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Abstract Pulmonary endothelial permeability is an impor-
tant determinant of vascular adaptation to changes in
oxygen tension, blood pressure, levels of growth factors
or inflammatory cytokines. The Ras homologous (Rho)
family of guanosine triphosphate phosphatases (Rho
GTPases), key regulators of the actin cytoskeleton, regu-
late endothelial barrier function in response to a variety of
environmental factors and signalling agents via the reor-
ganization of the actin cytoskeleton, changes in receptor
trafficking or the phosphorylation of junctional proteins.
This review provides a brief summary of recent knowl-
edge on Rho-GTPase-mediated effects on pulmonary en-
dothelial barrier function and focuses in particular on their
role in pulmonary vascular disorders, including pulmonary
hypertension, chronic obstructive pulmonary disease, acute
lung injury and acute respiratory distress syndrome.
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PH Pulmonary hypertension
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VEGF Vascular endothelial growth factor
ZO-1 Zonula occludens protein 1

Lung-function: general overview

Pulmonary circulation is a low-pressure high-volume circula-
tion that responds to hypoxia with vasoconstriction. It is
exposed to the highest oxygen tension of all vascular beds
(Stan 2009) and its function impacts the whole circulatory
system, as the entire cardiac output passes through the lung
with every heartbeat. Only a 0.3-μm-thick barrier separates
the capillary blood from the alveolar gas (West 2013). The
integrity of the pulmonary endothelial barrier is important in
maintaining the dry interstitium and alveolar airspaces that are
necessary for effective gas exchange. It also affects vascular
tone, inflammation, coagulation and angiogenesis. Vascular
leakage can be initiated by a number of environmental and
chemical factors including sudden or sustained changes in
oxygen tension, mechanical injury and agents produced by
cells in response to injury, cancer or inflammation, such as
vascular endothelial growth factor (VEGF), thrombin and
histamine.

Proteins and liquids are transported across the endothelium
via transcellular or paracellular routes. Transcellular routes,
involving the active transport of molecules larger than 3 nm in
radius, are mediated by caveolae, vesiculo–vacuolar organ-
elles and fenestrations (Weis 2008; Wang and Dudek 2009).
Paracellular permeability, usually induced in pathological sit-
uations, is caused by the disruption of intercellular junctions
and allows the passive transport of larger volumes of liquids
and molecules of radii smaller than 3 nm across the endothe-
lium (Weis 2008; Wang and Dudek 2009).

Endothelial cells are connected to each other by three
different junctional complexes, comprising (1) adherens junc-
tions (AJ), (2) tight junctions (TJ) and (3) gap junctions (GJ;
Bazzoni and Dejana 2004). Vascular endothelial cadherin
(VE-cadherin) is the major structural protein of AJ in endo-
thelial cells (Dejana et al. 2009). The VE-cadherin cytoplas-
mic tail binds β-catenin or plakoglobin, which associates with
a number of actin-binding proteins such as α-catenin, vincu-
lin, α-actinin and eplin (Dejana et al. 2009). This complex
stabilizes AJ anchorage to the actin cytoskeleton.

TJ are composed of claudins, occludins and junctional
adhesion molecules. The link between the TJ proteins and
the actin cytoskeleton is modulated by intermediate signalling
proteins (catenins, zonula occludens 1 protein [ZO-1]) and is
subject to regulation by kinases and phosphatases (Bazzoni
and Dejana 2004; Dejana et al. 2009).

GJ form channels between adjacent cells and allow the
exchange of small signalling molecules such as cyclic nucle-
otides, calcium, adenosine triphosphate and inositol 1,4,5-

trisphosphate between cells. In the vascular system, the core
proteins of these channels are connexins (Cx) 37, 40 and 43
(van Kempen and Jongsma 1999; Parthasarathi and Quadri
2009). GJ are located in close proximity to the TJ and AJ that
form the endothelial barrier and share common linker proteins
that bind to the actin cytoskeleton (Derangeon et al. 2009).

The association of the actin cytoskeleton to junctional
proteins, integrins and their extracellular ligands is essential
for the maintenance of endothelial barrier function. The bar-
rier is regulated by a balance between competing contractile
forces, which generate centripetal tension and adhesive teth-
ering forces created by cell-cell and cell-matrix adhesions
(Wojciak-Stothard and Ridley 2002). Contractility of the actin
cytoskeleton is controlled directly by myosin light chain ki-
nase (MLCK) and Ras homologous (Rho) guanosine triphos-
phate (GTP) phosphatases (GTPases).

