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Abstract Rats and mice are the most widely used species for
modelling psychiatric disease. Assessment of these rodent
models typically involves the analysis of aberrant behaviour
with behavioural interactions often being manipulated to
generate the model. Rodents rely heavily on their excellent
sense of smell and almost all their social interactions have a
strong olfactory component. Therefore, experimental para-
digms that exploit these olfactory-mediated behaviours are
among the most robust available and are highly prevalent in
psychiatric disease research. These include tests of aggression
and maternal instinct, foraging, olfactory memory and habit-
uation and the establishment of social hierarchies. An appre-
ciation of the way that rodents regulate these behaviours in an
ethological context can assist experimenters to generate better
data from their models and to avoid common pitfalls. We
describe some of the more commonly used behavioural para-
digms from a rodent olfactory perspective and discuss their
application in existing models of psychiatric disease. We
introduce the four olfactory subsystems that integrate to me-
diate the behavioural responses and the types of sensory cue
that promote them and discuss their control and practical
implementation to improve experimental outcomes. In addi-
tion, because smell is critical for normal behaviour in rodents
and yet olfactory dysfunction is often associated with neuro-
psychiatric disease, we introduce some tests for olfactory
function that can be applied to rodent models of psychiatric
disorders as part of behavioural analysis.
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Introduction

Olfaction is the primary sensory modality in mice and rats,
the most common organisms used for models of psychiatric
and behavioural disorders. Rodents rely heavily from birth
on their sense of smell for locating and identifying food,
avoiding predators, establishing social hierarchies, finding
mates, caring for their young and a host of other behaviours.
Modelling these diseases in rodents depends on distinguishing
abnormal from normal behaviours (either conditioned or
innate) in a controlled manner. An accurate interpretation
of the emotional state of a mouse or an assessment of whether
a rat is truly experiencing delusions or hallucinations as
humans with some mental illnesses do is not possible. How-
ever, endophenotypes associated with psychiatric disorders,
including depression, aggression, anxiety or social isolation,
can be reasonably modelled in rodents. By utilizing natural
olfactory-mediated rodent behaviours, an experimenter can
design robust paradigms to test these endophenotypes. For
example, social recognition testing exploits the preference
rodents have for investigating an unfamiliar conspecific over
a familiar one based mainly on their smell (Mathiasen and
DiCamillo 2010). This interaction can be used to test deficits in
memory (McIntyre et al. 2012; Migdalska et al. 2012a, b) and
sociability (McFarlane et al. 2008; Sankoorikal et al. 2006).

Moreover, some specialised olfactory cues, such as phero-
mones and kairomones, initiate stereotypical behavioural re-
actions in an innate manner; these provide a controlled natural
stimulus to drive behaviour on demand. For example, an
innately attractive mouse pheromone (a secreted signal that
releases a specific reaction in a member of the same species)
was recently demonstrated to generate a two-week spatial
memory with just a single trial (Roberts et al. 2012). Similarly
purified kairomones (signals that release a specific reaction in
a member of a different species) isolated from cats, rats and
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foxes can release intense fear-like behaviours in mice on first
exposure (Papes et al. 2010; Wallace and Rosen 2000). This is
in contrast to artificial fear-conditioning (typically using a
foot-shock associated with an otherwise innocuous visual or
auditory cue), which requires training. Rodents can respond to
conditioned and unconditioned fear stimuli with various
behaviours (Morrow et al. 2000), illustrating the importance
of using an appropriate test stimulus and an appreciation of the
context in which fear is generated.

Given their reliance on smell, anosmia or hyposmia
(a complete or partial deficiency in olfactory function) unsur-
prisingly results in severe behavioural abnormalities in ro-
dents. Prior to olfactory-mediated behavioural phenotyping,
we need to establish that the test animals can indeed smell.
This is particularly important when working with models of
psychiatric or neurological disease, as olfactory dysfunction is
frequently associated with schizophrenia (Moberg and
Turetsky 2003; Nguyen et al. 2010; Turetsky et al. 2009),
bipolar disorder (Hardy et al. 2012), depression (Gopinath et
al. 2011; Negoias et al. 2010), posttraumatic stress disorder
(Croy et al. 2010) and Parkinson’s and Alzheimer’s diseases
(Rahayel et al. 2012). Therefore, whereas an olfactory defi-
cient rodent might recapitulate a psychiatric endophenotype, it
will also limit the range of tests available to assess other
behavioural traits.

