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Abstract Beginning with their discovery in the context of
stem cell fate choice in Caenorhabditis elegans, the
microRNA (miRNA) let-7 and the RNA-binding protein
Lin28 have been recognized as a regulatory pair with far-
reaching impact on stem cell behavior in a wide range of
organisms and tissues, including the mammalian brain. In this
review, we describemolecular interactions between Lin28 and
let-7 and the biological role that each plays in implementing
stem cell programs that either maintain stem cell self-renewal
and plasticity or drive lineage commitment and differentiation.
For Lin28, considerable progress has been made in defining
let-7-dependent and let-7-independent functions in the main-
tenance of pluripotency, somatic cell reprogramming, tissue
regeneration, and neural stem cell plasticity. For the pro-
differentiation activity of let-7, we focus on emerging roles
in mammalian neurogenesis and neuronal function. Specific
targets and pathways for let-7 have been identified in embry-
onic and adult neurogenesis, including corticogenesis, retinal
specification, and adult neurogenic niches. Special emphasis
is given to examples of feedback and feedforward regulation,
in particular within the miRNA biogenesis pathway.

Keywords miRNAs . Stem cells . Post-transcriptional
regulation . RNA-protein interactions . Neural differentiation

Introduction

During the development of the central nervous system
(CNS), expression of the let-7 microRNA (miRNA) com-
mences as rapidly proliferating, self-renewing neural stem

cells (NSCs) exit the cell cycle and commit to the various
neural lineages. In the adult, let-7 accumulates to high levels,
particularly in post-mitotic neurons, making let-7 family
members the most abundant miRNAs in the brain. In NSC
niches, let-7 promotes differentiation and neuronal matura-
tion by directing the post-transcriptional silencing of stem
cell mRNAs. Targets for let-7 silencing include pluripotency
factors, fetal oncogenes and suppressors of neural differenti-
ation. In our view, an important function of let-7 is to feed
back onto the miRNA pathway itself in order to set the stage
for early overtly neurogenic miRNAs followed by miRNAs
responsible for neuronal specification and outgrowth. The
most prominent mechanism that excludes let-7 from stem
cells involves the RNA-binding protein Lin28. Lin28 en-
forces stem-cell-specific gene expression patterns in part by
directly interfering with the functional maturation of let-7.
Our focus is on the relevance of this regulatory circuit for
mammalian neurogenesis and neuronal function. We will
therefore draw on, but not comprehensively cover, work on
Lin28 and let-7 in other model organisms; for this, we
suggest a number of excellent reviews (Büssing et al. 2008;
Viswanathan and Daley 2010; Thornton and Gregory 2012).
For more general treatments of miRNAs and their functions
in neurogenesis, we recommend the contributions from
Brüstle et al., Reh et al., and Abernathy et al. in this volume.

Because this review deals with the post-transcriptional
regulation of let-7 expression and its function, it is important
to begin with a general discussion of miRNA biogenesis and
mode of action (summarized in Fig. 1). A more comprehen-
sive treatment and citations of the original literature can be
found in the reviews cited in the text (Bartel 2004; Fabian
et al. 2010). miRNAs are short noncoding RNAs that are
approximately 22 nucleotides (nt) in length and that act as
antisense regulators by binding to and suppressing the expres-
sion of specific mRNAs (termed target mRNAs). Briefly,
miRNAs are transcribed by RNA-polymerase II or, in rare
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cases, by RNA-polymerase III as long primary transcripts
(termed pri-miRNAs). pri-miRNAs have to undergo a se-
quence of two processing steps to generate the mature active

miRNA. In an initial step, pri-miRNAs are cleaved by the
nuclear microprocessor complex, which is composed mini-
mally of the RNase III enzyme Drosha and the accessory

Fig. 1 Overview of the micro RNA (miRNA) pathway and its
microRNA Silbentrennung immer ohne Bindestrich intersection with
Lin28. Lin28 binds primary and precursor let-7 forms and inhibits their
biogenesis via three distinct activities. First, Lin28 prevents the nuclear
cleavage of pri-let-7 by Drosha and Dgcr8. Second, cytosolic processing

of pre-let-7 by Dicer and Trbp is inhibited by Lin28. Third, Lin28 recruits
Tut4 to the let-7 precursor leading to the 3’ uridylation and subsequent
decay of pre-let-7. Mature let-7 in turn is able to repress Lin28 expression
via conserved seed matches in the Lin28 3’UTR (red)
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protein Dgcr8. This releases a hairpin-structured RNA referred
to as the precursor-miRNA (pre-miRNA). pre-miRNAs are
approximately 70 nt long and are substrates for active export
to the cytoplasm, where they are processed in a second step by
the RNase III enzyme Dicer to yield anRNA duplex of approx-
imately22 nt in length (for a review, see V.N. Kim et al. 2009).
One strand of this duplex is selectively loaded onto one of the
Argonaute (Ago) proteins, the main effector of the miRNA-
induced silencing-complex (miRISC;Meister 2013). This com-
plex is thought to scan mRNAs, primarily in the 3’ untranslated
region (UTR), for sites of partial sequence complementary to
the Ago-bound miRNA (Bartel 2009). Complementarity to the
5’ end of the miRNA (the so-called seed region) is particularly
important for productive engagement of the miRISC. Once
bound, the miRISC inhibits target mRNA utilization by
inhibiting translation initiation, while enhancing deadenylation
and mRNA decay (Huntzinger and Izaurralde 2011). The fact
that a single miRNA can directly repress hundreds of mRNAs
underlines the regulatory impact of this class of RNAs and
highlights the necessity for the tight control of individual
miRNA expression and activity.

The first miRNAs were identified in Caenorhabditis
elegans as regulators of developmental timing (for reviews,
see Pasquinelli and Ruvkun 2002; Resnick et al. 2010). Mu-
tations in the lin-4 and let-7 genes perturb the transitions
between larval stages. Therefore, they were included in the
group of “heterochronic genes”—master regulators of the
temporal progression of developmental stages (Ambros and
Horvitz 1984). The expression of these miRNAs increases
during development, which in turn leads to the repression of
other protein-coding heterochronic genes by direct targeting.
This negative regulation by miRNAs is necessary to switch
between developmental stages.

One important action of the let-7 miRNA is to negatively
regulate the heterochronic gene Lin41 and to some extent Lin28.
Worms mutant for let-7 fail to progress from the last larval to the
adult stage, ultimately leading to vulval bursting and death of the
animal (Reinhart et al. 2000). Despite its role in worm-specific
developmental pathways, the let-7 miRNA is highly conserved
and is present throughout the bilateral animal phyla, a seminal
discovery for the miRNA field (Pasquinelli et al. 2000). Gene
duplications during the course of evolution have resulted in about
a dozen different let-7 precursors in mammalian genomes. Nev-
ertheless, after processing, the mammalian let-7a isoform is
identical in sequence to its C. elegans paralog (Pasquinelli et al.
2000). All other let-7 family members share high sequence
similarity and 100 % identity in the important seed region. This
illustrates the strong selective pressure on the sequence of the
miRNA, indicative of conserved function. Members of the let-7
family are the most abundant miRNAs in a variety of adult
mammalian tissues, including the brain (Pena et al. 2009). Dur-
ing embryonic development of the mouse brain, let-7 levels
continuously rise between embryonic day 12 (E12) and postnatal

day 0 (P0) (Wulczyn et al. 2007; see below), much as they do
during C. elegans larval development (Van Wynsberghe et al.
2011).