Rho GTPases

Rho GTPases are key regulators of cytoskeletal dynamics
(Hall 1998; Hall and Lalli 2010) and affect several vascular
processes such as endothelial permeability (Beckers et al.
2010), cell motility (Ridley 2001), angiogenesis (Bryan and
D’Amore 2007), nitric oxide (NO) production (Takemoto
et al. 2002), smooth muscle contractility (Somlyo and
Somlyo 2003), cell proliferation, differentiation and apoptosis
(Vega and Ridley 2008; Pedersen and Brakebusch 2012). Rho
proteins share approximately 30 % homology with the Ras
family of proteins and 80-90 % homology with each other
(Hall 1998).

Rho GTPases are activated by a number of factors known
to affect endothelial permeability, such as thrombin, hista-
mine, angiotensin II, endothelin-1 (ET-1), VEGF, tyrosine
kinase receptors or integrin clustering. In addition, Rho pro-
teins are also activated by mechanical and physical stimuli
such as shear stress, stretch, pressure and hypoxia (Wojciak-
Stothard and Ridley 2002; Wojciak-Stothard 2008).

Rho GTPases cycle between an active GTP-bound and an
inactive guanosine diphosphate (GDP)-bound conformation.
Inactive GDP-bound Rho proteins remain in the cytosol in
complex with guanine nucleotide dissociation inhibitors
(GDIs). Upon phosphorylation triggered by signalling medi-
ators, GDIs dissociate from Rho GTPases allowing them to
interact with guanine nucleotide exchange factors (GEFs).
GEFs activate the exchange of GDP for GTP allowing Rho
GTPases to interact with their downstream effectors (Jaffe and
Hall 2005). GTPase-activating proteins (GAPs) mediate the
inactivation of GTPases. Apart from GTP/GDP binding, Rho
GTPases can be regulated through isoprenylation,
carboxylmethylation, oxidation, direct phosphorylation or
ubiquitination (Storck and Wojciak-Stothard 2013).
Isoprenylation of the C-terminus of Rho GTPases enhances
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their binding to the cell membrane, a characteristic that is
important for interaction with signalling effectors (Gao et al.
2009).

In this review, we describe the implications of the dysreg-
ulation of Rho GTPase signalling in pulmonary vascular
barrier dysfunction and highlight some of the potential thera-
peutic strategies.

RhoA, RhoB and Rho kinase

The basal activity of RhoA is important in the maintenance of
inter-endothelial junctions by promoting membrane localiza-
tion of the AJ protein, VE-cadherin and by strengthening
endothelial cortical actin via its effector diaphanous in a
profilin-dependent manner (van Nieuw Amerongen et al.
2007; Spindler et al. 2010). However, excessive activation
of RhoA and its effector Rho kinase (ROCK), by agents such
as thrombin, tumour necrosis factor alpha (TNF-α), oxidative
or mechanical stress, is associated with a decrease in endothe-
lial barrier function (Wojciak-Stothard and Ridley 2002;
Wojciak-Stothard 2008; Beckers et al. 2010; Spindler et al.
2010). This is caused by an increase in the contractile forces
that pull the endothelial intercellular junctions apart (Wojciak-
Stothard and Ridley 2002; Wojciak-Stothard 2008; Beckers
et al. 2010; Spindler et al. 2010).

Activation of actomyosin contractility by RhoA results
predominantly from a ROCK-mediated increase in the
level of myosin light chain (MCL20) phosphorylation
(Somlyo and Somlyo 2003; Connolly and Aaronson
2011). ROCK can also facilitate actomyosin contractility
by increasing the levels of intracellular calcium, following
inhibition of voltage-gated potassium channels (Aaronson
et al. 2006). RhoA can also compromise endothelial bar-
rier function by reducing the expression of endothelial NO
synthase (eNOS) and NO generation by endothelial cells
(Takemoto et al. 2002). Conversely, NO might inhibit
RhoA by reducing its stability and membrane localization
(Sauzeau et al. 2000, 2003).

