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Abstract Modelling of complex psychiatric disorders, e.g.,
depression and schizophrenia, in animals is a major chal-
lenge, since they are characterized by certain disturbances in
functions that are absolutely unique to humans. Furthermore,
we still have not identified the genetic and neurobiological
mechanisms, nor do we know precisely the circuits in the
brain that function abnormally in mood and psychotic disor-
ders. Consequently, the pharmacological treatments used are
mostly variations on a theme that was started more than
50 years ago. Thus, progress in novel drug development with
improved therapeutic efficacy would benefit greatly from
improved animal models. Here, we review the available
animal models of depression and schizophrenia and focus
on the way that they respond to various types of potential
candidate molecules, such as novel antidepressant or anti-
psychotic drugs, as an index of predictive validity. We con-
clude that the generation of convincing and useful animal
models of mental illnesses could be a bridge to success in
drug discovery.
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Introduction

Animal models in neuroscientific research are of irreplace-
able value. They are important tools for the assessment of
pathological mechanisms, for the testing of hypotheses that
cannot be addressed in clinical studies and for the develop-
ment of novel pharmacological treatment (Nestler et al.
2002). Psychiatric disorders such as depression and schizo-
phrenia (SCZ) are difficult to replicate in a laboratory ani-
mal. At the same time, no animal model is able to fully mimic
any mental illness, as these are characterized by specific distur-
bances in functions that are absolutely unique to humans, such
as markedly diminished interest, thought disorders and halluci-
nations (American Psychiatric Association 2000). However, a
general approach is to reproduce particular symptoms of psy-
chiatric diseases (i.e., attention/cognitive deficits) in laboratory
animals or to develop models (i.e., the forced swim test) to
identify novel compounds as potential treatments (Cryan et al.
2002;Meyer et al. 2009). Ideally, an animalmodel should reflect
the human psychiatric disease in terms of face validity (i.e.,
reproduce the symptoms of the human mental disease), con-
struct validity (i.e., replicate the neurobiological abnormalities)
and predictive validity (i.e., response to the pharmacological
treatment in a way that predicts the effects of that treatment in
humans). Nevertheless, none of the available animal models are
able to mimic all the aspects of neuropsychiatric disorders, in
terms of neurobiological mechanisms and disease symptoms
and most likely never will. Therefore, the lack of knowledge
regarding the mechanisms that underlie diseases such as depres-
sion and SCZ, their comorbidity and symptomatic overlap
between them (i.e., patients with psychotic depression) is asso-
ciated with the partial efficacy of the present pharmacological
armoury. This raises the central question to be addressed in this
review: are current animalmodels reliable tools with a predictive
validity for the development of novel therapeutic compounds?
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Table 1 Behavioural effects of clinically prescribed antidepressants in validated animal models of depression (SSRI selective serotonin reuptake
inhibitor, SNRI serotonin and noradreniline reuptake inhibitors)

Rodent model of depression Behavioural antidepressant-like
response

Drug treatment

Olfactory bulbectomy ↓ Hyperactivity in the open field test
(after chronic drug administration)

Tianeptine, sertraline (Kelly and Leonard 1994), desipramine
(Kelly and Leonard 1996), amitryptiline (Stockert et al. 1988),
imipramine (Roche et al. 2008), citalopram (Hasegawa et al.
2005; Nguyen et al. 2009), fluvoxamine (Saitoh et al. 2007),
fluoxetine (Freitas et al. 2013; Machado et al. 2012; Roche et al.
2007), buspirone (Sato et al. 2010), agomelatine (Norman et al.
2012), tiagabine (Pistovcakova et al. 2008)

Learned helplessness ↓ Number of failures to escape shock Imipramine (Besson et al. 1999; Demontis et al. 1993; Gambarana
et al. 1995; Geoffroy et al. 1991; Ishida et al. 2005; Iwamoto
et al. 2005; Iwata et al. 2006; Joca et al. 2003; Martin and Puech
1991; Martin et al. 1987; Meloni et al. 1993; Takamori et al.
2001), desipramine (Beck and Fibiger 1995; Besson et al. 1999;
Centeno and Volosin 1997; Duman et al. 2007; Joca et al. 2006;
Martin et al. 1987; Rojas-Corrales et al. 2004; Rusakov and
Valdman 1983), chlorimipramine (Rusakov and Valdman
1983), clomipramine (Martin and Puech 1991; Martin et al.
1987; Millan et al. 2001), amitriptyline (Besson et al. 1999;
Caldarone et al. 2003; Rusakov and Valdman 1983), trazodone
(Rusakov and Valdman 1983), tranylcypromine, mianserine
(Takamori et al. 2001), venlafaxine (Millan et al. 2001; Rojas-
Corrales et al. 2004), fluvoxamine (Iwamoto et al. 2005; Martin
and Puech 1991; Rojas-Corrales et al. 2004; Takamori et al.
2001), mirtazapine (Slattery et al. 2005), fluoxetine (Iwamoto
et al. 2005; Marco and Laviola 2012; Marcussen et al. 2008;
Page and Abercrombie 1997; Reines et al. 2008; Shumake et al.
2010; Zazpe et al. 2007), paroxetine (Zazpe et al. 2007),
sertraline (Duman et al. 2007), St. John’s wort extract
(Chatterjee et al. 1998), buspirone (Lucki 1991; Martin and
Puech 1991); citalopram (Martin and Puech 1991; Millan et al.
2001), escitalopram (Reed et al. 2008), zimelidine (Dabrowska
et al. 2008; Joca et al. 2006), lamotrigine (Consoni et al. 2006),
agomelatine (Bertaina-Anglade et al. 2006; Dagyte et al. 2011;
Popoli 2009; Tardito et al. 2010)

Forced swim test ↓ Time of immobility (↑ swimming or
climbing activities) (after acute drug
administration)

