deprotected
telomeres and shortened telomeres have been associated with
human ageing (d’Adda di Fagagna et al. 2003; Takai et al.
2003; Canela et al. 2007). Nevertheless, one difference is that
during normal ageing, telomere dysfunction is mainly a con-
sequence of the end replication problem, which might also be
enhanced by DNA damaging agents such as oxidative stress
(Wang et al. 2009); whereas in HGPS, telomeres might be
damaged more directly by progerin (Benson et al. 2010).
However, the precise mechanism by which telomeres are
damaged and whether only a subset of telomeres, such as
those located at the nuclear periphery, are affected still needs
to be established.

Mutations in lamin A versus lamin C

Although the HGPS mutation (c.1824C→T) is found exclu-
sively in the lamin A splice isoform of LMNA, most other
progeroid mutations (c.412G→ A, c.428C→T, c.433G→A,
c.1583C→T, c.1619 T→C, c.1626G→C) and mutations in-
volved in muscular dystrophies (EDMD, LGMD),
lipodystrophy (FPLD), DCM, neuropathy (CMT), restrictive
dermopathy (RD) and bone disease (MAD) simultaneously
affect both lamin A and lamin C splice variants (Fig. 2). The
subcellular localisation and similar domain structure of
lamins A and C suggest that mutations in the LMNA locus
affect cell physiology by equally altering both lamin A and
C. Various mouse models have indeed shown that A-type
lamin isoforms can behave independently of each other and
fulfil similar functions (Fong et al. 2006). The finding that
mice expressing exclusively lamin A or lamin C are disease-
free as compared with Lmna knockout mice indicates a high
level of functional redundancy (Sullivan et al. 1999; Kim
and Zheng 2013; Kubben et al. 2011). However, LMNA
mutations causing EDMD, DCM or lipodystrophy have
been demonstrated to give rise to different effects when
expressed in each isoform, including differential binding to
other lamina components (Motsch et al. 2005; Sylvius et al.
2008). In particular, three EDMD-causing mutations
(c.448A→C, c.1580G→C, c.1589T→C) disrupt lamin A
binding to emerin, without affecting the association of
emerin with lamin C (Motsch et al. 2005). Similarly, intro-
ducing the FPLD c.1444C→T mutation into lamin C im-
pairs its localisation to the nuclear lamina, whereas the
introduction of the same mutation into lamin A causes a
much milder phenotype (Broers et al. 2005). Lastly, a
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decrease of lamin A protein abundance without affecting
lamin C is also seen in the central nervous system in which
only lamin A is specifically downregulated by miR-9
microRNA (Jung et al. 2012). Thus, despite an obvious
functional redundancy between the two A-type lamins, muta-
tions that affect both protein isoforms can impair cell function
in a differential and/or synergistic manner.

Diseases associated with perturbations of B-type lamins

In contrast to lamin A, no point mutations in lamin B1 have
been linked to any diseases. However, elevated levels of lamin
B1 have been observed in cells from patients with ataxia
telangiectasia (AT) and adult-onset autosomal dominant leu-
kodystrophy (ADLD), diseases whose clinical symptoms in-
clude neurological defects. Whilst the underlying cause of the
elevated lamin B1 levels in AT remains unclear, ADLD is
caused by a duplication of the lamin B1 locus and leads to
symmetrical demyelination of the central nervous system.
Similar to patients with multiple sclerosis (MS), ADLD pa-
tients progressively lose fine motor skills and suffer from
autonomic symptoms including bowel/bladder dysfunction,
orthostatic hypotension and male impotence. However, con-
trasting the neurodegenerative phenotype of MS, demyelin-
ation in ADLD is symmetrical and not associated with brain
inflammation and loss of oligodendrocytes.

