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Abstract The endothelial layer of blood vessels controls the
passage of cells and solutes from the blood into the surround-
ing tissue. Crucial for this regulation is the integrity of endo-
thelial cell–cell junctions. Various molecular mechanisms
control junctional integrity of the endothelial layer including
GTPases, modulation of the actomyosin cytoskeleton and
phosphorylation and dephosphorylation of junctional pro-
teins. Several kinases and phosphatases have been identified
that are good candidates for the regulation of the endothelial
barrier function. For some of them, in vivo evidence has
recently been presented that highlights their importance in
either the regulation of vascular permeability or leukocyte
extravasation. This review will summarize current knowledge
about the regulation of endothelial junctions by kinases and
phosphatases. In particular, the role of the endothelial specific
phosphatase VE-PTP in the context of endothelial cell contact
stability will be highlighted.
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The endothelial barrier

The integrity of blood vessels is crucial for tissue homeostasis
and appropriate functioning of the immune system.
Consequently, vascular permeability and the extravasation of
leukocytes are tightly regulated. A central player in control-
ling vascular integrity is the endothelium of the blood vessel

wall, which serves as a semipermeable barrier between the
blood and the surrounding tissue. Solutes and leukocytes can
pass the endothelial barrier either by a trans-cellular route
directly through the body of an endothelial cell or through a
para-cellular pathway bymechanisms that reversibly open and
close endothelial junctions. The constitutive passage of sol-
utes through resting endothelium is mainly mediated by a
transcellular pathway, whereas inflammation-induced en-
hancement of vascular permeability mainly relies on the open-
ing of endothelial junctions (Majno and Palade 1961; Mehta
and Malik 2006; Schulte et al. 2011). Leukocytes can also
directly pass through endothelial cells or through junctions, as
has been demonstrated in vitro as well as in vivo (Carman and
Springer 2004; Feng et al. 1998; Ley et al. 2007; Schoefl
1972; Vestweber 2007). However, recent in vivo studies ana-
lyzing large numbers of extravasating leukocytes revealed that
the paracellular route is the major pathway in several tissues
(Küppers et al. 2013; Schulte et al. 2011;Woodfin et al. 2011).
Thus, the control of endothelial junctions is of central impor-
tance for inflammation-induced vascular permeability and
leukocyte recruitment.

Several transmembrane adhesion receptors at endothelial
junctions are involved in leukocyte diapedesis
(transmigration) but only some of them play a role for the
regulation of junctional integrity (Muller 2011; Vestweber
2007). PECAM-1 was the first identified diapedesis-
mediating adhesion receptor that binds in a homophilic way
to PECAM-1 on leukocytes (Muller et al. 1993). Other recep-
tors that are also found at endothelial contacts and on leuko-
cytes and support the diapedesis process are CD99 and
CD99L2 (Bixel et al. 2004, 2007; Schenkel et al. 2002). At
least the latter does not seem to support leukocyte diapedesis
via homophilic molecular interactions, although a heterophilic
ligand has not yet been identified (Seelige et al. 2013). None
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of these three proteins are involved in the regulation of endo-
thelial junctions, as antibodies against them or gene deficiency
do not seem to modulate vascular permeability.

The prototype of an endothelial transmembrane protein that
is located at junctions and plays a role for leukocyte diapedesis
and vascular permeability is VE-cadherin (Dejana and
Vestweber 2013; Vestweber et al. 2009). VE-cadherin is of
dominant importance for the stability of endothelial junctions
since antibodies against it can enhance vascular permeability
and leukocyte extravasation (Corada et al. 1999; Gotsch et al.
1997) and gene deficiency disrupts vascular integrity
(Carmeliet et al. 1999; Gory-Faure et al. 1999). VE-cadherin
is a major component of endothelial composite junctions that
consist in intermingled adherens and tight junctions in many
vascular beds (Dejana et al. 2008). VE-cadherin is linked to
the catenins inside the cells that connect it with the actin
cytoskeleton, an essential requirement for its ability to form
intact endothelial junctions (Kemler 1993).

