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Abstract Chondrogenesis is a developmental process that
is controlled and coordinated by many growth and differ-
entiation factors, in addition to environmental factors that
initiate or suppress cellular signaling pathways and the
transcription of specific genes in a temporal-spatial manner.
As key signaling molecules in regulating cell proliferation,
homeostasis and development, both mitogen-activated pro-
tein kinases (MAPK) and the Wnt family participate in
morphogenesis and tissue patterning, playing important
roles in skeletal development, especially chondrogenesis.
Recent findings suggest that both signals are also actively
involved in arthritis and related diseases. Despite the im-
plication that crosstalk between MAPK and Wnt signaling
has a significant function in cancer, few studies have sum-
marized this interaction and its regulation of chondrogene-
sis. In this review, we focus on MAPK and Wnt signaling,
referencing their relationships in various types of cells and
particularly to their influence on chondrogenesis and carti-
lage development. We also discuss the interactions between
MAPK and Wnt signaling with respect to cartilage-related

diseases such as osteoarthritis and explore potential thera-
peutic targets for disease treatments.
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Introduction

Chondrogenesis is a morphogenetic event that includes pro-
liferation, condensation and differentiation of mesenchymal
cells into chondrocytes with the production of a cartilage-
specific extracellular matrix (ECM) rich in type II collagen
and sulfated proteoglycans (Cancedda et al. 2000). Mitogen-
activated protein kinase (MAPK) is one of the conserved
signal transduction systems in cartilage and plays a crucial
role in chondrogenic differentiation. The MAPK cascades
constituting three sequentially activated kinase complexes,
which include p38 MAPK, c-Jun N-terminal kinase (JNK)
and extracellular regulated kinase (ERK), are substrates for
phosphorylation by MAPK kinases (MKKs; Fig. 1). The
MKKs are, in turn, phosphorylated by MAPK kinase ki-
nases (MEKKs). With regard to chondrogenesis and chon-
drocyte differentiation, ERK and p38 MAPK have central
roles in mediating chondrocyte proliferation and related gene
expression (Krens et al. 2006), whereas JNK has a minor
role in chondrogenesis, as JNK phosphorylation is not af-
fected during the process (Nakamura et al. 1999; Stanton
et al. 2003). p38 MAPK is usually phosphorylated during
chondrogenesis and is generally accepted as a positive reg-
ulator in chondrogenesis and chondrocyte differentiation (Oh
et al. 2000; Stanton et al. 2003; Watanabe et al. 2001);
however, the role of the ERK MAPK pathway (also known
as the MEK-ERK kinase cascade) is still controversial.
Murakami et al. (2000) reported that ERK is a positive
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regulator in chondrogenesis, as the increase in SRY (sex-
determining region Y)-box 9 (SOX9) levels induced by basic
fibroblast growth factor (FGF2) is inhibited by a specific
ERK kinase (MEK) inhibitor (U0126) in primary
chondrocytes. Co-expression of a constitutively active mu-
tant of MEK1 increases the activity of the Sox9-dependent
enhancer in primary chondrocytes and C3H10T1/2 cells
(Murakami et al.2000). However, the authors of some stud-
ies interpreted MEK-ERK as a negative factor for chondro-
genesis. For example, ERK1/2 activities have been observed

to decrease as chondrogenesis proceeds and the inhibition of
ERK1/2 with PD98059 enhances chondrogenesis (Oh et al.
2000); other studies have also shown similar results (Bobick
and Kulyk 2006; Chang et al. 1998).

The Wnt family of secreted glycoproteins are signaling
molecules that play important roles in controlling a wide range
of developmental processes, including tissue patterning, cell
proliferation and cell fate, through two distinct canonical and
non-canonical Wnt pathways (Fig. 2). In the canonical Wnt
signaling pathway, the binding of secreted Wnts to the

Fig. 1 The best characterized mitogen-activated protein kinase (MAPK)
modules are the extracellular regulated kinase (ERK) pathway, the stress-
activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) pathway
and the p38 MAPK pathway. The MAPK cascades consist in an MAPK
kinase kinase (MEKK), an ERK kinase (MEK) and an MAPK. MEKKs
are activated through a large variety of extracellular signals such as

growth factors, cytokine factors and stress. The activated MEKKs can
phosphorylate and activate one or several MEKs, which, in turn, phos-
phorylate and activate a specific MAPK. Activated MAPK phosphory-
lates and activates various substrates in the cytoplasm and the nucleus of
the cell, including transcription factors. These downstream targets control
cellular responses (e.g., apoptosis, proliferation and differentiation)
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Fig. 2 ThreeWnt-dependent pathways have been categorized: canonical
Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) and
Wnt/Ca2+ pathways. Canonical Wnt/β-catenin pathway: In cells, with
an inactive state of canonical Wnt signaling, cytosolic β-catenin is
targeted to proteolytic degradation through phosphorylation by the ade-
nomatous polyposis coli (APC)–Axin–glycogen synthase kinase 3beta
(GSK3β) complex and further ubiquitination through the action of the
beta-transducin repeat containing the protein (βTrCP)-dependent E3
ubiquitin ligase complex. On stimulation by Wnt ligands, through bind-
ing to Frizzled (Fzd) receptors and its co-receptor LDL-related protein
(LRP), Fzd recruits and phosphorates Dishevelled (Dsh) and inhibits
APC–Axin–GSK3β complex formation by the recruitment and inhibition
of GSK3β. Consequently,β-catenin can accumulate in the cytoplasm and
enter the nucleus, activating the transcription of target genes through an
association with the lymphoid enhancer-binding factor-1 (LEF)/T-cell
factor (TCF) transcription factor family. Non-canonical Wnt/Ca2+