In the past two years, several in vitro and in vivo models
have been used to investigate the way that elevated levels of

lamin B1 affect cellular physiology. Heng et al. (2013)
generated a bacterial artificial chromosome (BAC)-based
transgenic ADLDmousemodel by expressing lamin B1 under
the control of its endogenous promoter. These lamin B1BAC

mice exhibit several pathophysiological features of ADLD,
including impaired cognitive function and age-dependent mo-
tor deficits (Heng et al. 2013). Ultrastructural analysis of 24-
month-old ADLD mice revealed aberrant myelin formation,
demyelination and axonal degeneration. Consistent with the
non-inflammatory phenotype of ADLD patients, lamin B1BAC

mice show no evidence of microglia activation or reactive
astrocytes. Nevertheless, how do elevated levels of lamin B1
result in myelin loss? Analysis of the protein composition
between lamin B1BAC and wild-type mice has revealed that
lamin B1BAC mice exhibit a significant downregulation of
proteolipid protein (PLP). PLP is a major component of the
myelin sheet and has previously been implicated in other
myelin-related diseases. In addition, elevated levels of lamin
B1 in oligodendrocytes result in the transcriptional repression
of the genes involved in myelin biosynthesis (myelin-basic
protein, proteolipid protein and myelin oligodendrocyte gly-
coprotein; Lin and Fu 2009).

Although these results provide a link between lamin B1
overexpression and myelin abnormalities, the precise mecha-
nism by which lamin B1 overexpression leads to reduced
myelin remains unclear. Lamins have been shown to interact
with DNA (Kind et al. 2013; Guelen et al. 2008) and, to some
extent, might regulate gene expression (Finlan et al. 2008;

Fig. 2 Spatial distribution of LMNA mutations along A-type lamin
cDNA. Representation of reported LMNA mutations (source: Universal
Mutation Database LMNA). Mutations are represented by their position
on the LMNA cDNA and categorised according to their phenotype(s):
DCM (dilated cardiomyopathy), EDMD (Emery-Dreifuss muscular
dystrophy), CMT (Charcot-Marie-Tooth), FPLD (familial partial

lipodystrophy), LGMD (limb girdle muscular dystrophy), progeroid
(HGPS and atypical Werner syndrome), MAD (mandibuloacral dyspla-
sia), RD (restrictive dermopathy). A-type lamin protein domains are
indicated: coil 1A (green), coil 1B (light blue), coil 2 (dark blue), nuclear
localization signal (pink), lamin A-specific N-terminus (grey)
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Reddy et al. 2008; Shevelyov et al. 2009). Thus, elevated
levels of lamin B1 might directly affect the transcriptional
regulation of PLP.

Another possibility is that lamin B1 overexpression trig-
gers a cellular program that in turn leads to myelin
destabilisation. We and others have developed cell-based
in vitro models to study the consequences of lamin B1 over-
expression on cell proliferation and function (Barascu et al.
2012; Dreesen et al. 2013a, 2013b). However, in human
fibroblasts, a 2– to 3-fold overexpression of lamin B1 only
results in a moderate proliferation defect. These results have
prompted us to investigate the reasons why human fibroblasts
are relatively resistant to lamin B1 overexpression and why
lamin B1 duplication in ADLD preferentially affects the cen-
tral nervous system. We hypothesised that differences in the
composition of the nuclear lamina in fibroblasts versus neu-
ronal lineages render the latter more susceptible to aberrant
lamin B1 levels. One such difference is that neuronal lineages
express dramatically lower levels of lamin A than fibroblasts
(Lehner et al. 1987; Röber et al. 1989; Zhang et al. 2011). We
therefore increased lamin B1 in fibroblasts with reduced
(50 % reduction) levels of lamin A/C. Strikingly, lamin
B1↑lamin A/C↓ cells exhibited a pronounced proliferation
defect, arrested at the G0/G1 stage of the cell cycle and stained
positive for senescence-associated-β-gal activity. In addition,
lamin B1↑lamin A/C↓ cells exhibited 53BP-1 DNA damage
foci that were associated with telomeres (Dreesen et al. 2013a,
2013b). Reminiscent of the situation in progerin-expressing
fibroblasts, the introduction of telomerase prevented the accu-
mulation of telomeric DNA damage foci and restored the
proliferation of lamin B1↑lamin A/C↓ cells (Dreesen et al.
2013a, b). Taken together, these results suggest that a reduc-
tion in lamin A/C levels dramatically potentiates the pheno-
typic consequences of lamin B1 overexpression. The question
remains as to how perturbations in the nuclear lamina cause
telomeric DNA damage.