The junctional adhesion molecules (JAMs) form a sub-
group of the Ig-supergene family, which are closely located
to endothelial and epithelial tight junctions and can mediate
homophilic and heterophilic interactions (Bradfield et al.
2007; Monteiro and Parkos 2012; Weber et al. 2007). JAM-
A and JAM-C participate in leukocyte extravasation (Martin-
Padura et al. 1998; Woodfin et al. 2011), whereas JAM-A is
known to affect junctional stability in epithelial cells
(Laukoetter et al. 2007) and JAM-C was suggested to affect
VE-cadherin function (Orlova et al. 2006). In contrast to the
JAMs, ESAM is a more distantly related tight junction-
associated member of this family that is selectively expressed
only in endothelial cells and that also supports leukocyte
extravasation and the induction of vascular permeability
(Wegmann et al. 2006). The typical tight junction components
such as occludin and some of the claudins are of course also
expressed in endothelial cells but participation in the regula-
tion of leukocyte extravasation has not yet been described and
permeability regulating activities are focused on small molec-
ular weight components (Furuse et al. 1993, 1998; Morita
et al. 1999).

Tyrosine phosphorylation and cell contact stability

Several studies have suggested that the increase of tyrosine
phosphorylation of junction associated proteins correlates
with a decrease in junctional integrity. Inhibitors of tyrosine
phosphatases, with very broad specificity for almost all phos-
phatases, deregulate junction integrity in epithelial (Staddon
et al. 1995) and endothelial cells (Young et al. 2003).

In agreement with this, it was demonstrated that vascular
endothelial growth factor (VEGF) leads to strong tyrosine
phosphorylation of the adherens junction molecules VE-
cadherin, β-catenin and plakoglobin, which correlated with

an increase in endothelial permeability (Esser et al. 1998).
Moreover, the same study also described that PECAM-1 was
tyrosine phosphorylated upon VEGF stimulation.
Importantly, the cadherin association of the catenins was not
altered and the cadherin–catenin complex retained its junc-
tional localization, indicating that catenin and cytoskeletal
association might not be affected by tyrosine phosphorylation.
In line with this study, the inhibition of the kinase Src
prevented the VEGF-induced increase in permeability, show-
ing that a kinase is involved in the VEGF-induced opening of
endothelial junctions (Weis et al. 2004).

Thrombin, another permeability-increasing agent, pro-
motes tyrosine phosphorylation of VE-cadherin-associated
β-catenin, plakoglobin and p120-catenin (Ukropec et al.
2000). Additional studies revealed that other permeability-
increasing agents such as histamine (Andriopoulou et al.
1999), tumor necrosis factor-α (TNF-α) (Angelini et al.
2006) and platelet-activating factor (PAF) (Hudry-Clergeon
et al. 2005) also induce tyrosine phosphorylation of VE-
cadherin, β-catenin, γ-catenin and p120-catenin. Taken to-
gether, these studies suggest a correlation between the induc-
tion of permeability triggered by a variety of different stimuli
and the induction of tyrosine phosphorylation of components
of the VE-cadherin–catenin complex.