pathway: Interaction of Wnt ligands with Fzd receptors can lead to an
increase in the intracellular calcium level, possibly through the activation
of phospholipase C (PLC). Intracellular calcium will subsequently acti-
vate Ca2+/calmodulin-dependent protein kinase II (CAMKII) and protein
kinase C (PKC) in cells, and the transcription factor called nuclear factor
of activated T cells (NFAT). This pathway is particularly important for
convergent-extension movements during gastrulation. Additionally, Fzd
receptors can also activate JNK, promoting the expression of specific
genes through the activation of activator protein-1 (AP-1). Non-canonical
Wnt/PCP pathway: This pathway is characterized by an asymmetric
distribution of Fzd and related receptors, resulting in the polarization of
the cell. Moreover, Wnt-signaling activates Cdc42, RhoA and Rac1
leading to cytoskeleton rearrangement. Rac1 can also activate JNK,
activating specific gene transcription through the modulation of the AP-
1 protein complex (dsDNA double-stranded DNA)
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Frizzled family of cell-surface receptors inactivates glycogen
synthase kinase 3beta (GSK3β), resulting in stabilization and
nuclear translocation ofβ-catenin and activation ofWnt target
genes. The non-canonical pathways also signal through the
Frizzled receptors; the planar cell polarity (PCP) pathway
activates the Rho family of GTPases and JNK and modifies
cytoskeletal organization and epithelial cell polarization. The
Wnt/Ca2+ pathway stimulates the intracellular increase of
Ca2+ through the activation of protein kinase C (PKC) and
calmodulin-dependent kinase II (CaMKII; Akiyama et al.
2004). During embryonic skeletogenesis, Wnt components
act as both positive and negative regulators of key events,
including chondroblast differentiation, chondrocyte matu-
ration and joint formation (Church and Francis-West
2002).

In embryos, low levels of Wnt/β-catenin signaling stimu-
late chondrogenic differentiation of stem cells, whereas high
levels of Wnt/β-catenin signaling inhibit that process
(Hartmann 2006; Johnson and Rajamannan 2006; Westendorf
et al. 2004). Wnts have also been shown to both inhibit and
stimulate chondrogenic differentiation of adult progenitor
cells (Day et al. 2005; Hill et al. 2005; Hu et al. 2005).
Removal of β-catenin early in mesenchymal progenitor cells
promotes chondrocyte differentiation, whereas ectopic ex-
pression of an activated form of β-catenin in early differenti-
ating chondrocytes induces ectopic joint formation both mor-
phologically and molecularly (Guo et al. 2004). In adult
progenitor cells, osteoblast precursors lacking β-catenin are
blocked in their differentiation and develop into chondrocytes
instead. Detailed in vivo and in vitro loss- and gain-of-
function analyses have revealed that β-catenin activity is
necessary and sufficient to repress the differentiation of mes-
enchymal cells into runt-related transcription factor 2
(RUNX2)- and SOX9-positive skeletal precursors (Hill et al.
2005), suggesting that Wnt/β-catenin signaling controls oste-
oblast and chondrocyte formation when they differentiate
from mesenchymal progenitors.

The MAPK pathway has also been reported to regulate
Wnt/β-catenin signaling.Wnt/β-catenin signaling is activated
by LIT1 and MOM4, which separately encode a homolog of
the MAPK-related Nemo-like Kinase (NLK) and a homolog
of transforming growth factor beta (TGFβ)-activated kinase
(TAK-1; Meneghini et al. 1999). TAK-1, which is a MEKK
activated by TGFβ, by bone morphogenetic protein (BMP)
and by other MAPK signaling components, plays a critical
role in chondrogenesis. Deletion of TAK1 in chondrocytes
results in novel embryonic developmental cartilage defects
including decreased chondrocyte proliferation, reduced pro-
liferating chondrocyte survival, delayed onset of hypertrophy
and reduced matrix metalloproteinase-13 (MMP13) expres-
sion (Gunnell et al. 2010). Since both MAPK and Wnt sig-
naling pathways have crucial regulatory functions in the de-
velopment of cartilage and bone formation, studies of their

interactions and crosstalk are of extreme importance for the
elucidation of the complex signaling networks in chondrogen-
esis and for the exploration of potential therapeutic targets for
related diseases such as osteoarthritis (OA).