Nuclear lamina remodelling

The nuclear lamina was at first thought to be a static mesh-
work but is now considered to be a highly plastic and dynamic
structure. The composition of the nuclear lamina and the
stoichiometry of lamina components varies between tissues
and changes during development, the cell cycle and in differ-
ent cell fates (Broers et al. 1997; Swift et al. 2013).

Remodelling during embryonic development
and differentiation

Pioneering studies in the 1980s revealed that the composition
of the nuclear lamina undergoes profound changes during
embryonic development in chicken and mouse. Nigg and

colleagues demonstrated that early chicken embryos
contained substantial amounts of B-type lamins, whereas A-
type lamins were absent and accumulated only during later
stages of development (Lehner et al. 1987). A-type lamins
appeared after ~8 days in the ectoplacental cone, the tissue that
eventually forms the placenta and after 9–11 days in the
embryo proper.

The differential expression of lamins during embryonic
development can also be recapitulated at the cellular level
in vitro: pluripotent ESC and undifferentiated teratocarcino-
ma stem cells exclusively express B-type lamins, whereas
the expression of A-type lamins is confined to their differ-
entiated progeny. Conversely, the reprogramming of somatic
cells into induced pluripotent stem cells (iPSC) or even the
exposure of somatic cells to ESC extracts results in the
downregulation of lamin A/C (Zhang et al. 2011; Liu et al.
2011; Bru et al. 2008).

The differential expression of lamins during embryonic
development in vivo and during differentiation in vitro raises
the question as to whether the lamina is actively involved in
regulating gene expression during development. At least in the
mouse, neither A- nor B-type lamins appear to be necessary
for early embryonic development: Lmna-/- mice develop to
term and only exhibit impaired growth and muscular dystro-
phy after birth (Sullivan et al. 1999). Similarly, mice lacking
both lmnb1 and lmnb2 also develop to term but die shortly
thereafter. Perhaps most surprising is the fact that E12.5 and
E18 embryos from Lmnb1+/- Lmnb2+/- intercrosses reveal a
normal Mendelian distribution and that all internal organs
form properly. In agreement with these findings, mESC de-
rived from Lmnb1/2-/- mice retain their pluriopotencymarkers
and differentiate into trophectoderm with a similar efficiency
as wild-type mESC (Kim et al. 2011). Taken together, these
results suggest that B-type lamins are not actively involved in
regulating transcriptional programs during ES cell
differentiation.

Haematopoietic system

Most cells of the haematopoietic system either do not express
A-type lamins or express it at extremely low levels (Röber
et al. 1990; Guilly et al. 1990). However, a recent study
demonstrated that T-lymphocytes, which are generally devoid
of A-type lamins, show a transient increase in lamin A/C
expression upon T-cell activation (Gonzales-Granado et al.
2014). These results might be physiologically relevant as
elevated levels of lamin A enhance T-cell activation both
in vitro and in vivo, whereas lamin A-deficiency reduces T-
cell activation. Do these results have implications for
laminopathies? Children with progeria appear to have a nor-
mal haematopoietic system and respond normally to various
infections. A detailed analysis of telomere length in
haematopoietic lineages including T-cells, B-cells, natural
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killer cells and granulocytes, revealed that the median telo-
mere length in three out of four HGPS patients is comparable
with that of age-matched controls (Decker et al. 2009). In
contrast, fibroblasts from the same patients exhibit dramati-
cally shortened telomeres. Is it possible that the reactivation of
lamin A and progerin in activated T-cells from HGPS patients
is too transient or at too low a level to damage telomeres? The
reactivation of lamin A in activated T-cells and the apparent
resistance of the immune system to progerin is intriguing and
would benefit from further investigation.