Amitryptiline (Caldarone et al. 2003), tianeptine (Della et al. 2012;
Kelly and Leonard 1994; Solich et al. 2008), imipramine
(Bourin et al. 2004; Della et al. 2012; Kulkarni and Dhir 2007;
Paulke et al. 2008; Schulte-Herbrueggen et al. 2012; Zanelati
et al. 2010), desipramine (Robles-Molina et al. 2012; Simpson
and Kelly 2012; Will et al. 2003), venlafaxine (Kulkarni and
Dhir 2007), sertraline (Kelly and Leonard 1994; Leggio et al.
2008; Rogoz and Skuza 2006), paroxetine (Akagawa et al.
1999; Leggio et al. 2008), reboxetine (Cryan et al. 2005b; Wong
et al. 2000), phenelzine (Bourin et al. 2002; Will et al. 2003),
tranylcypromine, agomelatine (Bourin et al. 2002, 2004),
fluoxetine (Bourin et al. 2004; Cryan et al. 2005b; Kulkarni and
Dhir 2007; Reed et al. 2008; Rogoz and Skuza 2006),
paroxetine (Karanges et al. 2011), moclobemide (Cryan et al.
2005b), pramipexol (Rogoz and Skuza 2006; Schulte-
Herbrueggen et al. 2012), mirtazapine (Muguruza et al. 2013),
St. John’s wort extract (Paulke et al. 2008), citalopram (Leggio
et al. 2008; Nguyen et al. 2009; Tamburella et al. 2009, 2013),
escitalopram (Nguyen et al. 2013; Reed et al. 2008),
clomipramine (Consoli et al. 2005, 2007; Leggio et al. 2008;
Micale et al. 2006, 2008a, 2008b; Tamburella et al. 2009, 2010,
2013)

False positive results Amphetamines (Cryan et al. 2002), caffeine (Slattery and Cryan
2012)

Tail suspension test ↓ Time of immobility (after acute drug
administration)

Mianserine, nomifensine, viloxazine (Steru et al. 1985),
amitryptiline (Caldarone et al. 2003; Steru et al. 1985),
desimipramine (Berrocoso et al. 2013; O’Leary et al. 2007;
Steru et al. 1985), imipramine (Berrocoso et al. 2013; Kulkarni
and Dhir 2007; Liu and Gershenfeld 2001), reboxetine (O’Leary
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Status of current animal models of depression
and their pharmacological validation

Unfortunately, an animal model that perfectly includes the
aetiology, pathophysiology and symptoms of depression while
allowing an evaluation of the responses to treatments remains
difficult to envisage. Although the generation of genetically
modified mice could result in animal models mimicking ge-
netic, biochemical or behavioural characteristics of human
depression, we have to keep in mind the role of major con-
founding factors such as background strain, neurodevelopment
or interactions between genetic and environmental factors
during the interpretation of any findings (Urani et al. 2005).
However, various models, each with specific limitations, are
able to reproduce most of the aetiological factors and symp-
toms of the disease or possess a satisfactory predictive value
for identifying new compounds. On this basis, we review the
validation of rodent models of depression, such as bilateral
olfactory bulbectomy (OBX), learned helplessness, the forced
swim test (FST) or the tail suspension test (TST) and the
chronic mild stress (CMS) or chronic social stress paradigm,
according to the effects of pharmacological interventions that
have successfully achieved antidepressive-like activities in
animals and treatment efficacy in depressive patients.

Olfactory bulbectomy

OBX results in behavioural (i.e., hyperactive response in the
open field paradigm) and neurochemical (i.e., changes in the

endocrine, immune and neurotransmitter systems) alterations
in rats (Cairncross et al. 1975; Jesberger and Richardson 1985;
Kelly et al. 1997) and mice (Hellweg et al. 2007; Zanelati et al.
2010; Zueger et al. 2005); the alterations resemble some of
those seen in depressed patients and are reversed by chronic
treatment with clinically approved or potential antidepressants
(Tables 1 and 2). Since the olfactory system in rodents is part of
the limbic region in which the amygdala and hippocampus
contribute to emotional behaviour, OBX affects the cortical-
hippocampal-amygdala circuit, which also seems to be dys-
functional in depressed patients (Song and Leonard 2005).
Interestingly, a dysregulation of the functionality of the central
reward pathway in bulbectomized rats has also been reported,
suggesting that it may have an impact on the development of
depression/addiction comorbidity. Thus, OBX could be a use-
ful animal model of these dual diagnosis disorders (Kucerova
et al. 2012).

Learned helplessness

Learned helplessness might model in animals a human situ-
ation of unpredictable and uncontrollable events leading to
consequences: “stress-coping depression”. Thus, the animal
model is considered to provide specificity towards antidepres-
sant pharmacotherapy (Chourbaji et al. 2005; Christensen
1993; Maier 1984; Miller and Seligman 1976; Seligman and
Beagley 1975; Sherman et al. 1982; Vollmayr and Henn
2001). Animals exposed to inescapable and unavoidable elec-
tric shocks in one situation later fail to escape shock in a

Table 1 (continued)

Rodent model of depression Behavioural antidepressant-like
response

Drug treatment

et al. 2007; Wong et al. 2000), tianeptine (Berrocoso et al. 2013),
fluoxetine (Berrocoso et al. 2013; Kulkarni and Dhir 2007;
Muguruza et al. 2013; O’Leary et al. 2007), mirtazapine
(Muguruza et al. 2013), venlafaxine, duloxetine (Berrocoso
et al. 2013; Kulkarni and Dhir 2007), citalopram (Berrocoso
et al. 2013)

Chronic mild stress ↑ Responsiveness to rewards (after
chronic drug administration)