These studies prompted a more detailed analysis of certain
tyrosine residues within the cytoplasmic tail of VE-cadherin.
It has been shown that certain tyrosine/phenylalanine (Y/F)
point mutants (Y658F and Y731F) of VE-cadherin, when
overexpressed in cultured endothelial cells, inhibited transmi-
gration of myeloid cells (Allingham et al. 2007). In another
report, it was found that overexpression of each of three VE-
cadherin mutants (Y731F, Y645F and Y733F) but not the
Y658F VE-cadherin mutant, reduced transmigration of lym-
phocytes through transfected endothelial cell monolayers
(Turowski et al. 2008). Analyzing the relevance of Y658
and Y731 of VE-cadherin for VEGF-induced permeability,
it was shown that an Y658/731F VE-cadherin double mutant
inhibited the VEGF effect (Monaghan-Benson and Burridge
2009). Parts of the VEGF-induced signaling mechanism lead-
ing to the phosphorylation of the VE-cadherin–catenin com-
plex were revealed as activation of Rac-1 and subsequent
production of reactive oxygen species (ROS). As a possible
consequence of this, β-catenin dissociated from VE-cadherin
(Monaghan-Benson and Burridge 2009). The importance of
the cadherin–catenin complex for the adhesive function of
cadherins makes the dissociation of this complex indeed an
attractive target for mechanisms that counteract cadherin-
mediated cell adhesion. Besides the study above, several other
studies have reported that catenin phosphorylation correlated
with the dissociation of β-catenin (Lilien and Balsamo 2005;
Piedra et al. 2001, 2003) and plakoglobin (Miravet et al. 2003)
from various cadherins. VEGF-induced tyrosine phosphory-
lation of β-catenin was also found to dissociate this catenin
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from VE-cadherin (Chen et al. 2012). Interestingly, however,
tyrosine phosphorylation of α-catenin was reported to corre-
late with enhanced binding to β-catenin (Burks and Agazie
2006). In addition, other groups have found that stimuli that
trigger enhanced vascular permeability and tyrosine phos-
phorylation of the VE-cadherin–catenin complex do not nec-
essarily lead to the dissociation of β-catenin from VE-
cadherin (Adam et al. 2010; Andriopoulou et al. 1999;
Konstantoulaki et al. 2003; Nottebaum et al. 2008;
Timmerman et al. 2012). Despite these differences, most of
these studies have in common that they argue for a role of
tyrosine phosphorylation of the VE-cadherin–catenin com-
plex in the regulation of endothelial junctions.

Kinases that influence endothelial barrier integrity

Several kinases have been identified that affect endothelial
barrier integrity and phosphorylate proteins at endothelial junc-
tions. The first of them to be described were members of the
Src kinase family. VEGF-stimulated induction of vascular
leaks was blocked in mice deficient for either Src or the Src
family member Yes, whereas Fyn-deficiency had no effect
(Eliceiri et al. 1999). Furthermore, blocking of endothelial
Src also resulted in the inhibition of neutrophil transmigration
through endothelial monolayers (Allingham et al. 2007).
Binding of the catenin p120 to VE-cadherin was able to reduce
Src-mediated VE-cadherin phosphorylation and this again re-
sulted in decreased transendothelial migration of leukocytes
(Alcaide et al. 2008). Various tyrosine residues of VE-cadherin
have been described as being phosphorylated, directly or indi-
rectly, by the activity of Src. Whereas Y658 and Y731 were
described as targets downstream of Src in studies using corre-
sponding commercially available site-specific anti phospho-
tyrosine antibodies (Monaghan-Benson and Burridge 2009), a
study based on peptide mapping suggested that Y685 was the
exclusive tyrosine residue being phosphorylated upon VEGF
mediated stimulation of Src (Wallez et al. 2007). VEGF was
also described to stimulate a Src-dependent signaling cascade
that leads to the activation of p21-activated kinase (PAK)
followed by the phosphorylation of serine 665 on VE-
cadherin, which creates a binding site for the association of
β-arrestin. This in turn initiates clathrin-dependent endocytosis
of VE-cadherin leading to the weakening of endothelial junc-
tions (Gavard and Gutkind 2006). More recently, it was dem-
onstrated that shear-induced junctional Src-activation leads to
the phosphorylation of Y658 and Y685 of VE-cadherin in
veins but not in arteries. Src-inhibition in this study blocked
VE-cadherin phosphorylation and bradykinin-induced perme-
ability (Orsenigo et al. 2012). Taken together, these studies
suggest various mechanisms whereby Src stimulates phos-
phorylation of VE-cadherin, which in turn leads to weakening
of endothelial junctions. However, it has also been reported

that Src-mediated tyrosine phosphorylation of VE-cadherin
alone is not sufficient to induce contact opening, as shown
by overexpression of dominant-negative c-terminal Src kinase
(Csk) (Adam et al. 2010). Csk inhibits Src by phosphorylation
at Y527 (Okada and Nakagawa 1989). Interestingly, Src-
mediated phosphorylation of Y685 of VE-cadherin creates a
specific binding site for Csk (Baumeister et al. 2005). This
interaction was implicated in cell density-dependent inhibition
of cell growth. Whether binding of this negative regulator of
Src might also initiate a negative feed-back loop that might
serve to restrict junction opening is not yet known.