Central nervous system

In most adult tissues, lamins A and C are found in roughly
equal amounts. An exception to this rule is the central nervous
system: whilst lamin C is expressed in most cell types of the
adult mouse brain, lamin A levels remain low or undetectable
(Jung et al. 2012). As lamin A and lamin C are alternatively
spliced isoforms of the LMNA gene, what could account for
their dramatically different expression levels? Jung and col-
leagues found that the 3’untranslated region of pre-lamin A
mRNA but not lamin C mRNA, contains a putative binding
site for miR-9, a microRNA that is specifically expressed in
the brain and is a key player in neural development (Leucht
et al. 2008). Subsequent experiments by various groups have
shown that miR-9 expression in human fibroblasts, HeLa cells
and iPSC-derived mesenchymal stem cells leads to reduced
levels of lamin A but not lamin C. Importantly, the miR-9-
dependent removal of lamin A from neuronal tissues is of
critical clinical importance to patients with HGPS: miR-9
prevents the accumulation of mutant lamin A (progerin) there-
by protecting them from complications in the central nervous
system (Nissan et al. 2012; Jung et al. 2012, 2014).

The lamina composition in the brain also appears to
change over time. In mice, the temporal expression of lamin
B1 is developmentally regulated and changes during brain
development: lamin B1 protein and mRNA levels are
highest at birth and subsequently decline throughout adult
life (Lin and Fu 2009). Similarly, reduced lamin B1 levels
can be observed in rats during oligodendrocyte maturation
in vitro (Dugas et al. 2006). Interestingly, lamin B1 levels
are inversely correlated with myelin-specific proteins, in-
cluding myelin basic protein and myelin-associated glyco-
protein. Therefore, the orchestration of the onset and levels
of lamin B1 expression is important as excessive production
of lamin B1 (because of genomic duplication of the LMNB1
locus) is associated with ADLD and demyelination in the
central nervous system (Lin and Fu 2009).

Tissue rigidity

The central nervous system not only has a highly characteris-
tic ratio of lamin A abundance compared with that of lamin C,

it also has one of the lowest ratios of A-type to B-type lamins.
Swift et al. (2013) showed that A:B lamin stoichiometry
changes across tissues and is correlated with their elasticity.
Thus, tissues such as cartilage, bone, muscle or heart have a
high A:B ratio (high A-type lamin expression compared with
B-type lamins), whereas softer tissues such as liver, kidney
and brain are characterised by a low A:B ratio (low A-type
lamin expression compared with B-type lamins). This varia-
tion of A:B-type lamin abundance is mainly dependent on the
modulation of A-type lamins, as the levels of B-type lamins
remain relatively constant across tissues. What could explain
the diverse A:B-type ratio in various tissues and how is it
regulated? In a series of papers, the Discher group demon-
strated that the lamina composition dynamically changes in
order to adapt to various tissue environments. This is facili-
tated by the phosphorylation of lamin A, which in turn chang-
es the physical properties of the lamina. Lamin A phosphor-
ylation occurs when cells are grown on soft matrices, whereas
lamin A/C levels are elevated with increasing stiffness of the
matrix. Thus, both lamin A/C levels and its phosphorylation
status modify the mechanical properties of the nucleus and
facilitate cell growth in various tissue environments (Swift
et al. 2013; Buxboim et al. 2014).

Nuclear lamina dissolution during mitosis

The most drastic remodelling of the nuclear lamina occurs
during cell division, when the nuclear envelope and the lamina
are broken down (Güttinger et al. 2009). During cell division,
A- and B-type lamin filaments are depolymerised following
their phosphorylation by kinases including protein kinase C
(PKC), Aurora A and polo-like kinase 1 (Gerace and Blobel
1980; Güttinger et al. 2009; Mall et al. 2012). Phosphorylation
of A-type lamins induces their solubilisation and release, first
into the nucleoplasm and, after nuclear envelope breakdown,
into the cytosol. In contrast, phosphorylated B-type lamins
remain associated with mitotic endoplasmic reticulum (ER)
membranes (Georgatos et al. 1997). Reassembly of the nucle-
ar lamina after mitosis starts by the binding of the ER tubules
to chromatin (Anderson and Hetzer 2008), assembly of NPC
prepores (Sheehan et al. 1988), remodelling of the ER tubules
into flattened nuclear envelope patches and the binding of
inner nuclear membrane proteins to chromatin (Anderson
and Hetzer 2007). Dephosphorylation of lamins by protein
phosphatases and inactivation of cyclin-dependent kinase 1 is
required to reintegrate the nuclear lamina proteins into a new
nuclear lamina; this will occur only once nuclear import has
been restored (Newport et al. 1990).