Fluoxetine (Jindal et al. 2013; Muscat et al. 1992; Mutlu et al.
2012), maprotiline (Muscat et al. 1992), minaserin (Cheeta et al.
1994), imipramine (Marston et al. 2011; Norman et al. 2012;
Papp et al. 1996; Przegalinski et al. 1995), buspirone (Papp et al.
1996; Przegalinski et al. 1995), ipsapirone (Przegalinski et al.
1995), agomelatine (Bourin et al. 2004; Dagyte et al. 2011),
risperidon (Marston et al. 2011), citalopram (Herrera-Perez et al.
2010; Przegalinski et al. 1995), escitalopram (Christensen et al.
2012), tianeptine (Mutlu et al. 2012)

Social stress—
repeated defeat

Resident-intruder ↓ Agressivity, ↑ flight Acute: SSRIs, SNRIs, tricyclics (Mitchell and Neumaier 2005)

↑ Aggressivity Chronic: SSRIs, SNRIs, tricyclics (Mitchell and Neumaier 2005)

↑ Ambulation in open field test Fluoxetine, reboxetine (Rygula et al. 2006, 2008)

Group-housed vs.
singly-housed
aggressive partner

↑ Ambulation in open field test Chronic: citalopram, valproate, felbamate (Pistovcakova et al.
2005; Sulcova 1999)
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different situation in which escape is possible. A drug is
considered to be effective as an antidepressant if the learned
helplessness is reduced (the number of failures to escape is
decreased). However, we need to assess a depressive-like
phenotype in experimental animals and exclude some subjects
from the study. In mice, approximately 30 % of individuals
reportedly become helpless after shock exposure. However,
the remaining animals show helpless behaviour with high
escape latency and thus a low number of failures to escape
might be attributable to variable pain sensitivity (Chourbaji
et al. 2005). Parameters for inescapable shock and the testing
of learned helplessness to minimize artifacts have been stated
in a study published elsewhere (Chourbaji et al. 2005). Two
rat lines have also been established by selective breeding,
namely helpless and non-helpless, which differ in neurochem-
ical and behavioural parameters that are known to be related to
depression (Henn and Vollmayr 2005).

Forced swim test and tail suspension test

These two tests are widely used paradigms specifically de-
veloped to test new antidepressants. In the FST (also known
as Porsolt’s test; Porsolt et al. 1977), rodents are forced to
swim in an inescapable cylinder and will eventually adopt a
characteristic immobile posture that is interpreted as a pas-
sive stress-coping strategy or depression-like behaviour (be-
havioural despair). The FST has shown its ability to detect a
broad spectrum of substances that are therapeutically effec-
tive in human depression, as these drugs shift passive-stress
coping towards active coping, which is detected as reduced
immobility (Table 1). Furthermore, the quantity of the dif-
ferent movements, such as climbing or swimming behaviour,
has a predictive value for differentiating between noradren-
ergic (NAergic) and serotonergic (5-HTergic) activity (Cryan
et al. 2002). However, care must be taken with regard to the
strain (variations have been shown between inbred and out-
bred mice and rats) used for the test because of differential
spontaneous locomotor activity possibly reducing the dura-
tion of immobility (Crawley et al. 2007; Petit-Demouliere
et al. 2005). False positive results can be obtainedwhen testing
drugs with psychostimulant activity, e.g., amphetamines, caf-
feine (Cryan et al. 2002; Slattery and Cryan 2012).

Similar assumptions and interpretations to those for the
FS, can be drawn from the TST (Steru et al. 1985). In this
test, mice are suspended by their tails for a defined period of
time during which their immobility is decreased by several
antidepressants. The percentage of animals showing passive
behaviour should be counted and then compared with that
after vehicle or active drug treatment, as several mouse
strains have been shown to be essentially resistant to tail-
suspension-induced immobility (Cryan et al. 2005a). The
test however is sensitive to acute treatment only and its

validity for non-monoamine antidepressants is uncertain
(Berrocoso et al. 2013; Cryan et al. 2005b).

Chronic mild stress

Chronic mild stress procedures (food or water deprivation,
45° cage tilt, intermittent illumination, soiled cage, paired
housing or low-intensity stroboscopic illumination), applied
for a period of several consecutive weeks decrease the re-
sponsiveness to rewards (consumption of a 1 % sucrose
solution) in rats or mice; this is reversed by chronic admin-
istration of antidepressant drugs. This “chronic mild stress
model” is considered to represent anhedonia in depression
(Papp et al. 1996; Willner 1984, 1997; Willner et al. 1992).
In comparison with other animal models of depression, it has
been evaluated as a high perspective research approach,
despite its procedural complexity and difficult reproducibil-
ity (Porsolt 2000). Chronic treatment with clinically used
antidepressants normalizes sucrose drinking (Table 1).

Drug-withdrawal-induced anhedonia

A withdrawal from abuse of psychoactive compounds (e.g.,
cocaine, amphetamines) is known to be associated with
states of depression in humans and depressive-like states in
animals (Barr and Phillips 1999; Jang et al. 2013; Renoir
et al. 2012). The animal model “drug-withdrawal-induced an-
hedonia” is based on experimental experience with laboratory
rodents; upon their withdrawal from long-term treatment with
psychostimulatory agents, they show mild food and water
avoidance as depressive-like symptoms (anhedonia) in response
to rewards in various paradigms, e.g., place preference, i.v. drug
self-administration, electric intracranial self-stimulation or su-
crose solution preference (Barr and Phillips 1999; Cryan and
Mombereau 2004). Rates of reward responding is increased by
subsequent treatment with antidepressants, e.g., imipramine and
amitriptyline (Kokkinidis et al. 1980).

Chronic social stress

Repeated social stress was suggested as an aethologically
relevant animal model of depression in mice (Keeney and
Hogg 1999), rats (Rygula et al. 2005) and tree shrews (Fuchs
2005). Any behaviour indicative of social conflict such as
threat, attack, fight or escape, avoidance or subordination is
called agonistic behaviour and encompasses the actions of
both the instigator and the victim (Scott 1966). Compared
with control individuals, the animals that are subjected to
repeated agonistic encounters exhibit significantly reduced
locomotor activity in the open field test, which, in turn is
normalized by previously clinically proven or potential an-
tidepressants, e.g., citalopram or valproate and by potential
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antidepressants, e.g., felbamate (Pistovcakova et al. 2005;
Sulcova and Pistovcakova 2008; Table 1).