Influence of canonical Wnt signals on MAPK pathway

In totipotent mouse F9 teratocarcinoma cells, the canonical
Wnt-β-catenin-JNK signaling pathway has been found to be
activated by G-proteins, which can propagate the signals
downstream through Dishevelled isoforms. Suppression of
Dishevelled-1 or Dishevelled-3 abolished the Wnt3a activa-
tion of JNK (Bikkavilli et al. 2008a). Wnt3a treatment en-
hances the mRNA and protein expression of c-Jun and stim-
ulates the phosphorylation of c-Jun and JNK. Furthermore,
Wnt3a activation of activator protein-1 (AP-1) is blocked by
the inhibition of JNK with SP600125 and by the inhibition of
AP-1 with N-acetyl-L-cysteine and nordihydroguaiaretic acid
(Hwang et al. 2005). AP-1 is also activated by ERK1/2 in
C3H10T1/2 cells (Seghatoleslami et al. 2003). In NIH3T3
fibroblast cells, ERK pathway activation by Wnt signaling
can occur at multiple levels, including β-catenin-independent
direct signaling resulting from a Wnt3a (Wnt3a-Raf-1-MEK-
ERK) and a β-catenin-/Tcf-4-dependent post gene transcrip-
tion event (Yun et al. 2005). In addition to JNK and ERK, p38
MAPK is strongly activated by Wnt3a in mouse F9 teratocar-
cinoma cells and the activated p38MAPK regulates canonical
Wnt-β-catenin signaling through the regulation of GSK3β.
Chemical inhibitors of p38 MAPK (SB203580) and the ex-
pression of a dominant-negative version of p38 MAPK atten-
uates the Wnt3a-induced accumulation of β-catenin, lym-
phoid enhancer-binding factor-1/T-cell factor (Lef/Tcf)-sensi-
tive gene activation and primitive endoderm formation
(Bikkavilli et al. 2008b). The above evidence indicates the
influence of canonical Wnt signals on the MAPK pathway
(Fig. 3).

The reduced expression of adhesion molecules is known to
be associated with the formation and differentiation of carti-
lage nodules; this is supported by the finding that N-cadherin
is expressed in prechondrogenic mesenchymes during cell
condensation but not in differentiated chondrocytes
(Oberlender and Tuan 1994; Tavella et al. 1994). One study
has indicated that the inhibition of p38 MAPK results in the
sustained expression of N-cadherin and eventually inhibits
chondrogenic differentiation in chick limb mesenchymal
micromass cultures (Oh et al. 2000). Wnt regulation of limb
mesenchymal chondrogenesis is also involved in the modula-
tion of N-cadherin.Wnt7a signaling has been shown to inhibit
the chondrogenic differentiation of limb mesenchymal cells
in vitro by modulating the expression of N-cadherin and the
turnover of N-cadherin-dependent cell-cell adhesion com-
plexes (Tufan and Tuan 2001). The combination of Wnt7a
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Fig. 3 Influence of canonicalWnt signals on theMAPK pathway.Wnt3a
treatment activates the Raf-1-MEK-ERK cascade (Yun et al. 2005) and
the JNK pathways (Bikkavilli et al. 2008a). Wnt3a activation of activator
protein-1 (AP-1) is blocked by the inhibition of JNK with SP600125 and
by the inhibi t ion of AP-1 with N-acetyl-L-cysteine and
nordihydroguaiaretic acid (Hwang et al. 2005). In C3H10T1/2 cells,
AP-1 is activated by ERK1/2 (Seghatoleslami et al. 2003). In totipotent
mouse F9 teratocarcinoma cells, canonical Wnt-β-catenin-JNK signaling
is activated by G-proteins, which propagate the signals downstream

through Dishevelled (Dsh) isoforms; suppression of Dsh-1 or Dsh-3
abolishes Wnt3a activation of JNK (Bikkavilli et al. 2008a). In addition
to JNK and ERK, p38 MAPK is strongly activated by Wnt3a and the
activated p38 MAPK regulates canonical Wnt-β-catenin signaling
through the regulation of GSK3β. Chemical inhibitors of p38 MAPK
(SB203580) and expression of a dominant-negative version of p38
MAPK attenuate Wnt3a-induced accumulation of β-catenin, Lef/Tcf-
sensitive gene activation and primitive endoderm formation (Bikkavilli
et al. 2008b)
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misexpression and ERK inhibition partially recovers the
Wnt7a inhibition of chondrogenic differentiation, whereas
the combination of Wnt7a misexpression and p38 inhibition
acts in a synergistic chondro-inhibitory fashion (Tufan et al.
2002).

Wnt3a can also induce a rapid and transient activation of
p38 MAPK, which in turn regulates alkaline phosphatase
activity and mineralization of nodules, directing the differen-
tiation of mesenchymal cells into osteoprogenitors.
Dickkopf1, a selective antagonist of Wnt proteins, does not
influence the activation of p38 MAPK and ERK induced by
Wnt3a (Caverzasio and Manen 2007), implying that non-
canonical Wnt pathways participate in the regulatory process
of mesenchymal cell differentiation into osteogenic cells.