Viruses take advantage of this mechanism to modulate the
nuclear lamina structurally and to egress from the nucleus into
the cytoplasm. Herpes simplex virus type 1 and the murine
cytomegalovirus achieve this by recruiting the cellular PKC to
the nuclear periphery (Park and Baines 2006). This in turn
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triggers phosphorylation of nuclear envelop proteins, leads to
irregular lamina distribution and dissolution, and facilitates
the exit of virions from the nucleus (Muranyi et al. 2002;
Camozzi et al. 2008).

Lamina remodelling in cancer cells

The Papanicolaou smear test is routinely used to identify
squamous cell carcinomas, one of the most common and
malignant neoplasms among women. The test typically in-
cludes the search for nuclear abnormalities, such as enlarged
and irregularly shaped nuclei (Bengtsson and Malm 2014).
Such alterations of the nuclear lamina and the variable levels
of A-type lamins have been recurrently observed in cancer
cells, although their exact significance and relevance remain
unclear (de Las Heras et al. 2013). Down-regulation of A-type
lamins has been reported in gastrointestinal neoplasms (Moss
et al. 1999), gastric carcinoma (Wu et al. 2009), colon (Belt
et al. 2011), breast (Capo-chichi et al. 2011a, 2011b) and
ovarian cancers (Capo-chichi et al. 2011a, 2011b), whereas
others have shown the up-regulation of lamins in colorectal
(Willis et al. 2009) and prostate cancer (Kong et al. 2012).
Thus, although different lamin A expression levels can be
correlated with the prognosis of various cancers, it remains
unclear whether lamin A/C fluctuations are causal or simply a
consequence of the widespread genomic abnormalities that
occur in cancer cells. Some recent studies have suggested that
lower lamin A levels confer a selective advantage to some
cancer cells, as the decreased expression of lamin A improves
nuclear deformability and cell migration through three-
dimensional environments (Rowat et al. 2013; Wolf et al.
2013). In contrast, Kong et al. (2012) modulated lamin levels
in prostate cancer cells and found that the overexpression of
lamin A/C enhances cell proliferation, migration and invasion,
suggesting a causal role of A-type lamins on cancer cell
propagation. In conclusion, a clear consensus for the role of
A-type lamins in cancer cells might be difficult to find: the
diverse types of cancers might respond differently to aberrant
lamin A levels, depending on the selective advantage (prolif-
eration, invasiveness) that is required.

Nuclear lamina remodelling during cellular senescence

Cellular senescence is an irreversible cell cycle exit that can be
triggered by various forms of cellular stress, including irrep-
arable DNA damage, oxidative, mitotic or oncogenic stress.
Senescent cells are characterised by the activation of p53 and
Rb tumour suppressor pathways and can be found in prema-
lignant tumours, including benign nevi. Senescent cells also
accumulate with age in various tissues, thereby limiting their
regenerative potential. The entry into senescence is associated
with morphological changes, the expression of senescence-
associated β-galactosidase activity (SA-β–gal) and changes