Alterations of hypothalamic-pituitary-adrenal functions
have been established in states of depression and stress,
including social stress conditions, in both humans and ani-
mals (Blanchard et al. 2001; Kubera et al. 2011; Mathews
et al. 2006; Morris et al. 2012). In rodents, social defeat and
subordination are stressful, especially in males (Blanchard
et al. 2001; Martinez et al. 1998). Animals that are subjected
to repeated agonistic encounters are used for testing potential
antidepressant treatment effects (Mitchell 1994, 2005;
Sulcova 1999). The same stress procedure results in in-
creased release of corticosterone and dopamine (DA).
Felbamate decreases NA concentrations and inhibits the
stress-induced rise in corticosterone and DA. Modulation
of stress hormone release has been suggested to be induced
by the action of felbamate on glutamate neurotransmission
and neuroendocrine changes might contribute to behavioural
effects of the drug (Pistovcakova et al. 2005). The mood-
stabilizing action of felbamate and other anti-epileptic drugs
has been proposed by clinicians for further verification
(Cavanna et al. 2010).

Current leading compounds for development of new
antidepressants

Pharmacological analyses of action of clinically approved
antidepressants support the predictive validity of the animal
models presented. However, consideration of the behaviour-
al and molecular phenotypes corresponding to the human
disorders suggests that these models are also useful for the
improvement of our knowledge of the neuronal mechanisms
of the disease, the biomarkers of its specific symptoms and
the integration of basic and clinical methodologies (transla-
tional medicine) for the development of new antidepressants
(Borsini 2012; Cryan et al. 2002; Dzirasa and Covington
2012; Kluge et al. 2011; Neumann et al. 2011; Rupniak
2003). Taking into account that the 5-HT hypothesis of de-
pression has not been abandoned (Albert and Benkelfat 2013),
the targets of potential relevance as treatments for mood dis-
orders are also those involved in the regulation of several other
neuronal systems in the brain, including the opioid system
(Pradhan et al. 2011), the cholinergic system (Drevets et al.
2013), the endocannabinoid system (Marco and Laviola 2012;
Micale et al. 2013), the neuropeptidergic signalling system
(Griebel and Holsboer 2012), the melatoninergic system
(Lanfumey et al. 2013) and the glutamatergic system
(Connolly and Thase 2012; Hashimoto 2011; Javitt 2012;
Machado-Vieira et al. 2012; Mathews et al. 2012; Serafini
et al. 2013; Tokita et al. 2012). Thus, attention should be given
to compounds influencing these systems, which have been
shown to produce antidepressant-like effects in animal models.

Currently, the compounds that modulate glutamatergic neuro-
transmission are reported to hold the greatest promise for the
development of new antidepressants (Serafini et al. 2013).
Suggested mechanisms are based on the antagonistic influence
on ionotropic N-methyl-D-aspartate (NMDA) receptors, the
modulation of metabotropic glutamate receptors, especially
the negative modulation of mGlu2/3 and mGlu5 receptors
(Chaki et al. 2013) and the positive modulation of mGlu2
andmGlu7 receptors (Sanacora et al. 2012). The animal model
studies with leading glutamatergic compounds are cited in
Table 2.

Status of current animal models of SCZ
and their pharmacological validation

SCZ, described by Kraepelin in 1896 as a dementia praecox,
is a unique human disorder for which modelling in animals
might prove problematic because of the lack of a uniform set
of symptoms in patients and indictions of the heterogeneity
of the disorder. Thus, a greater understanding of the disorder
might arise from modelling specific signs and symptoms, as
opposed to the entire syndrome. In line with this strategy,
several efforts have been directed at developing animal
models that allow the translation of the symptomatology in
SCZ and prediction of antipsychotic activity. Although pos-
itive symptoms such as hallucinations and delusions cannot be
measured in animals, the most reliable behavioural indices of
positive symptoms in animal models are hyperlocomotor ac-
tivity and behavioural stereotypes that mimic the psychomotor
agitation and presence of stereotyped behaviour in acutely
psychotic patients (Young et al. 2010). The rationale for the
use of these indices is based upon the principle that the
hyperfunction of the mesolimbic DAergic system, which
seems to be involved in the enhanced locomotor activity and
stereotyped behaviours, is consistent with the clinical condi-
tions in which enhanced subcortical DAergic activity plays a
pivotal role in precipitating positive symptoms (Murray et al.
2008). The loss of selective associative learning in the form of
the disruption of latent inhibition, which is also induced by
hyperdopaminergic activity at the subcortical level, seems to
be another cross-species translational index relevant to posi-
tive symptoms of SCZ (Weiner 2003). Indeed, some behav-
ioural aspects of SCZ can be modelled and objectively
assessed in rodents. More specifically, anhedonia and social
behaviour as hallmarks of negative symptoms in humans can
be assessed in rodents, together with prepulse inhibition,
which reflects disrupted sensory gating abilities both in
schizophrenic patients and in experimental animal models
(Young et al. 2010). Finally, the various cognitive aspects
affected in the disease, as identified by the NIH Measurement
and Treatment Research to Improve Cognition in Schizophrenia
(MATRICS) initiative (Marder and Fenton 2004), can be

Cell Tissue Res (2013) 354:309–330 313



experimentally addressed in animal models by the use of spe-
cific test batteries (Peleg-Raibstein et al. 2012). Among the
several approaches used to create experimental animal models
of SCZ, which also include the lesion model (Jones et al. 2011)
and genetic-based preparations (Inta et al. 2010), we will exam-
ine, in the following discussion, (1) pharmacological models
and (2) neurodevelopmental models that are the most used in
drug discovery studies (Tables 3, 4)