In this review, we describe the complex rodent olfactory
system, the types of odour cues that they detect and the
types of behaviours that each subsystem mediates. We ad-
ditionally evaluate some methods of testing olfactory func-
tion and examine some common olfactory-mediated
behavioural paradigms that can be used to assess specific
psychiatric endophenotypes.

The rodent olfactory system

Rodents have four major olfactory subsystems, in order of
decreasing size: the main olfactory epithelium (MOE),
vomeronasal organ (VNO), the septal organ (SO) and
Grueneberg ganglion (GG; Fig. 1). Despite being anatomi-
cally segregated and expressing diverse olfactory receptor
(OR) families, these subsystems have synergistic and
overlapping roles in detecting odours, pheromones and
kairomones (Ma 2010). Consequently, most have been
implicated in mediating behavioural responses to olfactory
cues.

The MOE, the largest rodent olfactory subsystem, is
largely tasked with smelling inherently “neutral” odorants
via approximately 1000 different ORs. Olfactory sensory
neurons project their axons to the olfactory bulb (OB),
where they synapse with second-order neurons that in turn
project to various cortical centres in the brain involved in
olfactory perception and discrimination (Fig. 1). However,

surgical ablation and genetic engineering studies have con-
sistently found that behaviour is also dramatically altered
when rodents lack MOE-OB-mediated neuronal signalling.
Mice with mutant alleles of genes involved in canonical
signal transduction of odours in the MOE, e.g., Nav1.7 or
Adcy3, fail to display general odour-guided behaviours such
as innate odour investigation, habituation, discrimination,
associative learning or recognition of odour qualities (Weiss
et al. 2011; Wong et al. 2000). They also display deficits in
stereotyped sexual, aggressive and maternal behaviours and
at least some show behaviours indicative of anxiety
(Belluscio et al. 1998; Mandiyan et al. 2005; Wang et al.
2006; Wang and Storm 2011; Weiss et al. 2011). Whether
these are attributable to the ablation of some specialised
MOE circuits or are the consequence of general anosmia is
unclear (Stowers and Logan 2010a).

Also present in the nasal epithelium are afferents from
the trigeminal nerve that predominantly detect noxious
volatile stimuli (Finger et al. 1990). The trigeminal is a
somatosensory cranial nerve that can sense touch, tem-
perature and pain and perceive atmospheric humidity.
Thus, it is responsible for detecting the coolness asso-
ciated with the smell of menthol, the burning sensation
of ammonia and the stinging effect of carbonated bever-
ages (Brand 2006). When toxic chemicals are detected,
the trigeminal nerve mediates a protective reflex, namely
sneezing, which minimises penetration into the nasal
cavity. Many odour molecules simultaneously stimulate
the main olfactory and trigeminal systems, e.g., n-butanol
and pyridine (Brand 2006; Doty 1975). Several studies
have shown that the activation of the trigeminal system
can impact on olfactory signal processing, influencing
odour perception (Daiber et al. 2013; Frasnelli et al.
2007).

The second major olfactory subsystem in the rodent nose
is the VNO, a bilateral fluid-filled tubular structure located
rostral of the MOE and dorsal to the palate (Fig. 1).
Although the VNO can detect some odorants (Trinh and
Storm 2003), it is largely tuned to sense semiochemicals,
including pheromones and kairomones, which promote
innate behaviours (for a review, see Tirindelli et al. 2009).
These are detected by neurons selectively expressing ap-
proximately one or a small number of 360 vomeronasal
receptors (VRs; Isogai et al. 2011) that project axons to
the accessory olfactory bulb (AOB). Neurons from the
AOB project to the hypothalamus via the amygdala. Surgi-
cal ablation or removal of the rodent VNO affects numerous
social behaviours, including territorial marking, aggression,
maternal, sexual and courtship behaviours (Wysocki and
Lepri 1991). Genetic ablation of transduction proteins in
the VNO, such as Trpc2 and Gnao1, also alters aggressive
and sexual behaviours (Chamero et al. 2011, 2007; Kimchi
et al. 2007; Leypold et al. 2002; Stowers et al. 2002) and
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predator avoidance (Papes et al. 2010). However, the VR
repertoire is highly variable between rodent species (Yang et
al. 2005; Zhang et al. 2007) and even within different strains
of the same inbred species (Wynn et al. 2012). Caution
should therefore be exercised in drawing general conclu-
sions about VNO-mediated behaviour from rodents, as its
function, morphology and even presence varies significantly
across mammals (Salazar and Quinteiro 2009).