Apart from Src-family kinases, the redox-sensitive proline-
rich tyrosine kinase 2 (Pyk2) is also involved in modulating
endothelial integrity. Inhibition of Pyk2 prevents β-catenin
phosphorylation and the Rac1-mediated loss of endothelial
cell contact stability, a signaling pathway that is initiated upon
loss of VE-cadherin function (van Buul et al. 2005). In addi-
tion, Pyk2 mediates the ICAM-1-triggered phosphorylation of
VE-cadherin and downregulation of Pyk2 activity results in
decreased leukocyte transmigration (Allingham et al. 2007).
Also, the Pyk2-related focal adhesion kinase (FAK) has been
shown to phosphorylate β-catenin and this β-catenin phos-
phorylation upon FAK-recruitment to VE-cadherin is neces-
sary for VEGF-induced permeability (Chen et al. 2012). On
the other hand, FAKwas also reported to support the strength-
ening of endothelial junctions upon stimulation with
sphingosine-1-phosphate (Belvitch and Dudek 2012).

Not only cytosolic kinases but also receptor tyrosine ki-
nases (RTKs) are able to influence the stability of endothelial
junctions. One is the VEGF receptor-2 (VEGFR-2) and an-
other the angiopoietin receptor Tie-2. As already stated, stim-
ulation of VEGFR-2 by VEGF results in VE-cadherin phos-
phorylation and loosening of endothelial contacts (Esser et al.
1998) and furthermore increases angiogenesis (Detmar et al.
1998). Ang1/Tie-2 signaling in turn increases the barrier func-
tion of endothelial junctions (Gamble et al. 2000; Mammoto
et al. 2007). In addition to physiological Ang1/Tie-2 signal-
ing, a short synthetic peptide that activates Tie-2 also increases
the barrier function of cell contacts (David et al. 2011;
Kumpers et al. 2011). Ang1-mediated Tie-2 signaling is ca-
pable of counteracting the VEGF-induced permeability in-
crease in blood vessels (Thurston et al . 1999).
Overexpression of Ang1 in vivo strongly stabilizes the endo-
thelial barrier function, rendering the endothelium insensitive
to increases in VEGF-induced permeability. Thus, the inter-
play between VEGFR-2-signaling and Tie-2-signaling is cru-
cial for controlling endothelial barrier function.

Collectively, these reports illustrate that diverse kinases and
therefore numerous regulatory pathways are involved in the
control of endothelial barrier integrity. To ensure precise reg-
ulation of endothelial junction opening, the kinase-mediated
phosphorylation has to be balanced by phosphatase-mediated
dephosphorylation.
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PTPs counteract kinases that influence endothelial barrier
function

Protein-tyrosine-phosphatases (PTPs) can be grouped into
classical PTPs, dual-specific PTPs and low-molecular-
weight PTPs (Alonso et al.; 2004, Kappert et al. 2005). The
classical PTPs, hereafter referred to as PTPs, can further be
divided into membrane-spanning receptor PTPs (RPTPs) and
cytosolic non-receptor PTPs (NRPTPs) or cytosolic PTPs.
The latter consist in the catalytic domain and additional se-
quences that regulate their activity or localization. RPTPs
display high variability in their extracellular region and pos-
sess one or two intracellular phosphatase domains.
Extracellular ligands of RPTPs are to date largely unknown.
However, RPTPκ and also RPTPμ can interact in trans in a
homophilic way (Brady-Kalnay et al. 1993; Gebbink et al.
1993; Sap et al. 1994) and DEP-1 (CD148) interacts with
components of matrigel (Sorby et al. 2001). Furthermore,
heparan sulfate proteoglycans were shown to bind to
RPTP-σ (Aricescu et al., 2002; Johnson et al. 2006).