Pharmacological models

Hyperfunction of the DAergic system in the mesolimbic
pathway was the original tenet for the occurrence of SCZ;
thus, the first animal models were developed on the basis of
the pharmacological manipulation of the DAergic system in
an attempt to mimic this dysregulation (Carlsson et al. 2001).
In rodents, repeated treatment with the DA-releasing agent
amphetamine induced a persistent sensitization exaggerating
the hyperactivity caused by an acute amphetamine challenge,
which was prevented by antipsychotic pre-treatment. This mod-
el is supported by the observation that chronic psychostimulant
abuse can lead to psychotic episodes, whereas low doses of
amphetamine worsen the symptoms (Featherstone et al. 2007).
Amphetamine sensitization is also characterized by deficits in
prepulse inhibition or latent inhibition and in prefrontal-cortex-
dependent cognitive tasks, whereas hippocampal function is
unaltered (Peleg-Raibstein et al. 2012; Russig et al. 2002,
2005; Tenn et al. 2005). Furthermore, it is accompanied by
neurochemical (i.e., increase in DA, NA and 5-HT efflux in
nucleus accumbens, striatum or prefrontal cortex) and structural
changes (i.e., reduction of parvalbumin and brain-derived
neurotrophic factor expression in the medial prefrontal cortex
and hippocampus, respectively) (Doucet et al. 2013; Morshedi

and Meredith 2007; Motawaj and Arrang 2011; Salomon et al.
2006). However, it fails to induce any deficits in social activity
as an index of negative symptoms and therefore limits the
conformity to available human data (Srisurapanont et al.
2003, 2011). Similarly, the preferential DA receptor agonist
apomorphine has induced a SCZ-like phenotype in rodents
(Peleg-Raibstein et al. 2012). Overall, behavioural changes
induced by DA-stimulating drugs have been employed as
models of psychosis or cognitive-related abnormalities but they
fail to capture cardinal aspects of negative symptoms.

The glutamate hypothesis of SCZ has been developed
from the observation that NMDA receptor antagonists in-
duce, in normal humans, a psychosis-like state (plus negative
and cognitive symptoms) that closely resembles SCZ, lead-
ing to the establishment of glutamatergic models of SCZ
(Javitt 2012). In animals, acute phencyclidine (PCP) treat-
ment induces hyperactivity and disruption of prepulse inhi-
bition; this is reversed by atypical but not typical antipsy-
chotics (Mouri et al. 2007). However, both classes of anti-
psychotic agents are able to counteract the ketamine-induced
deficits, suggesting a different involvement of D2 receptors
in the PCP or ketamine effects (Neill et al. 2010). Acute PCP
treatment affects social activity and sucrose consumption, as
indices of negative symptoms and various different cognitive
domains (Mouri et al. 2012; Turgeon and Hulick 2007).
More conflicting results have been obtained from repeated
PCP treatment, which elicits reduced (Snigdha and Neill
2008) or no effects (Sams-Dodd 2004) on social behaviour
and an improvement in negative-like symptoms (Brigman
et al. 2009). PCP-induced deficits have also been found in
various cognitive domains, which are counteracted by atyp-
ical antipsychotics (Amitai et al. 2007; Kunitachi et al.
2009). However, in clinical practice, antipsychotics do not

Table 2 Antidepressant-like effects of glutamatergic leading compounds in animal models of depression (NMDA N-methyl-D-aspartate, AMPA α-
amino-3-hydroxy-5-methylisoxazole-2-proprionic acid)

Pharmacological mechanism Compound: animal models (references)

NMDA receptor antagonist Ketamine: learned helplessness, tail suspension test (Koike et al. 2011), forced swim test (Engin et al. 2009;
Lindholm et al. 2012), chronic mild stress (Garcia et al. 2009)

mGlu2/3 receptor antagonist MGS0039: tail suspension test (Koike et al. 2011), learned helplessness (Yoshimizu et al. 2006), olfactory
bulbectomy (Palucha-Poniewiera et al. 2010), forced swim test (Kawasaki et al. 2011); LY341495: tail
suspension test (Chaki et al. 2004; Koike et al. 2013)

mGlu2/3 receptor allosteric
negative modulator

RO4491533: tail suspension test (Campo et al. 2011)

mGlu2 receptor allosteric
potentiator

THIIC: forced swim test (Fell et al. 2011)

mGlu5 receptor uncompetitive
antagonist

MTEP: tail suspension test, forced swim test (Belozertseva et al. 2007; Li et al. 2006)

mGlu5 receptor negative allosteric
modulator

GRN-529: tail suspension test, forced swim test (Hughes et al. 2013)

mGlu7 receptor allosteric agonist AMN082: tail suspension test, forced swim test (Bradley et al. 2012)

NMDA receptor glycine-site partial
agonist

GLYX 13: learned helplessness, forced swim test (Ashton and Moore 2011; Burgdorf et al. 2013)

AMPA receptor potentiator LY 451646: forced swim test (Lindholm et al. 2012)
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improve cognition in patients; thus, further studies are nec-
essary to assess the mechanisms underlying the PCP effect
on cognition. Interestingly, the recent use of genetically mod-
ified mice has revealed that various components of the
glutamatergic systems, such as specific glutamate receptor sub-
types or various components of their intracellular transduction
mechanism, might be involved in the pathophysiology of SCZ
(Inta et al. 2010). Hallucinogens such as lysergic acid
diethylamide (LSD) or cholinergic receptor antagonists, e.g.,
scopolamine, have induced, in humans and animals, psychotic-
like effects, thus supporting the 5-HTergic or cholinergic hypoth-
esis of SCZ, respectively. Therefore, the full potential of 5-HTor

cholinergicmanipulations in preclinical research of SCZ needs to
be further validated (Barak 2009; Vollenweider et al. 1998).