The counterpart of let-7, the Lin28 gene, encodes a highly
conserved RNA-binding protein. Two mammalian paralogs of
C. elegansLin28 have been identified, namedLin28a (frequently
referred to as Lin28) andLin28b. In agreementwith the structural
conservation of let-7 and Lin28, their genetic interaction is also
conserved. Mammalian Lin28a and Lin28b mRNAs each pos-
sess let-7 binding sites in their 3’UTRs and are subject to
regulation by let-7 (Moss and Tang 2003; Guo et al. 2006;
Rybak et al. 2008). The ability of let-7 to repress Lin28 expres-
sion (and vice versa, as we will discuss below) is a key feature in
the reciprocal relationship between the two. Lin28 is expressed in
self-renewing stem cells (Moss and Tang 2003), is frequently
overexpressed in tumor cells (Iliopoulos et al. 2009) and has been
associated with increased regenerative capability (Shyh-Chang
et al. 2013b). In contrast, mature let-7 is absent in stem cells
(Houbaviy et al. 2003; Wulczyn et al. 2007) and antagonizes
proliferation. let-7 has been shown to be a bona fide tumor
suppressor (Johnson et al. 2007) and to suppress the self-
renewal capacity of NSCs (Nishino et al. 2008).

This evolutionarily ancient interaction of Lin28 and let-7
represents a powerful switch that seems to be important in
developmental progression. Given the importance of Lin28
and let-7 as heterochronic regulators in C. elegans, this regu-
latory pair is also likely to play a key role in mammalian
development. In the following review, we will take a closer
look at the functions of Lin28 and let-7 and their co-regulation
in the context of neural differentiation and will discuss current
views on the contribution each can make to the determination
of fundamentally opposing cell fates.

Lin28: from nematode to mouse development

The Lin28 gene was first identified in the mid 1980s as a
heterochronic regulator of C. elegans development (Ambros
and Horvitz 1984). Lin28 mutant worms show precocious
patterns of stem cell division and commitment in which many
events characteristic of the second larval stage are omitted and
progress directly to the third larval stage (Ambros and Horvitz
1984; Euling and Ambros 1996). This phenotype led to the
gene’s name, viz., Lin28 for “abnormal cell lineage 28”. More
than a decade after this genetic discovery, the sequence and
protein architecture of Lin28 were resolved, revealing two
conserved functional domains: an N-terminal cold-shock do-
main (CSD) coupled to two retroviral-type CCHC-zinc
knuckles (CCHCx2). This combination of domains is uniquely
found in Lin28 and is not shared by any other protein in
bilateral animals (Moss and Tang 2003). Both domains are
known tomediate RNA binding, which indicates a function for
Lin28 in the post-transcriptional regulation of gene expression.

Cell Tissue Res (2015) 359:145–160 147



Analysis of the phenotype of Lin28 showed that it is
epistatic to another heterochronic gene termed lin-4. Cloning
of lin-4 led to the realization that it encoded a small noncoding
RNA referred to originally as a small temporal RNA. The
recognition of potential complementarity between lin-4 and
the 3’UTR of Lin28 (and a second heterochronic gene, Lin14)
suggested a mechanism for the direct antisense regulation of
downstream targets such as Lin28 by lin-4 (Moss et al. 1997).
When the second small heterochronic RNA, let-7, was discov-
ered, similar considerations led to the proposal that let-7 might
directly regulate Lin28 (Reinhart et al. 2000). Much attention
then turned to the exploration of Lin28, let-7, and miR-125, the
mammalian lin-4 paralog, in mice and humans.

Initial characterization suggested that Lin28 genes also func-
tion in early organismal development in vertebrates (Moss and
Tang 2003). Duringmouse development, Lin28 protein iswidely
expressed until around E12.5 (see below), although expression is
maintained in cardiac and skeletal muscle and in some adult
epithelia such as the bronchi and the intestinal crypts (Yang
and Moss 2003). Importantly, mRNA was detected in mouse
embryocarcinoma (EC) and embryonic stem (ES) cells but not in
standard cell lines from somatic tissues. In EC cells, expression
was downregulated in response to differentiation with retinoic
acid. In addition, sites of potential complementarity to let-7 and
miR-125 were identified in mouse and human sequences (Moss
and Tang 2003). Together with early findings showing that let-7
and miR-125 are upregulated in differentiating cells (Pasquinelli
et al. 2000; Houbaviy et al. 2003; Sempere et al. 2004), this was
the first indication that the genes of the C. elegans pathway
would prove important for mammalian stem cell biology.

In the C. elegans heterochronic pathways, Lin28 is more
strongly associated with lin-4 than let-7, although Lin28mutants
can partially compensate for the loss of let-7 (Reinhart et al.
2000). The potential for functional interplay between let-7 and
Lin28 was suggested by their reciprocal expression patterns
during the differentiation of mammalian stem cells (Wu and
Belasco 2005). Evidence for a direct functional link arose from
studies of let-7 regulation. Although the mature 22-nt forms of
let-7 are absent in undifferentiated EC and ES cells (Houbaviy
et al. 2003), let-7 genes are transcribed, and both primary and
precursor forms of let-7 are present (Wulczyn et al. 2007).
Extracts from undifferentiated cells have less activity in an in
vitro processing assay using the let-7 precursor as substrate and
contain let-7 precursor-specific binding activity visible by elec-
trophoretic mobility shift assays. This complex disappears upon
the differentiation of the cells and is absent in somatic cell lines
(Wulczyn et al. 2007). In 2008, the groups of Richard Gregory
and Scott Hammond reported that Lin28 interfered with let-7
maturation by inhibiting Drosha processing in the nucleus
(Viswanathan et al. 2008; Newman et al. 2008), whereas our
group and the group of Narry Kim presented evidence for Lin28
action at the level of cytoplasmic Dicer processing (Rybak et al.
2008; Heo et al. 2008; see Fig. 1).

How does Lin28 repress let-7 maturation?

An ES-cell-specific pre-let-7-binding complex can be elimi-
nated by short interfering RNA (siRNA) treatment against
Lin28 and reconstituted with purified Lin28 (Rybak et al.
2008). The recovery of Lin28 after affinity purification of
EC and cancer cell lysates with immobilized pre-let-7 RNA
provided additional evidence for a direct interaction
(Viswanathan et al. 2008; Newman et al. 2008; Heo et al.
2008). Mutational analysis and competition assays have re-
vealed that Lin28 binds pre-let-7 at a region named the pre-
cursor element (preE), which contains the loop of the precur-
sor hairpin structure (Newman et al. 2008; Heo et al. 2008;
Nam et al. 2011). The preE shows substantially higher se-
quence variability compared with the precursor part harboring
the mature miRNA. Nevertheless, a consensus motif, highly
enriched in let-7 family members, has been identified. This
GGAG motif is always located 3’ to the terminal loop and is
present in a majority of vertebrate let-7 precursors but is
absent in invertebrates. Mutational analysis has shown that
the GGAGmotif is essential for the repressive effect of Lin28
on pre-let-7 maturation (Heo et al. 2009). Artificial insertion
of a GGAG motif into the precursor of miR-16, an miRNA
that is normally not affected by Lin28, is sufficient to intro-
duce binding and regulation by Lin28 (Heo et al. 2009).
Nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystal structure analysis of Lin28 in complex with let-7
isoforms have given further insights into the way that binding
and regulation is accomplished. Lin28 interacts with the let-7
precursor in a bipartite manner. Both RNA-binding domains
contact the let-7 preE, but in a different manner and at differ-
ent locations. The CSD recognizes structural informations and
inserts itself into the terminal loop. The CCHCx2 module
specifically interacts with a GGAG sequence motif more
distal to the loop (Nam et al. 2011; Mayr et al. 2012). As
determined by NMR spectroscopy, the protein region in be-
tween the two domains seems to be highly flexible to allow for
the optimal arrangement and binding of both domains to preE-
let-7 (Nam et al. 2011). This flexibility might explain the
ability of Lin28 to bind let-7 family members that share the
GGAG motif but whose precursor sequence and size differ
considerably.