Influence of non-canonical Wnt signals on MAPK
pathway

As a non-canonical Wnt signal, Wnt5a specifically promotes
entry into the prehypertrophic phase, whereas it conversely
blocks chondrocyte hypertrophy, acting in a stage-specific
context (Kawakami et al. 1999; Yang et al. 2003). This finding
was confirmed by a study showing that Wnt5a misexpression
delays the maturation of chondrocytes and the onset of bone
collar formation (Hartmann and Tabin 2000).Wnt5a increases
chondrocyte differentiation at an early stage through the
CaMK/calcineurin (CaN)/nuclear factor of activated T cells
(NFAT)-dependent induction of Sox9, while repressing chon-
drocyte hypertrophy via the IкB kinase (IKK)/nuclear
factor-кB (NF-κB)-dependent inhibition of Runx2 expression
(Bradley and Drissi 2010). In mouse F9 embryonal teratocar-
cinoma cells, strong activation of p38 MAPK has been ob-
served in response to Wnt5a; treatment with SB203580 effec-
tively abolishes the stimulatory effects of Wnt5a (Ma and
Wang 2007). Both exogenous TGFβ3 and the overexpression
ofWnt5a stimulates PKCα and p38MAPK activation early in
culture, resulting in cellular condensation and chondrogenesis.
Comparatively, the inhibition of PKCα or p38MAPK activity
abolishes the promotion of chondrogenic differentiation by
overexpressing Wnt5a or exogenous TGFβ3. On the other
hand, the partial reduction of endogenous WNT5A by small
interfering RNA diminishes TGFβ3-stimulated chondrogen-
esis through the inhibition of PKCα and p38 MAPK activity
(Jin et al. 2006a). Wnt5a has also been found to promote
ERK1/2 phosphorylation in endothelial cells (Masckauchán
et al. 2006); the expression of Wnt5a blocks canonical Wnt
signaling in endothelial cells and other cell types (Topol et al.
2003) (Fig. 4).

However, non-canonical Wnt signaling more commonly
functions through the Wnt-JNK pathways (Logan and Nusse
2004). Activation ofWnt5a signaling by interleukin 1beta (IL-
1β) induces the expression ofMMPs via the JNK pathways in

rabbi t temporomandibular joint (TMJ) condylar
chondrocytes, whereas blockage of JNK signaling impairs
the Wnt5a-induced up-regulation of MMPs (Ge et al. 2009).
The highly homologous non-canonical Wnt signals, Wnt5a
and Wnt5b, have differential effects on cartilage development
with regard to cell proliferation and the expression of type II
collagen. Unlike Wnt5a, Wnt5b represses chondrocyte differ-
entiation in both the initial stages of cartilage condensation
and the late hypertrophic stage (Yang et al. 2003). Wnt5b
activates JNK, a component of the PCP pathway, thereby
contributing to an increase in cellular migration and Wnt5b-
mediated decreases in cell-cell adhesion through the activation
of Src and subsequent cadherin receptor turnover (Bradley
and Drissi 2011; Fig. 4).

Wnt5a also plays an important role in osteoblast differenti-
ation. The MAPK pathway is altered in Wnt5a-deficient
mouse calvarial cells, suggesting that Wnt5a signaling influ-
ences the MAPK/JNK pathway (Guo et al. 2008). Other
studies provide evidence for crosstalk between Wnt5a and
MAPK. Ishitani et al. (2003) found that the overexpression
of Wnt5a in HEK293 cells activates NLK MAPK through
TAK-1; furthermore, the overexpression of Wnt5a antago-
nizes the canonical Wnt/β-catenin pathway (Ishitani et al.
2003). Through CaMKII-TAK1-TAB2-NLK, non-canonical
Wnt signaling transcriptionally represses the transactivation
of peroxisome proliferator-activated receptor gamma
(PPARG) and induces RUNX2 expression, promoting osteo-
blastogenesis in preference to adipogenesis in bone marrow
mesenchymal progenitors (Takada et al. 2007).Wnt4, conven-
tionally regarded as a non-canonical Wnt class (Wong et al.
1994), has been found potently to enhance the osteogenic
differentiation of mesenchymal stem cells (MSCs) isolated
from human adult craniofacial tissue in vitro and bone forma-
tion in vivo, through the activation of p38 MAPK, which is
known positively to regulate the osteogenic differentiation
induced by BMPs and other growth factors (Gallea et al.
2001; Guicheux et al. 2003). The inhibition of p38 MAPK
abolishes the osteogenic differentiation of MSCs promoted by
Wnt4.