Neurodevelopmental models

In the last few decades, human epidemiological data have sup-
ported the finding that pre-perinatal environmental factors such
as malnutrition, infection and obstetric complications increase
the risk of the development of SCZ (Brown et al. 2013). This
knowledge has stimulated the development of models based on
direct pre-perinatal damage of the central nervous system (CNS);
such models replicate several behavioural and neurochemical

Table 4 Neurodevelopmental models of schizophrenia (5-HT seroto-
nin, AMY amygdala, CLZ clozapine, DA dopamine, dHPC dorsal hip-
pocampus, GLU glutamate, HPC hippocampus, HP haloperidol, MAM
methylazoxymethanol, mPFC medial prefrontal cortex, NAc nucleus

accumbens, PFC prefrontal cortex, PV parvalbumin, OLA olanzapine,
RIS risperidone, SER sertindole, vHPC ventral hippocampus, VTA
ventral tegmental area)

Experimental method Positive-
like
symptoms

Negative-
like
symptoms

Spatial/
working
memory

Latent
inhibition

Prepulse
inhibition

Neurochemical
changes

Antipsychotic
response

References

Prenatal manipulation

Prenatal MAM
exposure

Yes Yes Deficit Deficit Deficit ↑ DA activity
at the VTA

↓ PV and
mGlu5 in
the mPFC

↔ Reelin in
the HPC

Hyperactivity
of DA
neurons in
the VTA
reduced by
HP and
SER

Gastambide et al. 2012,
Lodge et al. 2009, Lodge
and Grace 2009, Matricon
et al. 2010, Moore et al.
2006, Snyder et al. 2012,
Valenti et al. 2011,
Zimmerman et al. 2013

Prenatal polyinosinic:
polycytidylic acid
exposure

Yes Yes Deficit Deficit Deficit ↓ PV in the
HIP

↓ DA in the
mPFC and
vHPC

↑ 5-HT in the
AMY and
NAc

↓ Reelin in the
dHPC

↑ GAD67 in
the vHPC

Deficits are
reversed by
RIS and
CLZ

Bitanihirwe et al. 2010,
Cardon et al. 2010,
Harvey and Boksa 2012,
Meyer et al. 2009, 2010,
Piontkewitz et al. 2009,
2011, 2012, Vuillermot
et al. 2012, Wolff and
Bilkey 2010

Postnatal manipulation

Postweaning isolation
rearing

Yes Yes Deficit Deficit Deficit ↑ Mesolimbic
DA

↑ GAD67 in
the AMY

↓ PV and reelin
in the vHPC

↓ CB1 and
GluR1in the
PFC

↑ Plasma
tryptophan
metabolites

Deficits
reversed by
HP, OLA,
RIS and
CLZ

Cassidy et al. 2010, Gilabert-
Juan et al. 2012, Harte
et al. 2007, Hermes et al.
2011, Marsden et al. 2011,
Moller et al. 2011, 2013,
Zamberletti et al. 2012a,
2012b

Neonatal ventral
hippocampal lesion

Yes Yes Deficit Deficit Deficit ↑ DA in the
PFC

↓ PV in the
HPC

↓ GAD67 in
the mPFC

Deficits
reversed by
HP, CLZ
and RIS

Bringas et al. 2012, Lee et al.
2012, Macedo et al. 2012,
Naert et al. 2013,
O’Donnell 2012,
Richtand et al. 2006,
Swerdlow et al. 2012
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changes linked to the disease. In agreement with this
approach, rats exposed in utero on gestional day 17 to
methylazoxymethanol (MAM), an antimitotic agent that meth-
ylates DNA, show behavioural (hyperactivity, cognitive
and social deficits or prepulse inhibition disruption) and
histopathological (decreased parvalbunin expression,
hyperdopaminergia) patterns similar to those observed in
SCZ (Lodge et al. 2009; Lodge and Grace 2009). Although
the MAM model seems to have face validity for SCZ symp-
toms and construct validity in terms of the structural and
DAergic changes observed, only a few recent studies have
been performed to detect the antipsychotic activity of current
agents (Belujon et al. 2012; Valenti et al. 2011) or novel
compounds (Brown et al. 2013; Gastambide et al. 2012,
2013; Gill et al. 2011) and thus the predictive validity of this
model is not extensively established. Similarly, maternal ad-
ministration of the viral mimetic polyinosinic:polycytidylic
acid induces, in the offspring, a spectrum of neurochemical
and behavioural SCZ-related changes that were partially re-
versed by antipsychotics (Bitanihirwe et al. 2010; Ozawa et al.
2006). An alternative approach makes use of environmental
manipulations during postnatal brain development and matu-
ration, such as maternal separation, isolation rearing, early
handling or brain lesions. These procedures are based on the
hypothesis that they can deflect the physiological develop-
ment, within the CNS, of an aberrant maturation process prone
to the emergence of psychotic-like behaviour and of social,
cognitive or attention/gating deficits that are sensitive to the
existing antipsychotics.

The advantage of neurodevelopmental over pharmacolog-
ical models of SCZ is the ability to perform behavioural and
neurochemical investigations in the absence of confounding
drugs and to identify new classes of antipsychotics by the use
of agents operating on multiple pharmacological mechanisms.

New potential pharmacological targets in the treatment
of SCZ: lessons from animal models

Current pharmacological treatment for SCZ is primarily fo-
cused on modulating DA and 5-HT signalling, which is gen-
erally effective in treating positive symptoms. However, it is
less effective in treating the negative and cognitive symptoms
and can induce several side effects, such as the extrapyramidal
side effect, weight gain and diabetes mellitus. Furthermore, a
significant proportion of patients are refractory to all current
treatments; thus, the development of new approaches for
treating SCZ is urgently needed (Keefe 2007). At the same
time, we are becoming increasingly aware that the pathophys-
iology underlying SCZ cannot merely be explained by simple
changes in monoamine signalling but involves more complex
alterations in activity through key brain circuits that are critical
for sensory, cognitive and emotional processing (Lisman et al.