The structural analysis has also revealed that Lin28 binding
partially denatures the stem-loop structure, thereby extending
the loop at the expense of the terminal end of the stem (Nam
et al. 2011; Mayr et al. 2012). This region of the precursor
carries the internal Dicer cleavage site. Since Dicer needs
double-stranded RNA substrates for activity (Hutvagner
et al. 2001; Zhang et al. 2002), the denaturation of the pre-
let-7 stem by Lin28 is probably responsible for the loss of
Dicer cleavage observed in in vitro pre-let-7 processing assays
with recombinant Dicer and Lin28 (Rybak et al. 2008; Heo
et al. 2008). However, this inhibition is enforced by a second
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mechanism: the recruitment of the terminal uridylyl transfer-
ase Tut4, which catalyzes the addition of multiple uridines to
the 3’ end of the precursor (Heo et al. 2009; Hagan et al. 2009;
Yeom et al. 2011). The presence of such oligouridine tails
make pre-let-7 molecules refractory to Dicer processing and
mark them for rapid degradation (Heo et al. 2009), most likely
by the 3’ to 5’ exonuclease Dis3l2 (Chang et al. 2013). siRNA
treatment against Dis3l2 increases the pool of oligouridylated
pre-let-7, whereas levels of mature let-7 remain constant.
Unlike Tut4 and Lin28, Dis3l2 is apparently not necessary
for the inhibition of Dicer (see Fig. 1). Interestingly, Dis3l2
loss-of-function leads to Perlman syndrome (Astuti et al.
2012), a severe developmental disturbance with similarities
to Lin28 gain-of-function phenotypes of overgrowth and tu-
morigenesis detailed below.

Compared with the interference of cytoplasmic processing
by Dicer, considerably less is known about the way that Lin28
inhibits the initial nuclear cleavage event by Drosha and the
Microprocessor (Viswanathan et al. 2008; Newman et al.
2008; see Fig. 1). Unlike mammalian ES cells in which the
cytoplasmic mechanism might predominate, nuclear inhibi-
tion has been found to be the major effect of Lin28 in
C. elegans (Van Wynsberghe et al. 2011). Lin28b has been
proposed to act preferentially in the nucleus compared with
Lin28a (Piskounova et al. 2011); given the similarity in the
mode of let-7 binding between the two proteins, isoform-
specific associated factors might be responsible for the differ-
ence in activity. Nuclear roles for Lin28 are likely to gain in
importance, commensurate with the growing interest in
miRNA functions in the nucleus.

Lin28 and let-7 form a regulatory circuit

An important additional feature of the Lin28 pathway is that the
mRNAs for both proteins contain let-7 binding sites, making
the expression of both proteins sensitive to the level of let-7 in
the cell (Rybak et al. 2008; see Fig. 1). Because any reduction
of Lin28 will in turn lead to less repression of let-7 processing,
and therefore more let-7 and less Lin28, the system is self-
amplifying. Of course, the reverse is also true: any increase in
Lin28 will lead to a reduction in let-7 processing and therefore
less let-7 and more Lin28. The self-reinforcing nature of this
feedback mechanism represents a bi-stable switch with two
mutually exclusive outcomes: Lin28on—let-7off or Lin28off—
let-7on (see Fig. 2). Since this regulatory concept is conserved
in evolution and bears an extensive developmental impact in
C. elegans, there is considerable interest in determining the role
of this pathway in mammalian development.

Transgenic mouse models for Lin28 have begun to address
these questions. Mice constitutively overexpressing Lin28 are
viable but manifest a tissue overgrowth phenotype and show a
delayed onset of puberty (Zhu et al. 2010). Gain- and loss-of-

function mutations of several let-7 targets (Imp1/Igf2bp1,
Hmga2, c-Myc, see Table 1) display developmental pheno-
types consistent with Lin28 action via let-7 in growth control
(Trumpp et al. 2001; Hansen et al. 2004; Weedon et al. 2007).
Lin28a knockout models show opposite, yet more severe,
phenotypes with over 90 % of newborn animals dying within
1 day after birth. Body mass in the few surviving animals is
reduced by 30–50 %. Similar observations have been made in
the Lin28b knockout mouse, although the phenotype is milder
andmore restricted to postnatal development. Deletion of both
isoforms leads to embryonic lethality between E9.5 and E12.5
(Shinoda et al. 2013).

The model of Lin28 and let-7 as bi-stable switch is appeal-
ing in its robustness and simplicity (see Fig. 2). Nevertheless,
as is becoming increasingly clear, this interaction is only the
core of a more complex regulatory circuit. Transcriptional
regulation is likely to affect the balance between Lin28 and
let-7. In tumor cells, c-Myc and NF-κB have been shown to
promote transformation and oncogenesis by transactivating
Lin28b expression and, as a consequence, reducing mature
let-7 levels (Chang et al. 2009; Iliopoulos et al. 2009). The
finding that c-Myc and its homolog n-Myc are, in turn, both
targets of the let-7 miRNA (H.H. Kim et al. 2009; Melton
et al. 2010; Molenaar et al. 2012) suggests that this exten-
sion of the circuit is also subject to feedback regulation (for

Fig. 2 Representation of regulatory interactions between Lin28 and let-7. a
Lin28 and let-7 form a double-negative feedback loop by virtue of mutual
inhibition. b This regulatory circuit builds a bi-stable switch with two
mutually exclusive states: high Lin28 and low let-7 levels in stem cells or
low Lin28 and high let-7 levels in committed cells. Factors that initially
shift the equilibrium beyond the transition state during differentiation
remain to be identified
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a review, see Büssing et al. 2008). However, an answer to the
important question of how the balance between Lin28 and
let-7 levels is controlled during development remains elusive.
Apart from transcriptional control, additional miRNAs might
also be involved. Both vertebrate Lin28 mRNAs possess a
number of additional miRNA-binding sites in their 3’UTRs,
of which miR-9, miR-30, and miR-125 are known to be
functional (Rybak et al. 2008; Zhong et al. 2010).