The SO is a small bilateral island of sensory neurons on the
base of the nasal septum (Fig. 1; Ma et al. 2003). Its sensory
receptor profile is a small subset of those found in the MOE,
although it appears to detect an unusually broad range of
odorants (Ma 2010). SO neurons are also mechanosensory
and might play a role in sensing air flow through the
nostrils or synchronising sniffs with rhythmic activity in
the OB (Grosmaitre et al. 2007). The behavioural role of
the SO is unclear; it has been proposed to act as a
general “early warning” odour detector, although an
ablation study in rats has not supported this hypothesis
(Giannetti et al. 1995).

The smallest olfactory subsystem is the GG, bilaterally
paired clusters of grape-like neurons found close to the
opening of the naris (Fig. 1; Fuss et al. 2005; Koos and
Fraser 2005). GG neurons have been reported to express
canonical ORs, a VR and other receptor sub-types (Fleischer
et al. 2006, 2007). They also respond to multiple sensory
stimuli including odorants, cool temperatures and a phero-
mone (Brechbuhl et al. 2008; Mamasuew et al. 2008, 2011).

Mice with ablated GG neurons do not display induced
freezing behaviour when exposed to volatile alarm phero-
mones from conspecifics, illustrating a role in innate
olfactory-mediated behaviour (Brechbuhl et al. 2008).

Humans have a significantly simplified olfactory sys-
tem compared with rodents, consistent with our reduced
olfactory acuity and a diminished reliance on olfaction for
communication. With the possible exception of some
cetaceans, a MOE is found in all mammals but the num-
ber of sensory neurons and OR genes varies considerably
(Hayden et al. 2010). A much smaller proportion of the
human nasal cavity is lined by olfactory epithelium than
in rodents (Tirindelli et al. 2009) and we have approxi-
mately one third of the number of functional receptors
(Niimura and Nei 2007). The GG has been located in all
mammalian species thus far studied, humans included
but the SO is found in only some mammals and has not
been identified in humans (Ma 2010). The existence of a
VNO in humans is a matter of some historical controversy.
The organ certainly begins to develop during human em-
bryogenesis but appears to regress to a simple diverticulum
in the post-natal nasal septum. Critical reviews conclude
that the adult human VNO pit is unlikely to contain sensory
neurons or axons projecting to the brain (Meredith 2001;
Tirindelli et al. 2009) and notably, genes specialised for
VNO-mediated chemosensation in rodents, such as Trpc2,
are pseudogenised in Old World monkeys and apes (Liman
and Innan 2003).

Fig. 1 Rodent olfactory systems and their circuits. The major olfactory
system (purple) consists in the main olfactory epithelium (MOE)
projecting neurons to the olfactory bulb (OB). The accessory olfactory
system (blue) consists in the vomeronasal organ (VNO) projecting
neurons to the accessory olfactory bulb (AOB). Each subsystem sends
axons to a number of central brain regions, with further intracortical

projections to hypothalamic nuclei (BST bed nucleus of the stria
terminalis, nLOT nucleus of the lateral olfactory tract, nAOT nucleus
of the accessory olfactory tract, AON anterior olfactory nucleus). The
two minor olfactory subsystems are the septal organ (SO) and
Grueneberg ganglion (GG)
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Maternal behaviours

Interactions between a rodent dam and her young are critical
for their survival to adulthood and are heavily olfactory
influenced. Stereotypical maternal behaviours displayed
soon after birth include the intense licking clean of new-
born mice and rats to stimulate respiration, suckling and
defaecation (Brouette-Lahlou et al. 1999; Logan et al.
2012). During the subsequent weeks, a dam will typically
display pup retrieval, nursing, grooming and nest-building
behaviours and respond aggressively to unfamiliar intruders.