RhoB, a protein 85 % homologous to RhoA, has also
recently been implicated in the regulation of pulmonary en-
dothelial barrier function. RhoB expression and activity can
be increased by numerous agents including oxidative stress,
tyrosine kinases, the transforming growth factor beta/bone
morphogenetic protein/Smad pathway and growth factors
such as fibroblast growth factor, epidermal growth factor
and platelet-derived growth factor (Huang et al. 2007;
Kajimoto et al. 2007; Vardouli et al. 2008; Wojciak-Stothard
et al. 2012). Similar to RhoA, RhoB can interact with ROCK,
increase MLC20 phosphorylation and promote actin polymer-
ization (Conway et al. 2004; Fernandez-Borja et al. 2005).
Under hypoxic conditions, RhoB appears to have a comple-
mentary effect to RhoA on actomyosin contractility and pul-
monary endothelial permeability (Wojciak-Stothard et al.

2012). Whereas RhoA acts as a major activator of ROCK-
mediated serine MLC20 phosphorylation, RhoB promotes
actin filament formation by interacting with a mammalian
homologue of Drosophila diaphanous, a protein known to
induce actin nucleation (Wojciak-Stothard et al. 2012).
RhoB can also activate the pro-inflammatory transcription
factor, nuclear factor kappa B (Rodriguez et al. 2007), an
event of potential importance in the regulation of endothelial
barrier function during inflammatory responses.

Rac1 and Cdc42

Rac1 and Cdc42 generally have endothelial-barrier-
protective effects and their activation co-incides with the
formation of intercellular adhesions, whereas RhoA activ-
ity is reduced (Wojciak-Stothard and Ridley 2002; Beckers
et al. 2010; Spindler et al. 2010). GTP-bound Rac1 and
Cdc42 bind to and allow the autophosphorylation and
activation of p21-activated protein kinases (PAK).
Phosphorylation of MLCK by PAK results in the inhibi-
tion of the phosphorylation of MLC20 in vitro and in vivo
(Bokoch 2003), counteracting actomyosin contraction.
Whereas basal levels of PAK activity are required for
the maintenance of the junction-associated cortical actin
rim, excessive activation of PAK can activate extracellular
signal-regulated kinase (Erk) and induce barrier breakdown
(Stockton et al. 2004, 2007).

Physiological activation of Rac by barrier-protective
molecules (i.e., sphingosine-1 phosphate [S1P], NO) and
specific mechanical stimuli (physiological level of laminar
shear stress, low magnitude cyclic stretch) enhances the
peripheral actin cytoskeleton and improves endothelial cell
monolayer integrity (Garcia et al. 2001; Vouret-Craviari
et al. 2002; Birukov et al. 2002; Dudek et al. 2004;
Mehta et al. 2005; Birukova et al. 2006, 2007a, 2007b).
Rac1 also enhances endothelial NO production by increas-
ing eNOS mRNA and protein levels or by stimulating the
uptake of eNOS substrate, L-arginine (Sawada et al.
2008). Whereas basal levels of Rac1 activity are
endothelium-protective, sustained Rac1 activation can lead
to endothelial dysfunction associated with the generation
of reactive oxygen species (ROS; Hordijk 2006). Rac1 is
a part of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase complex, the main source of ROS
generation in the vasculature (Hordijk 2006).

Cdc42 appears to have a unique role in endothelial barrier
restoration, possibly as a result of the regulation of VE-
cadherin turnover in endothelial cells (Spindler et al. 2010).
For instance, the delayed activation of Cdc42 following the
activation of cells with thrombin contributes to the reassembly
of inter-endothelial junctions and the re-establishment of bar-
rier integrity (Kouklis et al. 2004).
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Rho GTPases in endothelial barrier dysfunction in lung
diseases

Dysregulation of Rho GTPase signalling by mechanical
stress, hypoxia or inflammation is a shared feature of many
lung diseases such as pulmonary hypertension (PH), asthma,
acute lung injury (ALI) or acute respiratory distress syndrome
(ARDS). Below, we present evidence of abnormal Rho
GTPase signalling in endothelial barrier dysfunction in select-
ed examples of lung disorders. A summary of the effects of
various regulatory factors on the activity of Rho GTPases and
pulmonary endothelial barrier function is presented in Table 1.
Signalling pathways leading to changes in the organization of
the actin cytoskeleton and endothelial junctional integrity are
illustrated in Fig. 1.