Lin28 functions beyond let-7

So far, the inhibitory effect on let-7 miRNA biogenesis is the
best-studied regulatory function of Lin28. Although let-7 is a
key target of Lin28, several results indicate important additional
let-7 independent functions. For example, muscle-specific loss
of Lin28 in mice results in insulin insensitivity and impaired
glucose uptake, although let-7 levels remain constant (Zhu et al.
2011). The influence of Lin28 on metabolic pathways has been
attributed to the direct regulation of mRNA translation by
Lin28 (Shinoda et al. 2013). The first evidence that Lin28 can
directly bind mRNAs and stimulate their translation was report-
ed for the insulin-like growth factor two (Igf2) mRNA
(Polesskaya et al. 2007) and then extended to additional

mRNAs (Lei et al. 2012). Two recent studies have made use
of RNA-protein crosslinking and deep-sequencing (the CLIP-
Seq method) to determine the genome-wide RNA-binding
repertoire of Lin28. These experiments have not only verified
the known association of Lin28 with pre-let-7 miRNAs, but
also revealed an abundance of mRNAs bound to Lin28
(Wilbert et al. 2012; Cho et al. 2012). Bound RNAs are
enriched for 3’UTR sequences that contain the same GGAG
sequence motif responsible for the recognition of the let-7
precursor. Apart from this agreement, the two studies differ in
their results and show primarily either enhancement (Wilbert
et al. 2012) or inhibition (Cho et al. 2012) of mRNA translation
upon Lin28 binding. Apparently, the outcome of Lin28 binding
varies depending on the sequence and context of the substrate
mRNA. For example, the expression of multiple splicing fac-
tors has been shown to be positively regulated by Lin28
(Wilbert et al. 2012), but the translation of secretory and mem-
brane proteins seems to be inhibited by Lin28 (Cho et al. 2012).

The Lin28-let-7 axis in pluripotency

As previously noted, Lin28 is highly expressed in early em-
bryonic tissues and in pluripotent ES and EC cells (Moss and

Table 1 Targets of let-7 and their functions in neural development (SVZ subventricular zone, iPS cells induced pluripotent stem cells, miRNA micro
RNA, mTOR mammalian target of rapamycin)

let-7 target Function Reference

Ascl1 • Dedifferentiation of Müller glia cells into retinal progenitors Ramachandran et al. 2010

• Maintenance of neural progenitor proliferation and neurogenic potential Cimadamore et al. 2013

Hmga2 • Adult stem cell plasticity in the SVZ Nishino et al. 2008

• Fetal vs adult stem cell identity Yuan et al. 2012; Copley et al. 2013;

• Oncogenesis Mayr et al. 2007; Lee and Dutta 2007; F. Yu et al. 2007

Hspd1 • Dedifferentiation of Müller glia cells into retinal progenitors Ramachandran et al. 2010

Igf1r, Insr, Irs2 • Regulation of the mTOR pathway Frost and Olson 2011; Shinoda et al. 2013

Imp1 • Expansion of neural stem cells during cortical development Nishino et al. 2013

Lin28a • Regulation of proliferation and neurogenesis in neural precursors Cimadamore et al. 2013

• Dedifferentiation of Müller glia cells into retinal progenitors Ramachandran et al. 2010

• Maintenance of stemness Rybak et al. 2008

• Reprogramming into iPS cells Melton et al. 2010

Lin28b • Maintenance of early progenitors in retinal neurogenesis La Torre et al. 2013

Lin41 • Maintenance of stemness, inhibition of miRNA activity Slack et al. 2000; Rybak et al. 2009

• Axonal regeneration in larval vs adult neurons Zou et al. 2013

c-Myc • Dedifferentiation of Müller glia cells into retinal progenitors Ramachandran et al. 2010

• Pluripotency gene networks and oncogenesis Koscianska et al. 2007; Kumar et al. 2007

n-Myc • Development of neuroblastomas Molenaar et al. 2012

• Maintenance of stemness Melton et al. 2010

Pax6 • Dedifferentiation of Müller glia cells into retinal progenitors Ramachandran et al. 2010

Protogenin • Maintenance of early progenitors in retinal neurogenesis La Torre et al. 2013

Sal4 • Maintenance of stemness Melton et al. 2010

Tlx • Cell cycle progression of neural stem cells Zhao et al. 2009
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Tang 2003; Yang and Moss 2003). Stem cell specificity of
Lin28 has been attributed to direct transcriptional regulation
by the core ES cell factors Oct4, Sox2 and Nanog, based on
ChIP-Seq assays (Marson et al. 2008). There is also evidence
that the pluripotency factor c-Myc directly transactivates
Lin28b transcription (Chang et al. 2009). Additionally, Sox2
physically interacts with Lin28a in a nuclear protein-protein
complex (Cox et al. 2010), suggesting that Lin28 plays a
direct role within the pluripotency network. Indeed, a cocktail
of Lin28 together with Oct4, Nanog and Sox2 is sufficient to
reprogram human fibroblasts into induced pluripotent stem
(iPS) cells (J. Yu et al. 2007). Compared with the more widely
used Yamanaka cocktail of pluripotency factors (OSKM:
Oct4, Sox2, Klf4 and c-Myc; Takahashi and Yamanaka
2006), the activity of Lin28 is thought to match c-Myc most
closely. In their original characterization, Thomson and co-
workers found that Lin28 enhanced but was dispensable for
iPS cell generation (J. Yu et al. 2007). However, subsequent
examination at the level of single cells identified Lin28 ex-
pression as an early and predictive event in what is described
as the stochastic phase of reprogramming (Buganim et al.
2012). The stochastic phase is characterized by the heteroge-
neous activation of a small group of early genes that include
Lin28 (namely Lin28, Esrrb, Utf1 and Dppa2). This early
phase lays the groundwork for an hierarchical deterministic
phase under the control of Sox2 in which full pluripotency is
achieved. The importance of Lin28 and the other stochastic
phase genes is emphasized by the finding that they can be used
instead of the Yamanaka factors to drive somatic cells to
pluripotency (Buganim et al. 2012). In these assays, Lin28 is
reported to increase the rate of cell proliferation (Hanna et al.
2009). However, the relative activities of reprogramming fac-
tors such as Lin28 might be dependent on the assay condi-
tions, as Yamanaka’s group found that Lin28 is less important
for initiation is but critical for the maturation of fully
reprogrammed iPS cell colonies that can be stably expanded
(Tanabe et al. 2013).

At the molecular level, Lin28 might act at multiple levels to
enforce pluripotency. In addition to the physical interaction
with Sox2 mentioned above, Lin28 has been proposed to act
as a specific positive regulator of the Oct4 mRNA (Qiu et al.
2010; Peng et al. 2011). However, we will focus our attention
on the role of Lin28 in the regulation of the let-7 miRNA. As
discussed in the previous section, Lin28 acts as a specific
inhibitor of let-7 maturation to prevent the initiation of the
prodifferentiation program mediated by let-7 (see Fig. 1). The
Blelloch group has used ES cells depleted for miRNAs by the
deletion of themiRNAprocessing co-factor Dgcr8 as a tool that
enables the functional analysis of individual miRNAs. They
were able to show that let-7 and ES-cell-specific miRNAs (e.g.,
the miR-290 cluster) have opposing effects on pluripotency.
Introduction of stem-cell-specific miRNAs such as miR-294 or
miR-130b into miRNA-deficient Dgcr8-/- ES cells enhances

the expression of pluripotency markers including Lin28,
Sal4 and Myc. Most likely, these miRNAs act indirectly
by targeting an unidentified common repressor (or set of
repressors) of pluripotency. let-7 acts more directly and has
been shown to silence mRNAs for Lin28, Sal4 and n-Myc.
Moreover, in the absence of the normal population of stem
cell miRNAs in Dgcr8-/- ES cells (but not in wild-type ES
cells), the overexpression of let-7 is sufficient to suppress
self-renewal. Accordingly, antagonizing let-7 activity im-
proves the efficiency of the dedifferentiation of somatic
cells to iPS cells, thus mimicking the activity of Lin28
(Melton et al. 2010; Worringer et al. 2014).