Wnt11 belongs to the Wnt5a subclass that exerts di-
verse effects through the activation of the non-canonical
Wnt signaling pathway (Du et al. 1995). Recently, Rye
and Chun (2006) demonstrated that Wnt11 stimulates the
accumulation of type II collagen in articular chondrocytes.
In three-dimensional alginate gels, WNT11 expression
peaks at the late stage of chondrogenic differentiation of
human MSCs (Xu et al. 2008). In Xenopus laevis and
mouse P19 cells, signaling cascades activated by Wnt11
are crucial for the initiation of cardiogenesis; furthermore,
Wnt11 not only inhibits β-catenin signaling but also acti-
vates JNK, suggesting crosstalk between Wnt11 and
MAPK signals (Pandur et al. 2002). In human hepatocel-
lular carcinoma (HCC) cell lines, the overexpression of
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Wnt11 activates PKC signaling, which antagonizes canon-
ical Wnt signaling through the phosphorylation of β-
catenin and the reduction of T-cell factor (TCF)-mediated
transcriptional activity (Toyama et al. 2010). However, few
studies have been reported about the interplay between
Wnt11 and MAPK signaling in the regulation of
chondrogenesis.

Influence of MAPK signals on Wnt pathway

Many studies have shown that MAPKs participate in the
regulation of Wnt pathway activities (Fig. 5). Expression of
constitutively active MKK6, an upstream activator of p38
MAPK, in 293T cells is sufficient to increase the expression
of β-catenin proteins through the direct phosphorylation of

Fig. 4 Influence of non-canonicalWnt signals on theMAPK pathway. In
mouse F9 teratocarcinoma embryonal cells, p38 MAPK is strongly
activated in response to Wnt5a, and treatment with SB203580 effectively
abolishes the stimulatory effects of Wnt5a (Ma and Wang 2007). Wnt5a
also promotes ERK1/2 phosphorylation, enhancing endothelial cell sur-
vival and proliferation (Masckauchán et al. 2006) and the expression of
Wnt5a blocks canonical Wnt signaling in endothelial cells (Masckauchán
et al. 2006) and other cell types (Topol et al. 2003). However, non-
canonical Wnt signaling more commonly functions through the Wnt-
JNK pathway. Activation of Wnt5a signaling by interleukin-1β (IL-1β)
induces the expression of matrix metalloproteinase (MMP) via the JNK

pathway in rabbit temporomandibular joint condylar chondrocytes,
whereas blockage of JNK signaling impairs the Wnt5a-induced up-reg-
ulation of MMPs (Ge et al. 2009). Wnt5a increases chondrocyte differ-
entiation at an early stage through the CaMK/NFAT-dependent induction
of Sox9, while repressing chondrocyte hypertrophy via the nuclear
factor-кB (NF-κB)-dependent inhibition of Runx2 expression (Bradley
and Drissi 2010).Wnt5b activates JNK, a component of the PCP pathway
and contributes to an increase in cellular migration but Wnt5b also
decreases cell-cell adhesion through the activation of Src and subsequent
cadherin receptor turnover (Bradley and Drissi 2011)
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GSK3β protein, both in vitro and in vivo; this phosphoryla-
tion is blocked by SB203580 or the knock-out of MKK3 and
MKK6 (Ding et al. 2005; Thornton et al. 2008). Since MAPK
signals are required for the phosphorylation of PPPS/TP mo-
tifs of endogenous LDL-related protein 6 (LRP6), Wnt3a-
induced phosphorylation of endogenous LRP6 is significantly

attenuated by the knock-down of JNK1 and p38β. These
results are further confirmed by pharmacological inhibition
of p38 MAPK by SB203580 and that of JNK by SP600125
(Červenka et al. 2011). Rac1 can activate JNK2 to phosphor-
ylate β-catenin, which is responsible for controlling limb
outgrowth in mouse embryos (Wu et al. 2008). In Xenopus

Fig. 5 Influence of MAPK signals on the Wnt pathway. Expression of
constitutively active MKK6, an upstream activator of p38 MAPK, in
293 T cells increases the expression of β-catenin proteins through the
direct phosphorylation of GSK3β protein, both in vitro and in vivo; this
phosphorylation is blocked by SB203580 or the knock-out of MKK3 and
MKK6 (Thornton et al. 2008). Members ofMAPKs such as ERK1/2, p38
MAPK and JNK contribute to the phosphorylation of PPPS/TP clusters of
endogenous LDL-related protein 6 (LRP6) phosphorylation, stimulating
Wnt/β-catenin expression. Rac1, a small signaling G protein, can activate

JNK2 to phosphorylate β-catenin (Wu et al. 2008). In Xenopus embryos,
activation of JNK antagonizes the canonical Wnt pathway through acti-
vating the nuclear export of β-catenin instead of maintaining its cyto-
plasmic stability (Liao et al. 2006). Receptor tyrosine kinase (RTK)
systems facilitate Wnt/β-catenin signaling by the phosphatidylinositol
3-kinase (PI3K)/AKT pathway through the inhibition of GSK3 activities
(Dailey et al. 2005); RTKs can also phosphorylateβ-catenin by involving
ERK/LRP6 pathways to activate Wnt/β-catenin signaling (Krejci et al.
2012)

640 Cell Tissue Res (2014) 358:633–649



embryos, the activation of JNK antagonizes the canonicalWnt
pathway through the activation of the nuclear export of β-
catenin rather than its cytoplasmic stability (Liao et al. 2006).
Many receptor tyrosine kinase (RTK) systems facilitate Wnt/
β-catenin signaling by the phosphatidylinositol 3-kinase
(PI3K)/AKT (or alternatively protein kinase B, PKB) pathway
through the inhibition of GSK3 activity (Dailey et al. 2005).
Interestingly, RTKs have also been found to utilize ERK/
LRP6 pathways for the direct phosphorylation of β-catenin
to activate WNT/β-catenin signaling (Krejci et al. 2012).