To assess a dam’s interactions with her young, pups are
typically separated from their mother and then either cross-
fostered or returned to her cage in a controlled manner (for a
review, see Hahn and Lavooy 2005). Video-recording is
advisable, followed by blind scoring of behaviours such as
latency of pup retrieval, duration of pup licking, duration of
presence in the nest and latency and duration of nursing.
Interference with extremely young litters might trigger
infanticide by the dam but, on the other hand, maternal
behaviour generally decreases with the maturation of the
litter (Gelhaye et al. 2011); therefore, the timing of the experi-
ment is important. A further consideration is the strain of
rodent, as some inbred strains display notably lower maternal
behavioural responses than others (Crawley et al. 1997).

A second measure of maternal behaviour is maternal
aggression. A modified resident-intruder (RI) assay is typi-
cally carried out in which an unfamiliar male intruder is
introduced to a resident dam (Fig. 2a). In mice, the removal
of the litter immediately prior to the introduction of the male
does not significantly diminish aggression; therefore, this is
encouraged to safeguard the welfare of the pups (Svare et al.
1981). The female’s offensive behaviour is then recorded,
including biting, lunging, tail-rattling and chasing (Kolunie
and Stern 1995). Both maternal aggression and nest building
appear to be regulated by semiochemical cues, or phero-
mones, as these behaviours are lacking in mice lacking a
functional VNO (Hasen and Gammie 2009; Kimchi et al.
2007; Leypold et al. 2002). A number of neuropsychiatric
disease models are associated with alterations in maternal
behaviour. Neurotensin (NT), a neuropeptide that has been
implicated in schizophrenia (Caceda et al. 2006), when
delivered by intracerebroventricular injection reduces ma-
ternal aggression in mice but has no impact on pup
retrieval (Gammie et al. 2009). Consistent with this, NT
is down-regulated in the brains of mice bred for high
maternal aggression (Gammie et al. 2007). Chronic treat-
ment of rats with some antipsychotic drugs disrupts nest
building, pup retrieval and licking behaviour soon after
dosing (Li et al. 2005). Maternal behaviours are also
affected in models of stress and anxiety, notably when
the corticotropin-releasing factor signalling pathways are
altered (Gammie et al. 2005, 2008).

Male aggression

Whereas female rodents typically only display overtly aggres-
sive behaviour towards males in a time-limited maternal con-
text, inter-male aggression occurs frequently within wild
rodent colonies, as adult males jostle for territory or position
in complex social hierarchies. Male aggression among conspe-
cific rodents typically takes one of two major forms: offensive
(typically in response to a territorial or dominance challenge)
and defensive (usually in response to an offensive attack), both
behaviours being transient and neither being predatory (for a
review, see Blanchard et al. 2003). In contrast laboratory-bred
rodents are often maintained from birth in small single-sex
groups with limited territorial space. Thus, whereas groups of
males in a cage might form dominant/sub-ordinate relation-
ships that are established by initial aggressive bouts, they
subsequently display low levels of aggression compared with
wild-derived animals. Therefore, the majority of studies into
aggression in rodent models quantify the offensive behaviour
of a socially isolated male, the “resident”, after a single unfa-
miliar male “intruder” is introduced into his territory (Fig. 2a).
Although a dyadic interaction is being measured, numerous
other factors can influence the resident-intruder (RI) test,
including the age, strain, prior sexual experience and, most
importantly, the relative social status of each animal (Brodkin
et al. 2002; Pletzer et al. 2007). Thus, particular care must be
taken to control these factors when planning a RI test.