Taken together, these results define the role of the bi-stable
double-negative feedback loop between Lin28 and let-7. High
Lin28 levels suppress let-7 and promote self-renewal and
pluripotency, and conversely, high let-7 levels inhibit Lin28
and promote differentiation (see Fig. 2). A remarkable exam-
ple of this regulatory loop has been described in the hemato-
poietic system. An inverse expression pattern of Lin28 and
let-7 has been found to be a key molecular feature
distinguishing fetal from adult hematopoietic stem cells
(HSCs) in mice and humans. As a master regulator of fetal
HSC identity, ectopic Lin28b alone is capable of
reprogramming adult HSCs into a fetal-like state by inhibiting
let-7 maturation and derepressing the let-7 target geneHmga2
(Yuan et al. 2012; Copley et al. 2013).

The Lin28-let-7 axis in tissue regeneration and repair

The ability of Lin28 to induce self-renewal in differentiated
cells might also be useful during tissue regeneration, which
involves (among other processes) dedifferentiation to replace
lost or damaged cells. In mammals, regeneration capacity is
highest in juvenile animals and declines with age. Genome-
wide association studies (GWAS) for age at menarche discov-
ered a variant within Lin28b as the first genetic marker asso-
ciated with the timing of many aspects of puberty in humans
(Ong et al. 2009). To study the role of Lin28 in puberty, Daley
and co-workers developed an inducible Lin28a transgenic
mouse model (iLin28 Tg). Consistent with the human GWAS
findings for Lin28b, Lin28a overexpression delayed the onset
of puberty and promoted growth. Analysis of metabolic and
endocrine mechanisms of overgrowth in these transgenic mice
revealed increased glucose metabolism and insulin sensitivity.
This metabolic shift was then shown to protect against diabe-
tes induced by a high fat diet during aging (Zhu et al. 2010,
2011). By contrast, conditional deletion of Lin28a and Lin28b
or overexpression of let-7 caused dwarfism and glucose intol-
erance. let-7-mediated repression of multiple components of
the insulin-phosphatidyl-inositol-3-kinase-mTOR pathway,
including Igf1r, Insr, and Irs2, was demonstrated to be partly
responsible for these metabolic effects (Frost and Olson 2011;
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Shinoda et al. 2013). Follow-up studies with the iLin28 Tg
mouse line revealed that the re-expression of Lin28 was
sufficient to reprogram the developmental age of tissues and
enhance their postnatal regenerative capacity (Shyh-Chang
et al. 2013b). Activation of Lin28a promoted hair regrowth,
improved digit repair after amputation and accelerated ear
wound healing. Lin28 acted at least in part by repressing let-
7, leading to increased mesenchymal cell proliferation and
enhanced repair. However, Lin28 also acted independently
of let-7 by directly regulating the translation of mRNAs in-
cluding multiple metabolic enzymes such as phosphofructo-
kinase and pyruvate dehydrogenase. The net effect of Lin28 is
to increase glycolysis and oxidative phosphorylation, which
together are able to increase cell migration and proliferation, at
least in vitro. Support for the relevance of this effect in vivo
has been obtained by blocking the beneficial effects of Lin28a
on tissue regeneration by using inhibitors of oxidative phos-
phorylation in the iLin28 Tg model (Shyh-Chang et al.
2013b).

Recent advances in metabolomics indicate that modulation
of the bioenergetic pathways used by cells influences not only
regenerative capacity, but also cell fate and lineage specifica-
tion (Vander Heiden 2009; Folmes et al. 2011; Folmes et al.
2012; Shyh-Chang et al. 2013a). For instance, ES and iPS
cells show reduced mitochondrial oxidative phosphorylation
and elevated aerobic glycolysis (Kondoh et al. 2007; Prigione
et al. 2010; Folmes et al. 2011). Despite the lower efficiency of
ATP production in comparison with oxidative phosphoryla-
tion, glycolysis provides a source of biosynthetic substrates
that are essential for cell growth. Conversely, the activation of
mitochondrial oxidative metabolism to maximize ATP gener-
ation can prime stem cells to differentiate (Chung et al. 2007).
Unlike proliferative ES cells, most adult stem cells, including
NSCs, are largely quiescent. NSCs ensure life-long tissue
renewal capacity by suppressing oxidative phosphorylation
to avoid cellular damage from reactive oxygen species
(Renault et al. 2009). In contrast, proliferative neural progen-
itors show upregulated glycolysis (Gershon et al. 2013), lipo-
genesis (Knobloch et al. 2013) and oxidative phosphorylation
(Renault et al. 2009). Metabolic regulation is increasingly
thought to reinforce, or even prime, neural differentiation
programs in stem cell niches (for a review, see Shyh-Chang
2013a). Additional work will be required to assess the rele-
vance of metabolic regulation for the activity of Lin28 and let-
7 in neural differentiation.

Although the work of the Daley group and their collabora-
tors has highlighted the ability of Lin28 and let-7 to influence
metabolic pathways directly, abundant evidence has been
presented for additional regulatory roles. In the context of
growth regulation, Lin28 has been shown to bind mRNAs of
diverse cyclins and cyclin-dependent kinases to accelerate cell
cycle progression (Xu et al. 2009; Li et al. 2012; Hafner et al.
2013). In addition, Lin28-associated mRNAs are enriched for

RNA-binding proteins, including ribosomal proteins. In-
creased ribosome synthesis might also contribute to the ability
of Lin28 to promote cellular growth (Peng et al. 2011). Final-
ly, the direct effects of Lin28 on translational control occur in
the context of the derepression of let-7 targets. Together, the
regulatory pair of Lin28 and let-7 integrates the biosynthetic
and metabolic demands of rapid stem cell proliferation.
Disregulation of this circuit has not only been implicated in
tumors, including common malignancies of the CNS, but
might also present the opportunity to improve the regenerative
capacity and metabolic resilience of cells and tissues of the
nervous system as organisms age.