Some critical transcriptional factor activities such as Sox9
or Runx2 are regulated by changing key signals of the Wnt
pathways and eventually determine the differentiation fate of
cells. BMP2, for instance, promotes chondrogenesis by acti-
vating p38 MAPK, which in turn down-regulates Wnt7a/β-
catenin signaling. Inhibition of p38 MAPK by using a
dominant-negative mutant leads to a sustainedWnt7a increase
and decreased Sox9 expression, with the consequent inhibi-
tion of pre-cartilage condensation and chondrogenic differen-
tiation (Jin et al. 2006b). Similarly, TGFβ-1-mediated MAPK
activation, which controlsWNT7A gene expression and Wnt-
mediated signaling through the intracellular β-catenin-TCF
pathway, probably regulates N-cadherin expression and sub-
sequent N-cadherin-mediated cell-adhesion complexes during
the early steps of mesenchymal progenitor cell chondrogene-
sis (Tuli et al. 2003).

Environmental factors such as mechanical stress and cyto-
kines might also activate the MAPK pathway. Static compres-
sive loading of cartilage activates the MAPK pathway, which
is also known as the stress-activated protein kinase (SAPK)
pathway (Fanning et al. 2003; Tibbles and Woodgett 1999).
Wnt/β-catenin signaling not only is involved in the bone
response to mechanical loading (Robinson et al. 2006;
Sawakami et al. 2006) but is also associated with the response
to mechanical damage to cartilage, which results in an in-
crease in Wnt16 expression (Dell'accio et al. 2008). In
MC3T3-E1 osteoblastic cells, the activation of the pathway
by treatment with a GSK3β inhibitor results in an anabolic
bone formation response, whereas the application of an inhib-
itor combined with mechanical loading produces a synergistic
effect on the expression of Wnt/β-catenin pathway target
genes (Robinson et al. 2006). These results indicate that
mechanical loading activates the Wnt/β-catenin signaling
pathway, at least in part, through the MAPK signaling path-
way (Thornton et al. 2008).

Crosstalk of MAPK and Wnt signals in cartilage
inflammation and regeneration

OA is a common disease clinically manifested by joint pain,
swelling and impairment of joint function and leads to dis-
ability and the need for joint replacement. Levels of β-catenin

and cyclooxygenase 2 (COX2) are increased in osteoarthritic
and rheumatoid arthritic cartilage, suggesting that the accu-
mulation of β-catenin contributes to the inflammatory re-
sponses of cartilage by inducing COX2 expression in the
chondrocytes of arthritis-affected cartilage (Kim et al. 2002).
Activation of β-catenin in mature chondrocytes stimulates
hypertrophy and matrix mineralization, as evidenced by the
expression ofMMP13 and vascular endothelial growth factor
(VEGF; Day et al. 2005; Tamamura et al. 2005). Overexpres-
sion of β-catenin in chondrocytes markedly increases the
expression of matrix degradation enzymes such as MMP-2,
MMP-3, MMP-7, MMP-9, membrane-type 3 MMP (MT3-
MMP) and a disintegrin and metalloproteinase with
thrombospondin motifs 5 (ADAMTS5; Tamamura et al.
2005). Animals and in vitro models exhibiting the knock-out
of FRZB, which encodes a secreted Frizzled-related protein
that can bind Wnt proteins, are more prone to lose proteogly-
cans from the articular cartilage in the knee (Lories et al.
2007). Through β-catenin stabilization and its nuclear trans-
location, Wnt signaling is associated with the negative regu-
lation of early chondrogenesis and the stimulation of chon-
drocyte hypertrophy during development. Overexpression of
Frzb1 lowers the expression of β-catenin (Enomoto-Iwamoto
et al. 2002). FRZB−/− mice can experience induced OA for-
mation through the up-regulation and stabilization of β-
catenin in the canonical Wnt pathway. Interestingly, Frzb
deficiency also results in thicker cortical bone, with increased
stiffness and higher cortical appositional bone formation after
loading; this seems to support the hypothesized inverse rela-
tionship between OA and osteoporosis (Dequeker et al. 2003).
In addition, canonical Wnt signaling is influenced by local
factors, including alterations in glycosaminoglycan sulfation,
cartilage matrix content, TGFβ and vitamin D. Notably, the
MMPs and ADAMTSs boosted by the experimental activa-
tion of the Wnt/β-catenin pathway are similar to those trig-
gered by treatment with IL-1β or tumor necrosis factor alpha
(TNFα) in chondrocytes (Burrage et al. 2006). However, the
role of β-catenin in the homeostasis of cartilage is still con-
troversial; as suggested by Zhu et al. (2008), the inhibition of
β-catenin signaling in articular chondrocytes causes increased
cell apoptosis and articular cartilage destruction in COL2A1-
ICAT-transgenic mice. The Wnt/β-catenin pathway is as-
sumed to be part of integrated signal transductionmechanisms
through which chondrocytes respond to deranging and cata-
bolic cues, activate the expression of MMP and ADAMTS
genes and corresponding proteolytic activity and undermine
their phenotypic status and ultimate tissue function (Yuasa
et al. 2008).