Higher cell density and decreased phosphorylation of junc-
tional proteins is accompanied by increased phosphatase ac-
tivity in the membrane fraction (Gaits et al. 1995) and by
increased phosphatase expression and higher cell contact lo-
calization of several phosphatases, including DEP-1, RPTPμ,
and VE-PTP (Campan et al. 1996; Gaits et al. 1995;
Nottebaum et al. 2008; Östman et al. 1994). Furthermore, a
large scale of all PTPs by sodium orthovanadate or
phenylarsine oxide results in higher phosphorylation of the
cadherin–catenin complex and simultaneously increases
transendothelial permeability and leukocyte transmigration
(Young et al. 2003). Thus, cytosolic PTPs and RPTPs are
important for the regulation of junctional integrity in endothe-
lial cells. Several phosphatases are known to interact with
junctional proteins and thus influence endothelial barrier func-
tion, among which are PTP1B, SHP-1, SHP-2, RPTPμ, DEP-
1, and VE-PTP.

The first PTP to be discovered was the cytosolic PTP1B in
the late 1980s (Charbonneau et al. 1989; Tonks et al. 1988a,
b). Later, it was found that PTP1B binds to N-cadherin and
dephosphorylates β-catenin, thus maintaining N-cadherin-
mediated adhesion (Balsamo et al. 1996, 1998). PTP1B is in
addition known to interfere with VEGF-mediated VEGFR-2-
signaling, since it counter-regulates VEGF-induced phosphor-
ylation of VEGFR-2. In line with this, PTP1B is involved in
stabilizing VE-cadherin-mediated cell–cell adhesions by re-
ducing VE-cadherin tyrosine phosphorylation (Nakamura
et al. 2008).

SHP-2 is a cytosolic PTP that was reported to associate via
β-catenin with the VE-cadherin–catenin complex. Thrombin
stimulation increases SHP-2 phosphorylation and dissociates
SHP-2 from the VE-cadherin–β-catenin complex, resulting in
increased phosphorylation of the cadherin–catenin complex

and decreased endothelial barrier integrity (Ukropec et al.
2000). SHP-2 function is necessary for maintaining endothe-
lial cell contact integrity (Grinnell et al. 2009) and is moreover
involved in the recovery of endothelial junctions after throm-
bin stimulation (Timmerman et al. 2012). SHP-2 furthermore
interacts with the phosphorylated PECAM-1 cytoplasmic do-
main (Jackson et al. 1997; Masuda et al. 1997) and regulates
its phosphorylation status (Cao et al. 1998), which in turn
influences the association of SHP-2 to PECAM-1 (Cao et al.
1998; Newman and Newman 2003).

RPTPμ was probably the first PTP shown to interact with
various cadherins, among them E-, N- and R-cadherin, as was
analyzed in different cell types (Brady-Kalnay et al. 1995,
1998). RPTPμ also binds directly to VE-cadherin at endothe-
lial cell contacts, which leads to its dephosphorylation and is
accompanied by increased endothelial barrier function (Sui
et al. 2005).