The Lin28-let-7 axis in neurogenesis

Having discussed Lin28 and let-7 broadly, we will now
focus on the specific roles of each in neurogenesis, begin-
ning with let-7. In addition to the temporal regulation of let-
7 discussed above, another significant feature of let-7 and
miRNAs in general is their lineage specificity (Lagos-
Quintana et al. 2002). For example, miRNA populations in
ES cells are dominated by a limited set of mature miRNAs
such as the miR-200, miR-291-4 and miR-302 clusters
(Houbaviy et al. 2003; Suh et al. 2004). During neural
differentiation and embryonic brain development, miRNA
expression is upregulated in terms of both diversity and
abundance (Miska et al. 2004; Sempere et al. 2004;
Smirnova et al. 2005). Similar expression dynamics have
been found in comparisons of let-7 family members with
several highly expressed, brain-enriched miRNAs (e.g.,
miR-9, miR-124, miR-125, and miR-128; Smirnova et al.
2005; Wulczyn et al. 2007; Landgraf et al. 2007). These
early studies are in general agreement with later experiments
involving deep sequencing in order to catalog miRNA ex-
pression exhaustively during brain morphogenesis. In one
comprehensive study of the adult human and macaque brain,
four of the five most highly expressed miRNAs were let-7
family members, and all eight let-7 family members ranked
in the top 25, together accounting for close to 15 % of the
total population of mature miRNAs (Shao et al. 2010).
Although the quantification of deep sequencing results
might be subject to systematic errors, the let-7 miRNA
family clearly exerts a powerful influence on gene expres-
sion in the CNS.

Many studies have addressed the global importance of
miRNAs for brain development and function by targeting
components of the miRNA biogenesis pathway (i.e., Drosha,
Dgcr8, Dicer or Argonautes). This field is too extensive to
review here, but recent reviews are available (McNeill and
Van Vactor 2012; Sun et al. 2013; Bian et al. 2013). To date,
difficulties have been experienced in attributing phenotypes
observed in miRNA biogenesis knockouts to the specific loss
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of let-7. The presence of twelve let-7 genes in the mouse
genome has precluded targeted deletion thus far, although
lines that allow reduced expression by targeting individual
let-7 gene clusters or inducible overexpression are increas-
ingly becoming available (Zhu et al. 2010; Frost and Olson
2011; Park et al. 2012). Therefore, even in the more trac-
table C. elegans and D. melanogaster models, in which
deletion alleles for let-7 family members are available,
specific roles for let-7 are just beginning to be studied
(Abbott et al. 2005; Sokol et al. 2008). Nevertheless, a
number of strategies have successfully addressed the ques-
tion of specific let-7 functions in the nervous system and, in
particular, neurogenesis. One such strategy is to characterize
mRNAs targeted by let-7 as it is upregulated during
neurogenesis. This can be performed experimentally or by
mining bioinformatic target site predictions and has
succeeded in identifying a number of important targets
including Lin41, c-Myc, Hmga2, Tlx, Lin28a and Lin28b.
Several of these interactions have been mentioned in the
context of stem cell maintenance, but specific roles in
neurogenesis have also been described (see Table 1).

Neurodevelopmental genes targeted by let-7

Lin41 is the original let-7 target gene, first described in a
screen for genes downstream of let-7 in the C. elegans
heterochronic pathway (Reinhart et al. 2000; Slack et al.
2000). Loss-of-function mutants in Lin41 cause the preco-
cious terminal differentiation of seam cells, a distinct group of
stem cells underlying the larval cuticle (Slack et al. 2000).
This is the opposite of the reiterating seam cell divisions
caused by loss of let-7. The mouse Lin41 gene (also referred
to by the gene symbol Trim71 in mouse and humans) has been
disrupted by gene-trap mutation, and the resultant mice dis-
play embryonic lethality between E9.5 and E13.5 (depending
on the strain) and failure of neural tube closure (Maller
Schulman et al. 2008).When analyzed at E9.5, neuroepithelial
cells throughout the neural tube in Lin41-/- mice proliferate
less and differentiate prematurely (Chen et al. 2012), consis-
tent with the phenotype in C. elegans. Targeting of the Lin41
3’UTR by let-7 was first described in C. elegans (Slack et al.
2000; Bagga et al. 2005) and is evolutionarily conserved in
zebrafish, Xenopus and mammals (Lin et al. 2007; O’Farrell
et al. 2008; Rybak et al. 2009). In mouse, Lin41 and let-7
show reciprocal expression patterns in stem cell niches of the
developing embryo and in adult tissues (Schulman et al. 2005;
Rybak et al. 2009). Furthermore, Lin41 has been shown to
suppress miRNA activity and to cooperate with Lin28 in
suppressing let-7 activity in stem cells (Rybak et al. 2009).
Like Lin28, Lin41 has recently been demonstrated to be an iPS
cell gene whose reactivation is essential for the suppression of
prodifferentiation genes (Worringer et al. 2014).

In its role as a tumor suppressor, let-7 has been shown to
target various cyclins and cyclin-dependent kinases to slow
down cell cycle progression (Johnson et al. 2007; Dong et al.
2010; for an excellent review, see Büssing et al. 2008). An-
other target, c-Myc, is relevant for pluripotency gene networks
and cancer. The introduction of let-7 into cancer cells re-
presses c-Myc translation (Koscianska et al. 2007; Kumar
et al. 2007). During neurogenesis, this repression is mediated
by increasing levels of let-7. In the differentiating embryonic
neuroepithelium, downregulation of c-Myc is reinforced by
Trim32 (an ortholog of Lin41/Trim71). Upon asymmetric
progenitor cell division, the Trim32 protein and mRNA are
preferentially distributed to the daughter cell destined to be-
come a neuron (Schwamborn et al. 2009; Kusek et al. 2012).
Trim32 has two activities: it directly interacts with and
ubiquitinates c-Myc to stimulate its proteolytic degradation
and also interacts with and enhances let-7 activity by an
unknown mechanism (Schwamborn et al. 2009).

Another let-7 target is Tlx, a forebrain-restricted transcrip-
tion factor that is expressed in early embryonic development
(until E13.5), testis and adult stem cell niches (Monaghan
et al. 1995). It maintains stem cell plasticity and regulates
the timing of neurogenesis in the cortex (Roy et al. 2004).
Tlx promotes cell cycle progression of neural progenitors by
recruiting histone deacetylases to the promoters of cell cycle
inhibitors such as p21 and Pten, thereby repressing their
transcription (Sun et al. 2007). Another target for Tlx-
mediated transcriptional repression is the neurogenic miRNA
miR-9 (Zhao et al. 2009). During the differentiation of adult
NSCs, Tlx is downregulated by several members of the let-7
family. Ectopic overexpression of let-7 acts via Tlx inhibition
to reduce the proliferative capacity of adult NSCs and promote
neural and glial differentiation, as determined by an increase
of cells positive for Tuj1 and GFAP (glial fibrillary acidic
protein) (Zhao et al. 2010, 2013). Once released from Tlx-
mediated inhibition, miR-9 might assist neural differentiation
by the feedback inhibition of Tlx and by targeting REST and
its co-factor Co-REST, a master inhibitor of neuronal gene
transcription highly expressed in uncommitted stem cells
(Packer et al. 2008; Zhao et al. 2009).