Accumulating evidence supports a central regulatory role
of MAPK in mediating inflammatory and matrix-degrading
processes that contribute to joint tissue destruction in OA.
Both OA and normal chondrocytes express p38MAPK; how-
ever, OA chondrocytes show a much higher phosphorylated
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p38 MAPK level compared with normal chondrocytes (Fan
et al. 2007; Takebe et al. 2011). Activated JNK has been
detected in the cytoplasm of OA chondrocytes but not in
healthy controls (Clancy et al. 2001). In a dog model of
surgically induced OA, p38 MAPK, JNK and ERK1/2 are
all activated to a greater degree compared with those in normal
tissue (Boileau et al. 2006). Among the possible MAPK
therapeutic targets for OA or rheumatoid arthritis (RA), p38
MAPK is generally considered to be the most promising, as
p38MAPK isoforms have been implicated in the regulation of
processes (such as the migration and accumulation of leuko-
cytes and the production of cytokines and pro-inflammatory
mediators and angiogenesis) that promote disease pathogene-
sis (Korb et al. 2006; Schett et al. 2000). p38MAPK inhibitors
have been proven effective in reducing clinical severity, paw
swelling, inflammation, cartilage breakdown and bone ero-
sion in a rat streptococcal cell wall arthritis model (Mbalaviele
et al. 2006; Mclay et al. 2001), a collagen-induced-arthritis
(CIA) model in mice (Medicherla et al. 2006) and adjuvant
and CIA models in rats (Badger et al. 2000; Nishikawa et al.
2003). JNK appears to be a critical MAPK pathway for IL-1-
induced collagenase gene expression in synoviocytes and
joint arthritis (Han et al. 1999, 2001). The JNK inhibitor
SP600125 completely blocks not only IL-1-induced accumu-
lation of phosphorylated Jun and induction of c-Jun transcrip-
tion in synoviocytes but also AP-1 binding and collagenase
mRNA accumulation (Han et al. 2001). ERK is known to be
involved in the regulation of IL-6, IL-12, IL-23 and TNF-α
synthesis, suggesting a possible involvement of ERK in joint
damage associated with pro-inflammatory cytokine produc-
tion by macrophages (Feng et al. 1999; Goodridge et al.
2003). ERK inhibitors have been found to be successful in
reducing inflammation in an experimental OA model in rab-
bits (Pelletier et al. 2003); therapeutic intervention with the
goal ofMEK1/2 inhibitionmight have interesting potential for
the development of agents for the treatment of OA. Because of
their important roles in transducing inflammation and joint
destruction, MAPK signals are key molecular targets for
therapeutic intervention in inflammatory diseases such as
OA and RA. However, inhibitors targeting the ablation or
reduction of MAPK activity are likely to have serious side
effects (Thalhamer et al. 2008).

Recently, several non-canonical Wnt isoforms such as
Wnt5a and Wnt11 were reported to be involved in the IL-
1β-induced dedifferentiation of articular chondrocytes (Ryu
and Chun 2006). Wnt5a is detectably expressed in OA and
RA and is involved in the IL-1β-induced up-regulation of
MMP-1, MMP-3, MMP-9 and MMP-13 in primary TMJ
condylar chondrocyte via the JNK pathway, suggesting the
role of Wnt5a in arthritic pathology and the regulation of
cartilage destruction. Furthermore, the blockage of JNK sig-
naling impairs the Wnt5a-induced up-regulation of MMPs
(Ge et al. 2009). This finding indicates that crosstalk between

Wnt5a and JNK contributes to the pathogenesis of OA; mean-
while, the disturbance or intervention of the interaction be-
tween these signals might provide new targets for OA treat-
ment. Several studies have indicated that signaling pathways
involving MAPKs mediate the catabolic response of
chondrocytes to these inflammatory cytokines; specific inhib-
itors to these pathways can counteract cytokine effects on
matrix protease gene expression (Geng et al. 1996; Hwang
et al. 2005; Kumar et al. 2001; Liacini et al. 2002; Ryu et al.
2002).