in gene expression and chromatin organisation, including the
generation of senescence-associated heterochromatin foci and
the senescence-associated secretory phenotype (Rodier and
Campisi 2011). In addition, the nuclear lamina remodels dra-
matically as cells senesce (Dreesen et al. 2013a, 2013b;
Freund et al. 2012; Shimi et al. 2011). These changes include
a reduction of lamin B1 and the lamina associated polypeptide
2α (LAP2α). The loss of lamin B1 levels is specific to
senescent cells, whereas LAP2α levels also decline in quies-
cent cells. Loss of lamin B1 can additionally be used to
identify senescent cells in vivo: lamin B1 levels decline in
mice treated with a senescence-inducing dose of ionising
radiation (Freund et al. 2012), in a mouse model for the
accelerated ageing syndrome progeria (McKenna et al. 2014)
and during the chronological ageing of human skin (Dreesen
et al. 2013a, 2013b). In addition to the loss of lamin B1, a
reduced expression of lamin B1 receptor and a relocalisation of
lamin A/C from the perinuclear region suggest that the nuclear
envelope is structurally compromised in senescent cells
(Ivanov et al. 2013). Taken together, these results demonstrate
that the nuclear envelope is dramatically remodelled in senes-
cent cells and that loss of lamin B1 can be used as a marker to
identify senescent cells in vitro and in vivo.

These data raise the question as to whether the down-
regulation of lamin B1 causes the widespread chromatin
changes observed in senescent cells, i.e., whether the reduc-
tion of lamin B1 is a cause or a consequence of cellular
senescence. Several papers have addressed this question with
differing results. Whilst some groups reported that small-
hairpin-RNA-mediated downregulation of lamin B1 triggers
cellular senescence and apoptosis (Harborth et al. 2001; Shimi
et al. 2011; Shah et al. 2013), other studies suggested that
merely reducing lamin B1 levels is not sufficient to trigger
senescence (Dreesen et al. 2013a, 2013b; Sadaie et al. 2013).
Undoubtedly, lamin B1 levels decline dramatically during
senescence but the causality of this reduction on the senes-
cence phenotype remains debated. Mice that lack lamin B1
and lamin B2 specifically in epidermal keratinocyte or hepa-
tocytes do not show any overt problems in the development
and maintenance of skin, or any defects in liver development,
histology or function. Similarly, most organs of lamin B1
knockout mice develop to term and are apparently normal,
despite the fact that these mice die shortly after birth and
exhibit bone, lung and cranial abnormalities. These results
demonstrate that lamin B1 is not essential for cell proliferation
during organ development in mice. In contrast, when grown
under in vitro cell culture conditions, lamin-B1-deficient
mouse embryonic fibroblasts exhibit nuclear abnormalities,
impaired proliferation and premature senescence. This there-
fore suggests that lamin B1 deficiency impairs cellular func-
tion(s), which in conjunction with additional stress, such as
growth under sparse conditions or in vitro culture, triggers
senescence (Vergnes et al. 2004; Dreesen et al. 2013a, 2013b).
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Concluding remarks

Originally considered as a static and rigid piece of hardware,
the nuclear lamina is now known as a highly plastic, modular
and versatile part of the nucleus. The sheer number of the
known different diseases and mutations linked to the nuclear
lamina reveals the complexity of its cellular functions
(Worman and Bonne 2007). In addition, as discussed here,
the relative abundance of the various lamina components
appears to play an essential role in controlling the tissue-
specific nature of some laminopathies.

One of the cellular hallmarks of HGPS is the presence of
abnormally shaped nuclei, coupled with the accumulation of a
mutant lamin A (progerin) within the nuclear lamina. Despite
progerin being expressed in nearly all somatic cells, it is a
segmental ageing disorder in which the brain is not affected. A
major breakthrough has been the discovery of the brain-
specific expression of miR-9, which targets LMNA transcripts
and therefore prevents progerin expression (Nissan et al.
2012; Jung et al. 2012, 2014). These results highlight the
importance of nuclear lamina composition, the way that it
varies among different tissues and the manner in which this
can affect disease etiology. The peculiar lamina composition
in the brain might also account for the phenotypic specificity
of ADLD: our studies suggest that the lower abundance of A-
type lamin renders the central nervous system particularly
vulnerable to elevated levels of lamin B1 (Dreesen et al.
2013a, b). These investigations emphasise the essential role
of the nuclear lamina during development and cell differenti-
ation and the highly complex chain of events leading from a
single point mutation to the disease phenotype. Importantly,
they indicate that, whereas mutation dictates the starting point
of this detrimental chain of events, the widely diverse com-
position of the nuclear lamina in each tissue might ultimately
define the tissue-specific nature of laminopathies.
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