The oncofetal mRNA-binding protein Imp1 represents an-
other let-7 target with direct involvement in mammalian
neurogenesis. Mice lacking Imp1 show significantly smaller
cerebral cortices compared to wild-type animals. This reduction
of cortical thickness is attributable to a decreased self-renewal
capacity of Imp1-/- NSCs and a precocious neuronal maturation
of Pax6+ neural precursors. The let-7-induced downregulation
of Imp1 is necessary for the developmental transition from
highly proliferative fetal NSCs to the more quiescent stem cells
found in adult animals. This let-7-mediated cell fate switch
during mammalian corticogenesis resembles the ancient role of
let-7 in the C. elegans heterochronic pathway (Nishino et al.
2013; see Table 1 for a summary of all let-7 targets).
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Regulation of Lin28 and let-7 in neurogenesis

Targeted disruption of miRNA biogenesis has demonstrated
that global loss of miRNAs prevents the execution of neuro-
genic programs. At the same time, more specific roles for
individual miRNAs, and let-7 in particular, have begun to be
revealed. Among the most interesting insights provided by
studies on let-7 relate to the question: “Who regulates the
regulators?” In contrast to their downstream targets and ef-
fects, considerably less is known about the mechanisms that
control the expression and activity of neurogenic miRNAs
such as let-7 during development. The neurogenic miRNAs
miR-124 and miR-9 are the best-studied examples of the
integration of miRNAs into transcriptional control circuits
involved in mammalian NSC specification (for an excellent
review, see Cochella and Hobert 2012). Overlapping the
feedforward circuit just described between Tlx, miR-9 and
REST, the neurogenic miRNA miR-124 is also subject to
regulation by REST. In NSCs, the miR-124 gene locus is
occupied and repressed by the REST-complex (Conaco et al.
2006). Components of the REST-complex, in turn, are post-
transcriptionally inhibited by miR-124 as its levels rise during
the course of neurogenesis (Visvanathan et al. 2007). As
detailed in the previous sections, Lin28 and let-7 form a
similar double-negative feedback loop, but one that operates
primarily at the post-transcriptional level (see Fig. 2). Several
recent studies have explored the roles of Lin28a and Lin28b in
the control of neurogenesis via their ability to suppress the
pro-differentiation activity of let-7.

Expression of the Lin28a protein is not specific for the
nervous system but is widespread early in development, be-
comingmore restricted to diverse epithelial stem cell niches as
development progresses (Yang and Moss 2003). In the
neuroepithelium, Lin28a is present throughout the neural tube
until E11.5, after which expression drops (see Fig. 3a). The
loss of the protein roughly coincides with the transition to
radial glia progenitor populations, which do not express
Lin28a (Yang and Moss 2003; Cimadamore et al. 2013). This
expression pattern suggests that the Lin28 to let-7 switch is an
early event triggered at the onset of neurogenesis (see Fig. 3a).
One caveat is that considerably less is known about the
expression pattern of the Lin28b homolog. Data from
genome-wide expression profiling during neural development
suggest that Lin28b expression is also downregulated during
the course of neurogenesis, but that the reduction is somewhat
delayed compared with Lin28a (Hartl et al. 2008).

One transcription factor that has been placed upstream of
Lin28 and let-7 in NSCs is Sox2 (Cimadamore et al. 2013; see
Fig. 3b). Lin28 expression has been demonstrated in several
distinct Sox2+ populations including cultured human ES-cell-
derived NSCs, mouse E11 neuroepithelium and adult mouse
NSCs present in the subgranular zone of the hippocampus and
the subventricular zone (SVZ) of the lateral ventricles.

Conditional deletion of Sox2 in vivo or short-hairpin RNA-
mediated depletion in vitro results in decreased levels of
Lin28 expression. Apparently, Sox2 is bound to the Lin28

Fig. 3 The Lin28-let-7 axis in neurogenesis. a During telencephalic
neurogenesis Lin28 mRNA and protein levels rapidly decline after em-
bryonic day 12.5 (E12.5). As a consequence, mature let-7 levels increase.
The targeting of inhibitors of neurogenesis by let-7, in turn, allows
neurogenic differentiation. b Sox2 transcriptionally activates Lin28 ex-
pression in embryonic and adult neural progenitors. Lin28 in turn re-
presses let-7, thereby ensuring self-renewal and cell cycle progression of
neural progenitors. Upon in vitro differentiaton, Sox2 and Lin28 levels
drop. Consequently, most let-7 species are upregulated (Cimadamore
et al. 2013). c In mouse retina, early-born neuronal cell fates are adopted
by the progeny of early progenitors and late-born neuronal and glial cell
fates by the progeny of late progenitors. Lin28b is required for early
progenitor identity, and the induction of neurogenic microRNAs (let-7,
miR-9, miR-125) at E16.5 drives the transition from early to late progen-
itor identity (La Torre et al. 2013)
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promoter and directly induces Lin28 expression through the
recruitment of histone deacetylase complexes (Cimadamore
et al. 2013). Sox2 is a well-known essential regulator of NSC
proliferation and neurogenesis (Ferri et al. 2004). Depletion of
Sox2 in the adult neurogenic areas results in a complete loss of
neurogenesis (Favaro et al. 2009). Interestingly, part of the
neurogenic function of Sox2 seems to be mediated by Lin28.
Overexpression of Lin28 partially compensates for the ad-
verse effects of Sox2 depletion on cultured NSC proliferation
and apoptosis. Lin28 probably acts, at least in part, by
inhibiting let-7, because ectopic let-7 expressed from lentiviral
vectors also reduces the proliferation of cycling NSCs and
strongly increases apoptosis during neural differentiation (see
Fig. 3b). In addition, let-7 has been shown to downregulate
two neurogenic basic-helix-loop-helix (bHLH) transcription
factors in this model: Ascl1/Mash1 and Neurogenin. In the
case of Ascl1, this regulation appears to bemediated in part by
direct let-7 targeting of the Ascl1 3’UTR. This suggests that at
least part of the requirement for Sox2 in neurogenesis is to
suppress let-7 by maintaining Lin28 expression (Cimadamore
et al. 2013) implying that premature let-7 expression is detri-
mental to early stages of neurogenesis. One test of this notion
would be to determine to what degree Lin28 can compensate
for the defects in the neurogenic program observed in condi-
tional Sox2 mutant mice. More information on the regulation
of the Sox family and the interaction between miRNAs and
proneural transcription factors is provided in the contributions
fromReiprich andWegner and fromReh et al., respectively, in
this volume.

Lin28 and let-7 and the timing of retinal neurogenesis

Together with the work on Imp1 discussed above, perhaps the
most clear-cut parallels to the traditional view of Lin28 and
let-7 as heterochronic regulators of stem cell fate have been
obtained in studies of retinal neurogenesis (La Torre et al.
2013, see Fig. 3c). Retinal progenitors progress through dis-
tinct maturation stages during the generation of the stratified
retinal neuroepithelium. Deletion of Dicer leads to a
heterochronic phenotype in that early cell fates (outer gangli-
on and horizontal cells) are reiterated at the expense of late cell
types (bipolar cells and Müller glia; Georgi and Reh 2010;
Davis et al. 2011; Iida et al. 2011). In more recent work, the
onset of let-7 expression, together with miR-125 and miR-9,
has been shown to correlate with the transition phase between
E12 and P0, when progenitors should shift production from
early to late cell types (La Torre et al. 2013). Blocking these
three late progenitor-specific miRNAs with a cocktail of spe-
cific antagomirs partially replicates the temporal shift seen in
the Dicer knockout by inappropriately reiterating the produc-
tion of early cell fates. The reverse experiment has also been
successful: in Dicer knockout retinas lacking all miRNAs,
electroporation of synthetic analogs of the three miRNAs is

sufficient to rescue the loss of late cell fates. By examining
mRNAs misregulated in Dicer knockout retinas followed by
filtering for miRNA-binding sites, two downstream targets
common to all three miRNAs were identified: Lin28b and
Protogenin. Ectopic expression of Lin28b and Protogenin is
sufficient to induce the reiteration of early progenitor cell fate
(i.e., heterochronic ganglion cell production) in E16 retina.
The classic heterochronic let-7 target, Lin41, is also upregu-
lated inDicer knockouts, but this was not studied further. This
study by Reh and co-workers represents perhaps the clearest
demonstration of an intrinsic miRNA-mediated “clock” in
mammalian NSCs (La Torre et al. 2013).