In addition to the activation of inflammatory cytokines
such as IL-1, the occurrence of OA can also take the route
whereby articular chondrocytes lose their differentiated phe-
notype and exhibit a behavior with similarities to that of
terminal differentiating chondrocytes (hypertrophy-like), as
can be found in the growth plate of growing individuals
(Dreier 2010; von der Mark et al. 1992). Chondrocytes in
OA cartilage show an aberrant phenotype and actively pro-
duce cartilage-degrading enzymes, such as MMP-13 and
aggrecanases (Moldovan et al. 1997; Shlopov et al. 2000;
Song et al. 2007). The higher expression of hypertrophic
chondrocyte markers, type X collagen and MMP-13 (Kirsch
and von der Mark 1992; Nurminskaya and Linsenmayer
1996) in OA suggests a correlation between hypertrophy
and OA. Some studies have demonstrated that Wnt signaling
promotes chick chondrocyte hypertrophy through the induc-
tion of the bone and cartilage-related transcription factor
Runx2. Dong et al. (2006) reported that β-catenin is able to
induce RUNX2 and COL10A1 transcription as the molecular
mechanism through which Wnt signaling regulates chondro-
cyte hypertrophy. Protein levels of β-catenin, which accumu-
lates in OA chondrocytes, are extremely low in differentiated
articular chondrocytes; however, low levels of β-catenin are
up-regulated during phenotypic loss after a serial monolayer
culture. Ectopic expression or inhibition of β-catenin degra-
dation causes the cessation of cartilage-specific ECM mole-
cule synthesis via the activation of β-catenin-Tcf/Lef tran-
scriptional activity (Ryu et al. 2002). The activation of Wnt/
β-catenin signaling is usually accompanied by a shift in
chondrocyte cytoarchitecture. This event might result from a
reduction of proteoglycan pericellular matrix or interactions
between chondrocyte surface and substrate or fibrillar com-
ponents such as collagen or fibronectin, which could change
intracellular signaling and up-regulate cell adhesion pathways
such as that of MAPK (Gemba et al. 2002). Because the loss
of a differentiated phenotype of chondrocytes is associated
with cartilage destruction during arthritis (Sandell and Aigner
2001), the canonical Wnt pathway-mediated cell phenotype
change via crosstalk with MAPK signals is another pathway
through which OA forms. For the non-canonical Wnt signal
pathway, Wnt5a has been reported as a key parameter
influencing the phenotypic stability of chondrocytes (Benya
and Shaffer 1982; Yuasa et al. 2008). Wnt5a inhibits type II
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collagen expression in rabbit TMJ condylar chondrocytes (Ge
et al. 2009), suggesting that Wnt5a signaling regulates patho-
logic cartilage degeneration by inducing chondrocyte dedif-
ferentiation (Ryu and Chun 2006). Increased p38 activity is
a c compan i ed by t ype X co l l a g en s t a i n i ng i n
osteochondrocytes and marginal synovial cells in a mouse
OA model (Seto et al. 2004). During monolayer culture, p38
MAPK is responsible for the loss of chondrocyte phenotypes
including type II collagen and Sox9, whereas the blockade of
p38 MAPK enhances chondrocyte phenotypes, which sug-
gests a blockade of dedifferentiation (Rosenzweig et al. 2013).
Inhibition of p38 signaling in chondrocytes results in de-
creased expression of the COL10A1 gene (Beier and LuValle
1999; Stanton et al. 2003; Zhen et al. 2001).

Concluding remarks and future directions

Although awareness is increasing with regard to the importance
of MAPK and Wnt signaling pathways in regulating cell ac-
tivities and in relevant diseases such as cancer, their interaction
networks and potential roles in disease are still not fully appre-
ciated, especially in the cartilage regeneration area (Table 1).
Cartilage differentiation and the maintenance of homeostasis
are finely tuned by a complex network of signaling molecules;
interplay of these signaling pathways leads to changes in cell
activities and eventually influences their differentiation fates.
Over the past two decades, extensive studies on the Wnt and
MAPK regulation of chondrogenesis and cartilage develop-
ment have shown that Wnt and MAPK signals have both
positive and negative regulatory effects on cartilage develop-
ment. Accumulating evidence indicates the involvement of
Wnt and MAPK signals in the regulation of differentiated
chondrocyte functions and cartilage disease.

Recent evidence from both animal experiments and clinical
samples has demonstrated the role of both Wnt and MAPK
signaling in OA pathology, making these pathways attractive
targets for therapy. Some chemicals and drugs targeting
MAPK or Wnt have been designed and applied clinically;
whereas some are effective in the treatment of OA, their side
effects have caused concern. Direct targeting to Wnt or
MAPK has been reported to be too risky, because of the
crucial role of these signals in the maintenance of articular
chondrocyte stability. A promising method would be to iden-
tify the mis-regulated genes in the Wnt or MAPK pathways
and to try to determine balanced therapeutic targets. The ideal
therapeutic goal would be treatment with few or even no side
effects in patients. In order to achieve the goal of clinical
application, comprehensive appreciation and meticulous eval-
uation of the interactions of these signaling pathways are
essential. Future research should focus on the elucidation of
the network between MAPK and Wnt signaling, theirT
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interplay and the exploration of clinical application in carti-
lage regeneration by intervention in specific signaling
pathways.
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