Pulmonary hypertension

Pulmonary hypertension (PH) is a condition characterized by
abnormal remodelling of small pulmonary arteries, leading to
increased pulmonary vascular resistance and right heart hy-
pertrophy (Schermuly et al. 2011). The current classification is
based on similar pathogenesis, clinical features and therapeu-
tic options and has five main sub-categories: (1) pulmonary

arterial hypertension (PAH); (2) PH resulting from left heart
disease; (3) PH attributable to lung diseases and/or hypoxia;
(4) chronic thromboembolic pulmonary hypertension
(CTEPH); (5) PH with unclear multifactorial mechanisms
(Archer et al. 2010; Schermuly et al. 2011).

Endothelial dysfunction is believed to be an early compo-
nent of the disease and involves a decrease in endothelial
barrier function, a decrease in the production of vasorelaxants
such as NO and prostacyclin and an increase in the production
of vasoconstrictors such as ET-1 or thromboxane (Budhiraja
et al. 2004; Archer et al. 2010; Burton et al. 2011; Schermuly
et al. 2011). RhoA and Rho kinase are activated in the pul-
monary vasculature of PH patients and animals (Wojciak-
Stothard 2008).

PH is a disease of multifactorial origin and a number of
different stimuli implicated in the pathogenesis of PH con-
verge on Rho GTPase signalling pathways. Hypoxia activates
RhoA and inhibits Rac1 and Cdc42 in cultured pulmonary
endothelial cells (PAECs; Wojciak-Stothard et al. 2005). This
change might be transient and reversible by reoxygenation or
might be sustained and irreversible depending on the duration
of hypoxic exposure (Wojciak-Stothard et al. 2005, 2006).
Endothelial cells isolated from pulmonary arteries of chroni-
cally hypoxic hypertensive piglets show increased

Table 1 Ras homologous (Rho) GTPases mediate the effects of endo-
thelial-barrier-disrupting and barrier-protective agents in the lung (EC
endothelial cell, ROCK Rho kinase, Y-27632 ROCK inhibitor, FVIIa
Factor VIIa, TNF tumour necrosis factor, PKC protein kinase C, LPS
lipopolysaccharide, OxPAPC oxidized 1-palmitoyl-2-arachidonyl-sn-

glycero-3-phosphatidylcholine, S1P sphingosine-1 phosphate, HGF he-
patocyte growth factor, ADMA asymmetric dimethylarginine, NO nitric
oxide, cGMP cyclic guanosine monophosphate,DDAH dimethylarginine
dimethylhydrolase, VEGF vascular endothelial growth factor, ET
endothelin)

Factor EC permeability Rho GTPases Preventive agent Reference

Thrombin ↓ ↑ RhoA/ROCK Angiopoietin, FVIIa, 5 % cyclic
stretch, Y-27632

van der Heijden et al. 2011

Bacterial toxin
(listeriolysin)

↓ ↑ RhoA/ROCK Lectin-like domain of TNF,
PKC inhibitor GÖ6976

Xiong et al. 2010

Adenosine Acute ↑ ↑ Rac1 – Lu et al. 2012

Sustained ↓ ↑ RhoA

Endotoxin (LPS) ↓ ↑ RhoA/ROCK OxPAPC, S1P Y-27632, Cdc42 Ma et al. 2004; McVerry et al. 2004; Zhao
et al. 2009; Gorovoy et al. 2007;
Ramchandran et al. 2008)

Mechanical
ventilation

↓ ↑ RhoA/ROCK Iloprost, HGF, S1P, OxPAPC McVerry et al. 2004; Nonas et al. 2006;
Nonas et al. 2008; Birukova et al. 2008

OxPAPC ↑ ↑ Rac1/Rap1 – Birukova et al. 2007a; Birukova et al. 2011

Fe2+ ↓ ↑ RhoA/ROCK Y-27632 Gorbunov et al. 2012; Cinel et al. 2012

S1P ↑ ↑ Rac1, Cdc42 – Dudek et al. 2004

Hypoxia ↓ ↑RhoA/ROCK, ↑RhoB
↓ Rac1, Cdc42

C3-transferase (RhoA inhibitor),
Y-27632, manumycin a (farnesyl
trasnferase inhibitor)

Wojciak-Stothard et al. 2005, 2012

ADMA ↓ ↑RhoA ↓ Rac1, Cdc42 NO, cGMP, DDAH, Rotigaptide Wojciak-Stothard et al. 2009; Tsang
et al. 2014

VEGF ↓ ↑ Rho, Rac1, Cdc42 Physiological cyclic stretch, HGF Birukova et al. 2008

Cigarette smoke ↓ ↑RhoA/ROCK Y-27632, ETA-ETB receptor
antagonists, antioxidant
N-acetylcysteine