Roles for let-7 and Lin28 in neural regeneration and aging

Another role for let-7 has been described in the changing
properties of NSCs and neurons during aging. In aging
NSCs, let-7b and the let-7 target gene Hmga2 show
reciprocal expression patterns (Nishino et al. 2008).
Hmga2, which carries eight let-7-binding sites in its
3’UTR, has previously been shown to be a major target
of let-7 in cancer cells (Mayr et al. 2007; Lee and Dutta
2007; F. Yu et al. 2007). Screening for miRNA expression
changes associated with aging in the subventricular stem
cell niche identified let-7b as significantly upregulated.
Increased levels of let-7b correlate with decreased expres-
sion of Hmga2 and reduced self-renewal capacity, provid-
ing a mechanism for declining stem cell potency in the
neurogenic niche during aging (Nishino et al. 2008). How
let-7b and its targeting of Hmga2 are differentially regu-
lated during the aging process has yet to be determined.

Another aspect of aging in which let-7 has been impli-
cated is the age-related decline in neuronal regenerative
capacity. Using C. elegans as a model, Chang and co-
workers studied axon regrowth after laser dissection of a
specific neuronal subtype termed AVM. Mutants for the
C. elegans Argonaute gene Alg-1 do not display the decline
in regeneration normally seen in adult neurons (Zou et al.
2013). Expression and mutational analysis and rescue ex-
periments have identified let-7 as being uniquely responsi-
ble for this decline in regenerative capacity. The authors
subsequently identified Lin41 as the let-7 target gene re-
sponsible for the differential regenerative capacity of larval
and adult AVM neurons. In the mouse, Lin41 expression is
extinguished in CNS neurons from E13 into adulthood, and
so these results might not be directly transferable to mam-
malian axon injury. However, they do open the exciting
possibility that embryonic regenerative capacity might be
reactivated by manipulating the activity of let-7 or its gene
targets.

Experimental support for just such a prospect comes from
studies of Lin28 and let-7 in the zebrafish retina, with inter-
esting parallels to the work on mammalian retinogenesis
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discussed above. Unlike mammals, zebrafish are able to re-
store injured retina by promoting the dedifferentiation of
Müller glia cells into a cycling population of retinal progeni-
tors. Upon injury, the dedifferentiation transcription factor
Ascl1/Mash1 transactivates Lin28 and c-Myc. Introduced
briefly in a previous section, Ascl1 is a well-characterized
proneural bHLH transcription factor that is highly expressed
in neural progenitors and is essential for neurogenesis in the
retina and other regions of the telencephalon (Tomita et al.
1996; Cai et al. 2000; Brzezinski et al. 2011). In response to
Lin28 induction, let-7 levels decrease, thus relieving repres-
sion of regeneration-associated mRNAs essential for glial
dedifferentiation, including Ascl1, Hspd1, c-Myc, Pax6 and
Lin28 itself (Ramachandran et al. 2010; Pollak et al. 2013; see
Table 1). This direct link between Ascl1 and Lin28, together
with the inhibition of Ascl1 by let-7 mentioned above, under-
scores the importance of the Lin28-let7 pathway in retinal
neurogenesis and has the potential for use in regenerative
approaches beyond retina injury.

Concluding remarks and outlook

Work on Lin28 and let-7 has been, and most likely will
continue to be, a driving force in revealing the molecular
novelty of miRNA action in development. Early models for
Lin28 and let-7 function in neurogenesis suggested that Lin28
is required in embryonic progenitor cells to suppress the pro-
differentiation activity of let-7 (Rybak et al. 2008;
Schwamborn et al. 2009). This view is consistent with the
role of Lin28 in retinal neurogenesis (La Torre et al. 2013) but
has not been rigorously tested in other neurodevelopmental
contexts in vivo. As in the retina, let-7 on its own is most
likely not sufficient to orchestrate the complete process of
neurogenesis. More probably, let-7 represents an essential
early factor that is permissive for the neural differentiation
program but is dependent on other neurogenic miRNAs to
complete neurogenesis and guide neuronal fate specification
and functional integration. The increasing use of genetically
engineered mouse models should allow more directed and
comprehensive investigations in the near future. For example,
conditional knockouts should soon provide answers to the
question of functional redundancy versus specific roles for
the two Lin28 genes and even the many let-7 isoforms. A
greater challenge will be to distinguish between the direct
effects of Lin28 on mRNA translation and the indirect effects
achieved by let-7 inhibition. Specific mutagenesis of Lin28
might allow the two functions to be separated (Balzer et al.
2010).

Another issue that looms large is that of context depen-
dence. Various studies have placed more emphasis on the
identification of a limited number of key downstream genes
(for example, Lin28b and Protogenin in retinal neurogenesis)

as opposed to more global roles for let-7, such as the regulation
of cellular metabolism or the cell cycle. This is also a technical
issue: one proteomic study has found that ectopic let-7 affects the
abundance of over one hundred proteins in HeLa cells, with the
degree of regulation in general being less than four-fold (Selbach
et al. 2008). Are there situations in which the sum of the
regulatory output is greater than the parts? If so, reliance on
rescue experiments as the gold standard for defining critical
targets carries the risk of oversimplifying our view of regulatory
pathways. As is already clear, the regulatory repertoire of let-7
differs depending on the biological system under investigation,
with only partial overlap between targets identified during ES
cell differentiation, retinal neurogenesis, tissue repair or even
stem cell differentiation in intestinal crypts (Melton et al. 2010;
La Torre et al. 2013; Madison et al. 2013; Shyh-Chang et al.
2013b). One key to let-7 specificity might be combinatorial
interactions, as shown in the retina for the early neurogenic trio
of let-7, miR-9 and miR-125 (La Torre et al. 2013). Unsurpris-
ingly, the regulatory power of the Lin28/let-7 circuit can also play
important roles after neurogenesis is completed. Although out-
side the scope of this review, we should mention that Lin28 and
let-7 have been shown to regulate the timing of axonal outgrowth
for certain C. elegans neuronal subtypes (Olsson-Carter and
Slack 2010) and to modulate synaptic plasticity by influencing
the translational response to neurotrophins (Huang et al. 2012).

Finally, progress in understanding the way that Lin28 and
let-7 affect neurogenesis both in early CNS development and
in the adult neurogenic niches of the SVZ and dentate gyrus
might prove relevant for future efforts directed at improving
repair and regeneration in the CNS. Just as let-7 suppression
and Lin28 activation accompany iPS cell generation, manip-
ulation of the circuit in vivo might conceivably be used to
encourage regenerative neuron replacement or to enhance
axonal and dendritic regrowth in damaged or aging tissue.
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