DEP-1, a member of the R3 subfamily of RPTPs, has
also been reported to influence endothelial junction integrity.
DEP-1 expression and activity are strongly enhanced upon
increasing cell density (Östman et al. 1994), where DEP-1
plays a role in contact inhibition of growth by interfering
with VEGFR-2 triggered cell proliferation (Lampugnani
et al. 2003). On the other hand, it has been shown that
DEP-1 dephosphorylates the inhibitory Y529 of Src and
thereby supports VEGF-induced and Src-mediated stimula-
tion of endothelial permeability (Spring et al. 2012). In
addition, DEP-1 interacts with occludin and DEP-1 overex-
pression enhances epithelial barrier function, during tight
junction assembly (Sallee and Burridge 2009). These studies
indicate the complex roles of DEP-1 in regulating endothe-
lial junction integrity. To further elucidate DEP-1 functions,
gene-deficient mice were generated by different approaches.
However, depending on the approach, results differed.
Takahashi et al. (2003) observed that an in-frame replace-
ment of DEP-1 cytoplasmic sequences with enhanced green
fluorescent protein leads to embryonic lethality at embryonic
day E11.5 due to disorganized vascular structures and
growth retardation. Mutant yolk sacs and embryos exhibited
strong defects in vascular remodeling. In contrast, DEP-1-
deficient mice, generated by targeted disruption of the DEP-
1 gene directly after the signal peptide sequence, were
viable, healthy and fertile and showed no signs of embry-
onic defects. No obvious alterations in anatomy, life span, or
spontaneous tumor appearance were detected (Trapasso et al.
2006). In line with this, DEP-1-loss-of-function mice gener-
ated by constitutive deletion of the DEP-1 transmembrane
exon also did not display embryonic lethality (Zhu et al.
2008). While, in the first study, a mutant form of DEP-1
lacking the phosphatase domain is still present in the plasma
membrane, no cell surface-located DEP-1 remains in the last
two studies. Dominant negative effects in the former study
are possible but have not yet been analyzed in detail.
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The impact of VE-PTP on endothelial junction stability

Like DEP-1, VE-PTP belongs to the R3 subtype of RPTPs.
VE-PTP is so far the only known phosphatase that is exclu-
sively expressed in endothelial cells (Baumer et al. 2006;
Fachinger et al. 1999). It consists in 17 FNIII-like extracellular
domains, a transmembrane region and a single cytoplasmic
phosphatase domain. VE-PTP is the murine homologue of
human RPTPβ (Fachinger et al. 1999) and is crucial for
embryonic development, as VE-PTP-deficient mice die
around embryonic day E9.5/E10.0 due to severe vascular
malformations (Baumer et al. 2006; Dominguez et al. 2007).
Since the first vascular plexus develops normally in the ab-
sence of VE-PTP, this phosphatase is dispensable for the
initiation of vasculogenesis but is essential for the following
maturation and remodeling of vessel structures during angio-
genesis (Baumer et al. 2006; Carra et al. 2012; Dominguez
et al. 2007).

Our group and others have analyzed the role of VE-PTP in
regulating the endothelial barrier function in more detail dur-
ing the last years. An important interaction partner of VE-PTP
is the adhesion molecule VE-cadherin (Nawroth et al. 2002;
Nottebaum et al. 2008). VE-cadherin specifically co-
precipitates with VE-PTP and, for this interaction, the mem-
brane proximal extracellular domains of both proteins are
sufficient (Nawroth et al. 2002). When elucidating the influ-
ence of VE-PTP on VE-cadherin function in more detail, it
was shown that VE-PTP expression reverses VEGFR-2-
induced tyrosine phosphorylation of VE-cadherin and in-
creases the VE-cadherin-mediated barrier function (Nawroth
et al. 2002). Furthermore, we found that VE-PTP is
redistributed to endothelial contacts with increasing cell den-
sity, which is accompanied by an increased interaction of VE-
PTP with VE-cadherin (Nottebaum et al. 2008).
Downregulation of VE-PTP expression reduces VE-cadherin
adhesiveness, leading to increased transendothelial permeabil-
ity and leukocyte transendothelial migration. In addition, VE-
PTP downregulation increases tyrosine phosphorylation of
plakoglobin, which was identified as a direct substrate of
VE-PTP. Plakoglobin is crucial for the contact-stabilizing
function of VE-PTP (Nottebaum et al. 2008).