Milara et al. 2010
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permeability associated with the activation of RhoA and the
inhibition of Rac1 (Wojciak-Stothard et al. 2006). Regulation
of RhoA and Rac1 during hypoxia/reoxygenation depends on
the activity of NADPH oxidase, phosphoinositide 3 kinase
and intracellular ROS production (Wojciak-Stothard et al.
2005). Activation of RhoA by hypoxia in PH rat lungs de-
pends on superoxide generation (Broughton et al. 2010).
However, RhoA activation in cultured pulmonary endothelial
and smooth muscle cells is ROS-independent (Chi et al. 2010)
suggesting that the mechanism is cell-type-/tissue-specific.
RhoA/ROCK can also be activated by the Src family of
tyrosine kinases in agonist- and hypoxia-induced stimulation
of pulmonary arteries in rats (Wang et al. 2001; Knock et al.
2008).

RhoB is rapidly and transiently upregulated in response to
stress conditions. Both RhoA and RhoB are upregulated by
hypoxia and the inhibition of either RhoA or RhoB prevents
hypoxia-induced stress fibre formation and an increase in
endothelial permeability in human pulmonary endothelial
cells (HPAECs), indicating that both GTPases are important
(Wojciak-Stothard et al. 2012). Inhibition of RhoB
farnesylation prevents hypoxia-induced pulmonary endothe-
lial permeability in vitro (Wojciak-Stothard et al. 2012). RhoB

also stabilizes hypoxia inducible factor 1 alpha (HIF-1α) in
HPAECs and therefore might impact pulmonary endothe-
lial permeability induced by factors acting downstream of
HIF-1α, such as VEGF. The mechanism of RhoB-induced
stabilization of HIF-1α in endothelial cells will require further
studies. In glioblastoma cells, RhoB prevents proteolytic deg-
radation of HIF-1α by the Akt/glycogen synthase kinase-3β
pathway (Skuli et al. 2006). Rac1, which activates the RhoB
promoter (Huelsenbeck et al. 2013), has been shown to stabi-
lize HIF-1α in hypoxic Hep3B cells (Hirota and Semenza
2001).

VEGF is important for the maintenance of pulmonary
vascular homeostasis and protects against chronic hypoxia-
induced PH in rats (Partovian et al. 2000; Tuder and Yun
2008). However, VEGF expression is increased in remodelled
hypertensive arteries and is prominent in plexiform lesions in
PH, suggesting that VEGF contributes to vascular pathology
(for a review, see Tuder et al. 2000). VEGF induces pulmo-
nary endothelial permeability in vitro and in vivo (Bates 2010)
as a result of the rapid endocytosis of vascular endothelial
cadherin (Gavard and Gutkind 2006). This process is initiated
by VEGF-receptor-2-induced activation of the small GTPase
Rac through a Src-dependent pathway. Rac1 activation

Fig. 1 Proposed mechanisms of Rho-GTPase-mediated changes in the
organization of the actin cytoskeleton and endothelial junctional integrity.
Details regarding signalling mediators shown in this diagram are provid-
ed in the text (arrows activation/upregulation, lines with a black circular
ending downregulation/inhibition, open arrows an increase or decrease
depending on arrow direction, ABP actin-binding proteins, ADMA asym-
metric dimethylarginine, AJ adherens junction, Ang-1 angiopoietin-1,
cGMP cyclic guanosine monophosphate, DDAH dimethylarginine
dimethylhydrolase, mDia mammalian diaphanous, ETRA endothelin

receptor antagonist, FVIIa factor VIIa, GJ gap junction,HGF hepatocyte
growth factor, Il-6 interleukin-6, Il-8 interleukin-8, LIMK LIM kinase,
LPS lipopolysaccharide, MLC-P phosphorylated myosin light chain,
MLCK myosin light chain kinase, NO nitric oxide, OxPAPC oxidized 1-
palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine, PAK p21-ac-
tivated protein kinase, PKCi PKC inhibitor, RhoRas homologous,ROCK
Rho kinase, S1P sphingosine-1 phosphate, TIP TNF-derived tonoplast
intrinsic protein, TJ tight junction, VASP vasodilator-stimulated phospho-
protein, VASP-P phosphorylated VASP)
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promotes PAK-mediated phosphorylation of VE followed by
internalization of the protein into clathrin-coated vesicles and
a breakdown of inter-endothelial junctional integrity.
Interestingly, the VEGF-induced decrease in endothelial bar-
rier function is preceded by a Rac1-dependent transient en-
hancement of the endothelial barrier (Seebach et al. 2005).