2008; Marek et al. 2010). These brain circuits are modulated
by DA and 5-HT, by the major excitatory and inhibitory
neurotransmitters glutamate and GABA, which are critical
for signalling through these circuits and by acetylcholine.
Thus, all these factors represent potential targets for pharma-
cological intervention (Table 5). Based on the hypothesis that
impaired NMDA function in important cellular compartments
of the limbic forebrains might represent a critical feature
underlying the pathophysiology of SCZ, the mGlu2/3 receptor
agonists (Cartmell et al. 1999; Fabricius et al. 2011; Hackler
et al. 2010; Harich et al. 2007; Hikichi et al. 2013; Johnson
et al. 2005, 2011; Moghaddam and Adams 1998; Nakazato
et al. 2000; Patil et al. 2007; Profaci et al. 2011; Schlumberger
et al. 2009; Takamori et al. 2003), the mGlu2- (Galici et al.
2005; Harich et al. 2007; Nikiforuk et al. 2010) and mGlu5-
positive allosteric modulators (PAMs; Clifton et al. 2013;
Darrah et al. 2008; Gastambide et al. 2013; Gilmour et al.
2013; Horio et al. 2012; Kinney et al. 2005; Kjaerby et al.
2013; Schlumberger et al. 2009, 2010; Stefani and
Moghaddam 2010; Vales et al. 2010) and the mGlu group
III orthosteric agonists (Palucha-Poniewiera et al. 2008;
Wieronska et al. 2012, 2013) have all shown preclinical
efficacy in reversing SCZ-like symptoms in several experi-
mental models. Although the positive results have not been
fully confirmed by clinical trials, the mGlu receptor ligands
seem to represent the first non-dopamine D2 receptor-based
antipsychotics (Hashimoto et al. 2013). To obtain a more
efficient NMDA receptor activation through an increased
synaptic glycine concentration, selective glycine transporter-
1 (GlyT-1) inhibitors have been shown to be effective in
specific preclinical models of SCZ (Alberati et al. 2012;
Hagiwara et al. 2013; Chen et al. 2010; Karasawa et al.
2008; Nagai et al. 2012; Shimazaki et al. 2010; Yang et al.
2010). Although definitive trials remain ongoing, encouraging
results to date have been reported (Javitt 2012). Several lines
of evidences suggest that alterations in central muscarinic or
nicotinic cholinergic neurotransmission are involved in the
pathophysiology of SCZ (Jones et al. 2012). Thus, based on
the above premise, the M1/M4 muscarinic acetylcholine re-
ceptor (mAChR) agonist xanomeline (Barak and Weiner
2011b; Jones et al. 2005; Thomsen et al. 2010; Woolley
et al. 2009), the M1 or M4 PAMs (Brady et al. 2008; Chan
et al. 2008; Jones et al. 2005; Thomsen et al. 2010; Vanover
et al. 2008) and the α7 nAChr agonist/activators (Barak 2009;
Feuerbach et al. 2009; Hauser et al. 2009; Rezvani et al. 2010;
Roncarati et al. 2009; Wallace and Porter 2011; Wishka et al.
2006) have been shown to be effective in animal studies.
Despite the promising preclinical data, additional studies are
needed to develop more selective mAChRs subtype com-
pounds (i.e., molecules without agonistic activity at M2 and
M3 mAChRs) to avoid undesirable cholinergic side effects
(Langmead et al. 2008). Among the phosphodiesterases
(PDEs), which are a class of enzymes within the intracellular
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Table 5 Leading compounds in experimental models of schizophrenia
(5-HT serotonin, mAChR muscarinic acetylcholine receptor, MAM
methylazoxymethanol, nAChR nicotinic acetylcholine receptor, ND

not determined, NMDA N-methyl-D-aspartate, PAMs positive allosteric
modulators, PDE phosphodiesterase, PPI prepulse inhibition)

Drugs Animal models Positive-like
symptoms

Negative-
like
symptoms

Cognitive
dysfunctions

Sensorimotor
gating
deficits in
PPI

References

mGlu2/3 agonists

LY354740,
LY404039,
LY379268,
MGS0008
MGS0028
BINA
CBiPES

Amphetamine, NMDA
antagonist, Neonatal ventral
hippocampal lesion

Improvement ND Improvement Improvement Cartmell et al. 1999,
Fabricius et al. 2011,
Hackler et al. 2010,
Harich et al. 2007,
Hikichi et al. 2013,
Johnson et al. 2005,
2011, Moghaddam
and Adams 1998,
Nakazato et al. 2000,
Patil et al. 2007,
Profaci et al. 2011,
Schlumberger et al.
2009, Takamori
et al. 2003

mGlu2 PAM

LY487379 Amphetamine, NMDA
antagonist

Improvement ND Improvement Improvement Galici et al. 2005,
Harich et al. 2007,
Nikiforuk et al. 2010

mGlu5 PAM

CDPPB
ADX47273
CPPZ
LSN2463359
LSN2814617

Amphetamine, NMDA
antagonist, MAM

Improvement Improvement Improvement Improvement Clifton et al. 2013,
Darrah et al. 2008,
Gastambide et al. 2012,
Horio et al. 2012,
Kinney et al. 2005,
Kjaerby et al. 2013,
Schlumberger et al.
2009, 2010, Stefani
and Moghaddam 2010,
Vales et al. 2010,
Vardigan et al. 2010

mGlu group III orthosteric agonists

LSP1-2111
ACPT-I

Amphetamine, NMDA
antagonist,

Improvement Improvement Improvement ND Palucha-Poniewiera et al.
2008, Wieronska et al.
2012, 2013

Glycine transporter 1 inhibitors

RG1678
Sarcosine
d-Serine

Amphetamine
NMDA antagonist
Polyinosinic:

polycytidylic acid

Improvement Improvement Improvement Improvement Alberati et al. 2012,
Hagiwara et al. 2013,
Chen et al. 2010,
Karasawa et al. 2008,
Nagai et al. 2012,
Shimazaki et al.
2010, Yang et al. 2010