Compared with other behaviours, the olfactory basis of
mouse inter-male aggression is relatively well understood.
Genetic ablation of either the MOE or VNO inhibits aggres-
sion against an intruder, suggesting that several sensory stimuli
might be necessary (Leypold et al. 2002; Mandiyan et al.
2005; Stowers et al. 2002). Consistent with this, at least two
different classes of compound found in male urine are known
to promote aggression (Chamero et al. 2007; Novotny et al.
1985). One of these comprises the major urinary proteins
(MUPs), a species-specific family of small secreted proteins
found at high concentrations in the urine of male rats and mice
(Logan et al. 2008). Although exposure to MUPs alone does
not elicit aggression, these substances are effective when
daubed onto the back of a castrated intruder (which would
otherwise not provoke an attack; Chamero et al. 2007). MUPs
activate specific sets of neurons in the VNO of mice,
suggesting that they activate a dedicated olfactory circuit that
mediates inter-male aggressive behaviour (Chamero et al.
2011). Identification of the receptors for these MUPs will
permit themapping of this circuit and perhaps reveal the neural
logic underpinning the difference between the sexes in aggres-
sive behaviour (Stowers and Logan 2010b). Additionally, the
use of chemically defined MUPs to promote aggression in the
context of a docile castrate might go some way to minimising
the impact of variability in intruder behaviour on RI test data
(Miczek et al. 2001).
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The aggression displayed in the resident-intruder test has
been suggested to differ significantly from natural offensive
behaviour in rodents and be symptomatic of stress from an
“isolation syndrome” (Valzelli 1973). Indeed, increased
aggressiveness and unusual attack behaviours have been
reported in rats that are socially isolated from a young age, as
a model of child neglect (Toth et al. 2008). Nevertheless, the RI
test is used widely to measure aggression as an endophenotype
associated with a range of psychiatric disorders. For example,
neuregulin 1 and its ErbB2/B4 receptors have been associated
with schizophrenia. Genetic ablation of this signalling pathway
in the central nervous system of mice results in a hyper-
aggressive RI phenotype that can be rescued by treatment with
the antipsychotic drug, clozapine (Barros et al. 2009). Other
mutants with enhanced aggressive phenotypes include mice
lacking the serotonin receptor, 5htr1b, which is associated with
depression and anxiety (Saudou et al. 1994) and models of
monoamine oxidase A deficiency (Cases et al. 1995; Scott et
al. 2008), which is associated with an impulsive aggression
disorder. In contrast, mice lacking a dopamine receptor isoform
associated with attention-deficit hyperactive disorder display
decreased aggression in an RI test, whereas mice lacking
dopamine β-hydroxylase and therefore unable to synthesise
noradrenaline, show almost no RI aggression whatsoever
(Marino et al. 2005; Vukhac et al. 2001).

Anxiety and depression

The RI test is also widely used to generate the “social
defeat” model of depression in rodents. Animals repeatedly

used as intruders, often paired with particularly aggressive
residents (Golden et al. 2011), will eventually display de-
pressive and anxious behaviours, such as social isolation,
anhedonia and increased thigmotaxis. These can be rescued
by the chronic administration of antidepressants (Berton et
al. 2006). The social consequence of this interaction is the
establishment of an extremely submissive intruder that will
go to great lengths to avoid provoking further attacks.
Dominant/submissive relationships between male rodents
are olfactory mediated, as males are able to identify rival
individuals by their urinary odour profiles and adjust their
behaviour in a process that probably involves at least some
VNO-mediated cues (Hurst et al. 2001). Whereas social
defeat has a number of advantages in modelling human
depression over other stress-based methods, some caveats
exist to its use. As has been documented, approximately
30% of inbred C57BL/6 J mice used in this paradigm are
resistant to developing social avoidance and anhedonia but
most display anxiety-like behaviour in thigmotaxic tests
(Krishnan et al. 2007). This phenotypic variability might
be a useful model of human resistance to stress-related
affective disorders but can also make the interpretation of
the experimental data more challenging. The underlying
cause of this variation is unknown but the answer might
lie in the previous social experience of the test mice. The
intruders are typically housed in all male groups for up to
2 months prior to RI testing (Golden et al. 2011) and thus
are likely to have formed dominant/submissive relationships
among themselves. Further work will be required to estab-
lish whether resistance to social defeat correlates with prior
social status.