Inhibition of NO signalling in PH is associated with in-
creased plasma and tissue levels of the endogenous NOS
inhibitor, asymmetric dimethylarginine (ADMA), mainly be-
cause of a decrease of its metabolism by the dimethylarginine
dimethylhydrolase (DDAH) enzymes (Arrigoni et al. 2003;
Millatt et al. 2003; Pullamsetti et al. 2005). ADMA activates
RhoA and inhibits Rac1 in cultured endothelial cells, causing
pulmonary endothelial barrier dysfunction, cell motility de-
fects and abnormal angiogenesis in vitro and in vivo
(Wojciak-Stothard et al. 2005, 2007, 2009). ADMA-induced
RhoA activation in PAECs results from a decrease in NO/
cyclic guanine monophosphate/protein kinase G (PKG) sig-
nalling and reduced levels of Ser188-phosphorylated RhoA,
whereas Rac1 downregulation is associated with reduced
phosphorylation of the PKG substrate scaffolding protein,
vasodi la tor-s t imula ted phosphoprote in (VASP) .
Phosphorylation of RhoA on Ser188 weakens membrane
binding because of electrostatic repulsion with negatively
charged phospholipids and also results in an increased affinity
for Rho-GDIs. Rho-GDI is sequestered in the cytosol, dis-
abling downstream signalling (Lang et al. 1996; Sauzeau et al.
2000). Phosphorylation additionally plays a role in regulating
the levels of cellular RhoA by inhibiting ubiquitin-mediated
proteasomal degradation (Rolli-Derkinderen et al. 2005).
VASP associates with AJ (Vasioukhin and Fuchs 2001) and
TJ (Comerford et al. 2002) and links intercellular junction
proteins with the actin cytoskeleton (Krause et al. 2003). Mice
lacking proteins of the VASP family consistently die from
oedema formation attributable to defective vascular barrier
function (Furman et al. 2007). VASP-deficient endothelial
cells show increased permeability and reduced Rac1 activity
under basal conditions (Schlegel et al. 2008). Although the
way that the NO/PKG-induced phosphorylation of VASP
activates Rac1 is not fully understood, interactions of VASP
with Rac1 regulatory proteins such as p120Ras GAP, GTP
exchange factors for Rac1 or the TJ component ZO-1, are
likely to play a role (Comerford et al. 2002; Schlegel et al.
2008).

In addition to the Rho/Rac1-mediated reorganization of the
actin cytoskeleton and of AJ, ADMA reduces the expression,
activation and membrane localization of a GJ protein, Cx43,
in PAECs (Tsang et al. 2014). These changes are associated
with decreased expression and phosphorylation of c-jun and
increased pulmonary endothelial permeability in vitro and
in vivo (Tsang et al. 2014). Interestingly, endothelial-like cells
derived from the peripheral blood of patients with idiopathic
PAH exhibit abnormal DDAH1/Cx43 signalling and

increased permeability in vitro, highlighting the potential im-
portance of this pathway in the disease. Rotigaptide, an anti-
arrhytmic drug that enhances Cx43 function, prevents
ADMA-induced pulmonary endothelial leakage in vitro and
in vivo (Tsang et al. 2014). GJ proteins might affect pulmo-
nary endothelial permeability by facilitating the assembly of
AJ and TJ (Nagasawa et al. 2006) and/or mediating the
exchange of secondary signalling mediators such as Ca2+ or
cyclic nucleotides between cells in the lung capillary bed
(Parthasarathi et al. 2006).