Importantly, VEGF-induced endothelial permeability cor-
relates with the dissociation of VE-PTP from VE-cadherin.
This dissociation was also detected upon leukocyte binding to
TNF-α-inflamed endothelium and was accompanied by in-
creased tyrosine phosphorylation of the VE-cadherin–catenin
complex (Nottebaum et al. 2008). Recently, we were able to
show that this VE-PTP-VE-cadherin dissociation is in fact
necessary for efficient opening of endothelial contacts
in vivo (Broermann et al. 2011). We demonstrated that spe-
cific stabilization of the VE-PTP-VE-cadherin interaction re-
sults in a lack of permeability induction after VEGF- or LPS-
stimulation and reduces leukocyte extravasation in IL-1β- or

LPS-stimulated tissues (Broermann et al. 2011). Stabilization
of the VE-PTP-VE-cadherin association was achieved by
fusing two additional protein domains (FKBP and FRB*) to
the C-terminus of either VE-cadherin or VE-PTP, respectively.
These domains contained different binding sites for a small
molecular weight chemical compound (rapalog) that was able
to strongly stabilize the interaction between VE-PTP and VE-
cadherin. To analyze the effect of these modifications in vivo,
we inserted the cDNAs for VE-cadherin-FKBP and VE-PTP-
FRB* into the VE-cadherin gene locus of mice, thereby
replacing endogenous VE-cadherin and ensuring endothelial
specific expression. We found that administering the rapalog
compound to these knock-in mice strongly inhibited the in-
duction of vascular permeability by VEGF and LPS as well as
the cytotkine-stimulated recruitment of neutrophils in vivo,
whereas no such affect was seen with this compound in wild-
type mice (Broermann et al. 2011). This established that the
dissociation of VE-PTP from VE-cadherin is required for the
opening of endothelial junctions in vivo.

Recently, the endothelial leukocyte-binding receptor and
the downstream signaling pathway that trigger the dissocia-
tion of VE-PTP from VE-cadherin were identified. We found
that binding of lymphocytes to VCAM-1 is necessary to
induce this dissociation (Vockel and Vestweber 2013). In
addition, we found that the signaling steps involved and
required for this process comprised the activation of Rac1,
the production of reactive oxygen species (ROS) via NADPH-
oxidase and the activation of the kinase Pyk. Importantly, the
same signaling cascade was also required for the VEGF-
induced dissociation of VE-PTP from VE-cadherin (Vockel
and Vestweber 2013). This is in good agreement with previous
studies that showed that VEGF-induced phosphorylation of
the VE-cadherin–catenin complex also required Rac activa-
tion and ROS production (Monaghan-Benson and Burridge
2009). The actual dissociation of VE-PTP from VE-cadherin
is probably mediated by the binding of a phosphorylated
substrate to VE-PTP, which leads to an allosteric change that
dissociates the extracellular domains of these two proteins.
The idea for this was based on the finding that a phosphatase-
dead trapping mutant of VE-PTP could not bind to VE-
cadherin, although robust binding of VE-PTP and VE-
cadherin is mediated via their extracellular domains. This
initiated the hypothesis that binding of other substrates to the
phosphatase domain of VE-PTP would inhibit the association
with VE-cadherin via allosteric effects. Testing this hypothe-
sis, it was indeed possible to show that a model substrate of
VE-PTP comprising a phosphorylated peptide of Tie-2 when
introduced into endothelial cells via a fused Tat peptide could
trigger the dissociation of VE-PTP from VE-cadherin, where-
as the non-phosphorylated substrate had no such effect.
Collectively, these results establish a Rac1, NADPH-
oxidase, Pyk-dependent signaling pathway that contributes
to the VEGF- and lymphocyte-induced destabilization of
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endothelial junctions via dissociation of VE-PTP from VE-
cadherin (Fig. 1).

VE-PTP has also been reported to associate with the
VEGFR-2. Although this interaction does not support direct
co-immunoprecipitation, it could be documented based on
proximity ligation assays (Mellberg et al. 2009). In line with
this, silencing of VE-PTP was accompanied by enhanced
VEGFR-2 phosphorylation and downstream signaling. VE-
PTP was also implicated in Tie-2-mediated balancing of
VEGFR-2 effects and was suggested to be relevant for endo-
thelial cell polarity and vessel lumen formation (Hayashi et al.
2013).