M1/M4 mAChR agonists

Xanomeline Amphetamine
NMDA antagonist
Scopolamine

Improvement Improvement Improvement Improvement Barak and Weiner 2011a,
Thomsen et al. 2010,
Woolley et al. 2009

M1/M4 mAChR PAMs

TBPB
LY2033298
BQCA
AC-260584
VU0152100

Amphetamine
Apomorphine
Scopolamine

Improvement ND Improvement Improvement Bradley et al. 2010,
Brady et al. 2008,
Chan et al. 2008,
Jones et al. 2008,
Vanover et al. 2008
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signal transduction cascade associated with brain abnormali-
ties in SCZ, PDE4 and PDE10A seem to be novel therapeutic
targets (Andreasen et al. 2011). Interestingly, specific PDE4 or
PDE10A inhibitors ameliorate positive symptoms and
cognitive/attention deficits (Davis and Gould 2005; Grauer
et al. 2009; Kanes et al. 2007; Schmidt et al. 2008; Siuciak
et al. 2008; Smith et al. 2013; Weber et al. 2009). Several
compounds are currently undergoing clinical testing, mostly
in clinical phase I trials in which SCZ is the leading indication
(Kehler 2013). Studies on histamine function in the CNS have
focused largely on the effects mediated via H3 receptor sig-
nalling. Hence, H3 receptors antagonists or inverse agonists
have advanced into clinical assessment based on their effec-
tiveness as cognition enhancers in experimental models of
human diseases such as attention deficit hyperactivity disor-
der, SCZ and Alzheimer’s disease (Brown et al. 2013; Fox
et al. 2005; Ligneau et al. 2007; Mahmood et al. 2012;
Medhurst et al. 2007; Raddatz et al. 2012; Southam et al.
2009; Vohora and Bhowmik 2012). In addition, the serotonin
5-HT6 receptors have been identified as a potential target for

the treatment of cognitive deficits in various disorders (Mitchell
and Neumaier 2005). The 5-HT6 receptor is almost exclusively
expressed in brain areas associated with learning and memory
and a large number of studies have shown that 5-HT6 antago-
nists (de Bruin et al. 2013; Mitchell et al. 2006; Mohler et al.
2012) and 5-HT6 agonists (Burnham et al. 2010; Kendall et al.
2011; Nikiforuk et al. 2013) have beneficial effects in several
domains of cognition. Although the explanation for their sim-
ilar pro-cognitive effect is unavailable, they might act on vari-
ous neuronal subpopulations (Kendall et al. 2011; Schechter
et al. 2008) and trigger diverse signalling pathways (Yun et al.
2007).

Conclusive remarks and future prospectives

In conclusion, the development of reliable and predictive
animal models for neuropsychiatric disorders is a major
challenge for assuring successful drug development. The
field desperately needs better animal models of depression

Table 5 (continued)

Drugs Animal models Positive-like
symptoms

Negative-
like
symptoms

Cognitive
dysfunctions

Sensorimotor
gating
deficits in
PPI

References

α7 nAChR agonist/activator

SSR180711
RG3487
SEN12333
TC-5619
MEM3454
JN403

Amphetamine, apomorphine
NMDA antagonist

Improvement Improvement Improvement Improvement Barak 2009, Feuerbach
et al. 2009, Hauser et al.
2009, Rezvani et al. 2010,
Roncarati et al. 2009,
Wallace and Porter 2011,
Wishka et al. 2006

PDE4/PDE10A inhibitors

Rolipram
Papaverine
TP-10
MP-10
Vp1-15
THPP-1

Amphetamine
NMDA antagonist

Improvement Improvement Improvement Improvement Davis and Gould 2005,
Grauer et al. 2009,
Kanes et al. 2007,
Schmidt et al. 2008,
Siuciak et al. 2008,
Smith et al. 2013,
Weber et al. 2009

H3 antagonists/inverse agonists

ABT-239
Pitolisant
GSK-189254
GSK207040
Irdabisant
A-431404

Amphetamine
NMDA antagonist
MAM

Improvement ND Improvement Improvement Brown et al. 2013,
Fox et al. 2005,
Ligneau et al. 2007,
Mahmood et al. 2012,
Medhurst et al. 2007,
Raddatz et al. 2012,
Southam et al. 2009

5-HT6 agonists/antagonists

EMD386088
E-6801
PRX-07034
GSK-742457

NMDA antagonist
Scopolamine

ND ND Improvement No effect Burnham et al. 2010,
de Bruin et al. 2013,
Kendall et al. 2011,
Mohler et al. 2012,
Nikiforuk et al. 2013
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and SCZ because of the partial efficacy of present pharma-
cological treatment. Without improved models of human
disease, we cannot know whether particular molecular and
cellular findings in animals are relevant to the clinical situ-
ations. Improved animal models of depression could come
from various sources, such as mutant mice exhibiting partic-
ular depressive symptoms or human genetic studies identi-
fying the genetic abnormalities that increase an individual’s
risk. Given the complexity of the neurobiological mecha-
nisms involved in the SCZ, the recreation of the diversity of
the disease in a single animal model might not be possible.
Thus, the development and use of symptom-focused tests is
important, whereby the goal is to replicate specific symp-
toms such as anhedonia or the seven cognitive domains as
identified by the NIH-MATRICS consensus committee,
which are impacted in SCZ, rather than the entire syndrome.
Therefore, novel potential pharmacological targets (see
Tables 2, 5) and positive control compounds will probably
be needed for each of these domains. Nevertheless, all the
findings reviewed above suggest that the identification of
candidate compounds and the validation of efficacious treat-
ments that can be used as positive controls in the develop-
ment of new preclinical paradigms remain to be of para-
mount importance.
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