Chronic obstructive pulmonary disease

ROCK is activated by agents known to contribute to the
pathogenesis of chronic obstructive pulmonary disease such
as inflammatory cytokines (e.g., interleukin-6 [IL-6] and
monocyte chemoattractant protein-1) or cigarette smoke
(Fukumoto and Shimokawa 2011; Sakai et al. 2011).
Cigarette smoke has been shown to induce ET-1 release in a
ROS-dependent manner and to cause endothelial barrier dys-
function in vitro by activating the RhoA/ROCK pathway in
HPAECs (Milara et al. 2010). These effects are attenuated by
endothelin receptor antagonists, antioxidant N-acetylcysteine
and ROCK inhibitor Y-27632 (Milara et al. 2010). In contrast,
in another study, cigarette smoke has been shown to induce
ROS and to increase endothelial permeability by the inhibition
of RhoA signalling (Lu et al. 2011). Although the activation of
RhoA/ROCK is commonly associated with an increase in
endothelial permeability, the inhibition of RhoA can also
compromise endothelial barrier function as a baseline level
of active RhoA is essential for the maintenance of intercellular
junctions (Beckers et al. 2010). ROS activate RhoA in cells by
the direct oxidation of two cysteine residues located in the
redox-sensitive motif of the protein (Aghajanian et al. 2009)
but can also inhibit RhoA by the formation of an intramolec-
ular disulfide bridge that prevents GTP binding (Heo et al.
2006). The differential effects of ROS on RhoA activity have
been proposed to depend on ROS levels and on the balance of
oxidizing and reducing agents within the cell (Lu et al. 2011).
Physiological levels of ROS and a high reduction potential
tend directly to oxidize and activate RhoA, whereas high
levels of ROS and a low reduction potential tend to inhibit
RhoA by the formation of disulfide bridges (Aghajanian et al.
2009; Lu et al. 2011).

ALI and ARDS

Vascular leakage is a hallmark of ALI and ARDS induced by
direct or indirect mechanical, toxic, infectious or inflammato-
ry challenges to the lung (Kumar et al. 2009). Several activa-
tors of RhoA/ROCK including endotoxin, IL-6, thrombin,
ROS and mechanical stress have been implicated in pulmo-
nary endothelial barrier dysfunction and oedema formation in
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these conditions (Maniatis and Orfanos 2008). Endotoxin-
induced lung oedema in mice can be attenuated by the
ROCK inhibitor, Y-27632 (Gorovoy et al. 2007), or by the
endothel ium-speci f ic over-express ion of Cdc42
(Ramchandran et al. 2008). Y-27632 has also been shown to
attenuate ALI in septic rats (Cinel et al. 2012). Plasma levels
of redox-reactive non-transferrin bound iron can increase
under various pathophysiological conditions, including those
associated with ALI (Gorbunov et al. 2012). The addition of
[Fe2+] increases pulmonary endothelial permeability in vitro;
this can also be attenuated byY-27632 (Gorbunov et al. 2012).

Thrombin, one of the mediators of ALI, increases RhoA
activity by activating p115-RhoGEF (Birukova et al. 2004).
Fluorescent resonance energy transfer analysis has revealed an
initial rise in RhoA activity at the cell periphery, followed by a
shift of activity towards the cytosolic F-actin filaments, ac-
companied by the disruption of junctional integrity and inter-
cellular gap formation (Szulcek et al. 2013).

The effects of thrombin can be attenuated by a number of
factors. Factor VIIa, a clotting protease that binds to tissue
factor, protects the endothelium from thrombin-induced bar-
rier dysfunction in a Rac1-mediated manner (Sen et al. 2011).
Angiopoietin-1 has also been shown to attenuate the effects of
thrombin by increasing Rac1 activity, which enforces VE-
cadherin organization and reduces RhoA activity in human
pulmonary microvascular endothelial cells (van der Heijden
et al. 2011).

The activation of RhoA/ROCK by a stretch induced by
mechanical ventilation might constitute a “second hit” to
Rho-independent lung injury induced by factors such as IL-
6 (Birukova et al. 2012b). RhoA/ROCK activation in this
model can be attenuated by the prostacyclin analogue,
iloprost, which probably acts via the protein-kinase-A-medi-
ated phosphorylation of Rho inhibitor, RhoGDI, or the nega-
tive regulation of RhoA by the cAMP/Epac/Rap1/Rac path-
way (Birukova et al. 2010).

The mechanochemical environment can significantly affect
the severity of ALI/ARDS (Birukov 2009). An 18 % cyclic
stretch enhances thrombin-induced Rho activation, whereas a
5 % cyclic stretch promotes Rac activation, critical for the
recovery of endothelial barrier function (Shikata et al. 2005;
Birukova et al. 2006). Another Rac1-activating agent, hepa-
tocyte growth factor (HGF), has been shown to prevent endo-
thelial barrier dysfunction induced by a cyclic stretch and
VEGF (Birukova et al. 2008). A combination of physiological
cyclic stretch preconditioning and HGF has been demonstrat-
ed to attenuate VEGF-induced barrier dysfunction via the
downregulation of the Rho pathway. These results highlight
the importance of the mechanochemical environment in the
control of Rho GTPase activity and lung endothelial perme-
ability in ALI/ARDS.