The tyrosine kinase receptor Tie-2 was actually the first
VE-PTP-binding partner that was identified (Fachinger et al.
1999). According to this study, VE-PTP substrate trapping
mutants co-precipitated with Tie-2 but not with VEGFR-2,
and VE-PTP specifically dephosphorylated Tie-2. When elu-
cidating the role of the VE-PTP–Tie-2 interaction in more
detail, we found that antibodies against VE-PTP dissociate it
from Tie-2 and trigger VE-PTP endocytosis whereas VE-

cadherin-bound VE-PTP was not affected (Winderlich et al.
2009). This release of VE-PTP from Tie-2 led to the activation
of this kinase receptor. This in turn activated Erk and Akt
signaling and promoted cell proliferation, leading to circum-
ferential growth and widening of vessel structures in newborn
mice (Winderlich et al. 2009). These results recapitulated
embryonic defects that had been described in VE-PTP gene-
deficient mice (Baumer et al. 2006; Dominguez et al. 2007). In
conclusion, this study showed that VE-PTP balances the
activity of Tie-2, which helps in determining vessel diameter
and remodeling of the vasculature (Winderlich et al. 2009).

It is well documented that Angiopoietin-1 (Ang-1) strongly
supports stabilization of endothelial junctions and counteracts
VEGF-induced vascular permeability in vivo (Thurston et al.
1999). This raises the question whether VE-PTP counteracts
endothelial cell contact integrity by deactivating Tie-2. A first
hint for this was suggested in a recent report (Goel et al. 2013).
To understand the physiological relevance of VE-PTP for the
regulation of vascular permeability it will be important to
analyze this in more detail in the future. Interestingly, Ang-1
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Fig. 1 Proposed signaling
mechanism for the lymphocyte-
induced dissociation of VE-PTP
from VE-cadherin. Lymphocyte-
binding to VCAM-1 or
stimulation by VEGF triggers the
production of reactive oxygen
species (ROS) via Rac1-mediated
activation of NADPH oxidase
(NOX). This leads to activation of
the redox-sensitive kinase Pyk2
that triggers directly or indirectly
the phosphorylation of a VE-PTP
substrate that in turn binds to VE-
PTP. This binding may cause
structural or conformational
changes across the membrane that
lead to the detachment of the
extracellular domain of VE-PTP
fromVE-cadherin. This facilitates
phosphorylation of components
or associated factors of the VE-
cadherin–catenin complex that
participates in the destabilization
of endothelial cell contacts. This
figure was originally published in
(Vockel and Vestweber 2013),
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stimulation induces the redistribution of Tie-2 to junctions
where it probably connects Tie-2 of neighboring cells in trans
(Saharinen et al. 2008). Together with Tie-2, the associated
VE-PTP molecules are also redistributed to junctions. It will
be interesting to analyze whether and how this re-distribution
is relevant for the increase in junctional integrity.

Concluding remarks

As illustrated in this review, a complex set of membrane
receptors and adhesion molecules as well as signal transduc-
ing kinases and phosphatases are involved in the regulation of
endothelial junctions. These molecular mechanisms regulate
the subcellular distribution, clustering cell surface expression
of adhesion molecules such as VE-cadherin and their cyto-
skeletal linkage. In addition, these signaling mechanisms and
others, such as GTPases and additional scaffolding proteins,
regulate cytoskeletal activities that modulate the formation of
cortical actin fibers and radial actin stress fibers. It is the
interplay of these mechanisms that finally determines endo-
thelial junction integrity. A deeper understanding of these
mechanisms will allow the development of new strategies to
interfere with a loss of junctional integrity of the vascular
endothelium and thereby stop vascular leaks and harmful
leukocyte invasion in inflammation.
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