The severity of permeability oedema during infection with
the Gram-positive bacterium, Listeria monocytogenes,

correlates with the levels of the cholesterol-binding pore-
forming toxin, listeriolysin, which it produces (Rose et al.
2001; Repp et al. 2002; Munder et al. 2005). Listeriolysin-
induced permeability is accompanied by an increased ROS
generation, RhoA activation and MLC phosphorylation and
can be completely inhibited by the protein kinase C (PKC)
α/β inhibitor GÖ6976, indicating a crucial role for PKC in the
induction of barrier dysfunction. The TNF-derived tonoplast
intrinsic protein, which mimics the lectin-like domain of the
cytokine, blunts listeriolysin-induced hyperpermeability
in vitro, upon inhibiting PKC-α activation, ROS generation
andMLC phosphorylation and upon restoring the RhoA/Rac1
balance. These results indicate that the lectin-like domain of
TNF has a potential therapeutic value in protection from
l i s t e r i o l y s i n - i n d u c e d p u lmon a r y e n d o t h e l i a l
hyperpermeability (Xiong et al. 2010).

The platelet-derived phospholipid S1P can improve pul-
monary endothelial barrier dysfunction in ALI by inducing
Rac-dependent rearrangement of cortical actin (Abbasi and
Garcia 2013; Dudek et al. 2004; McVerry et al. 2004)). S1P-
induced cortical rearrangement of actin involves PAK activa-
tion, the phosphorylation and activation of LIM kinase and the
subsequent inactivation of actin-severing protein, cofilin
(Garcia et al. 2001). The importance of S1P signalling in the
regulation of pulmonary vascular permeability has also been
demonstrated by Zhao et al. (2009). Paracrine release of S1P
by bone-marrow-derived endothelial progenitor cells in co-
culture with pulmonary microvascular endothelial cells helps
to re-anneal endothelial AJ and prevent lipopolysaccharide
(LPS)-induced pulmonary endothelial leakage in vitro and
in vivo (Zhao et al. 2009). The protective mechanism involves
the activation of Rac1 and Cdc42 (Zhao et al. 2009).

The levels of phospholipid oxidation products, specifically
oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphati-
dylcholine (OxPAPC), derived from lipoproteins and mem-
branes of cells undergoing oxidative stress or apoptosis are
increased in inflammatory diseases including atherosclerosis,
lung inflammation and tissue injury (Birukova et al. 2012a).
Low concentrations of OxPAPC (5–20 mg/ml) enhance pul-
monary endothelial barrier function in vitro and in vivo and
reduce inflammation in animal models of acute lung injury
caused by LPS or mechanical stress (Ma et al. 2004; Nonas
et al. 2006, 2008). Protective effects of OxPAPC involve the
enhancement of the peripheral actin cytoskeleton and of AJ
and TJ mediated by Rac and Rap1 GTPases (Birukova et al.
2007a, 2011).

Plasma levels of adenosine are increased in response to
lung injury (Lu et al. 2012). Acutely elevated adenosine has
been shown to protect against pulmonary oedema in various
animal models of ALI. This effect is thought to be mediated
through transporter- and receptor-A2 and to involve the acti-
vation of Rac1, possibly via G-protein-coupled receptors (Lu
et al. 2012). Whereas acute exposure of the lung to adenosine
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is protective, sustained adenosine exposure decreases endo-
thelial cell barrier function, elevates cellular ROS levels and
activates p38, c-jun N terminal kinases and RhoA (Lu et al.
2012).

Concluding remarks

Basal activity of Rho GTPases is required for the maintenance
of normal pulmonary endothelial barrier function.
Pathological activation of Rho GTPases by hypoxia, NO
deprivation, inflammatory cytokines or mechanical stress
leads to imbalance in the activities of RhoA, Rac1 and
Cdc42 and causes profound changes in the structure and
function of endothelial AJ, TJ and GJ. Improved understand-
ing of the temporal and spacial activity changes of Rho
GTPases in the pulmonary vasculature in response to stress
conditions is required for the success of future therapeutic
efforts in the treatment of endothelial barrier dysfunction in
lung diseases.
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