Fig. 2 Olfactory-mediated
behavioural paradigms.
a A resident male or lactating
female mouse (R) will display
aggression towards an
unfamiliar intruder (I) in the
resident-intruder test.
b Measurement of the time a
hungry rodent takes to locate a
morsel of buried food can be
used to assess anosmia or
hyposmia. c Olfactory
habituation can be measured by
quantifying the decreasing
sniffing or investigation time to
the same odour presented
several times. d Dishabituation
will occur when a second novel
odour is presented to a
habituated rodent, resulting in
an increase in sniffing and
investigation time
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A second problem with the social defeat paradigm is that it
is limited to males. Thus, another experimental paradigm of
chronic social stress has been developed that is effective in
both male and female mice (Schmidt et al. 2010, 2007). This
involves the random assortment of animals in groups of four,
twice weekly for seven weeks. The test mice are therefore
faced with unfamiliar cage-mates every four days, whereas
control mice are maintained with the same cage-mates. The
former creates a highly stressful, unpredictable social environ-
ment that has long-term effects on depressive and anxious
behaviours. These include perturbations in locomotor adapta-
tion to an open field, novelty-induced suppression of feeding
and thigmotaxic behaviour in an elevated plus maze, all of
which behaviours can be attenuated by antidepressant
treatment (Schmidt et al. 2007). In males, the persistent need
to re-establish social hierarchies through aggressive bouts reca-
pitulates the social defeat paradigm. However, because the test
startswithmice aged only 28 days, strong dominance/submissive
relationships are less likely to have previously been formed and
thus less variability might be seen among the test animals. The
mechanism of social stress is less clear in females and the
olfactory dependence of this test has yet to be tested directly
but the rapidly changing odour profiles of the home cages of the
animals are probably partly responsible for inducing stress
(Gerdin et al. 2012).

Olfactory bulbectomy (OBX) is another common rodent
model of depression and anxiety (Willner and Mitchell
2002). The majority of the research involving this technique
has been on rats, although studies of OBX mice do exist and
tend to describe similar behavioural and neurochemical cha-
racteristics (Hellweg et al. 2007; Zueger et al. 2005). The OB is
the location of the first synapse of sensory neurons from all
four olfactory subsystems. Accordingly, a successful OBX
should result in a complete anosmia, although this might be
time-limited, as studies of neonatal OBX rats have shown that
forebrain tissue grows forward into the OB cavity by 3 months
of age. At least some of these rats have sensory projections
from the MOE that form glomerular structures in the forebrain
and are able to discriminate between odours (Slotnick et al.
2004). OBX also influences social behaviours, including sex-
ual, aggressive, neonatal and maternal responses, plus some
that are not directly olfactory cue-dependent: locomotor acti-
vity, conditioned taste aversion and some cognitive processes
including spatial learning (Brunjes 1992; Harkin et al. 2003).
OBX surgery typically involves the removal of the entire bulb
by aspiration, which inevitably results in local tissue damage,
inflammation and a disruption of local blood flow. Moreover,
since projections pass from the OB to a great number of both
cortical and limbic brain loci, the process of neural degenera-
tion and rewiring as a consequence of OBX is likely to be
widespread (Harkin et al. 2003) and has been proposed to
account for the unanticipated cognitive or locomotor deficits
that underpin the depression and anxiety model.

Perhaps the best known behaviour that is associated with
the OBX rat but that is not obviously olfactory cue-driven is
hyperactivity in open field or open maze tests under high
illumination (Leonard and Tuite 1981). OBX mice also
demonstrate significantly increased activity and less time in
the centre of the open field under similar conditions, compared
with sham-operated controls (Zueger et al. 2005). This
characteristic is widely interpreted as an anxiety-like behaviour
and is attenuated by the chronic (but not acute) administration
of various anti-depressants thereby mimicking the therapeutic
action of these drugs in humans (van Riezen and Leonard
1990). The precise mechanism of this atypical behaviour is
unknown but it is not thought to be olfactory-mediated. This is
reinforced by comparisons in the literature between OBX rats
and those with their MOE chemically destroyed displaying
differences in open field behaviour (Harkin et al. 2003). More
recently, mice with genetically ablated VNO and MOE have
been challenged in a range of tests for anxiety and depression
(Glinka et al. 2012). Trpc2 null (VNO-deficient) mice display
no atypical behaviours but Cnga2 mutant (MOE-deficient)
mice spend less time in the centre of an open field, similar to
OXB mice (Zueger et al. 2005), suggesting that congenital
peripheral anosmia does indeed produce anxiety-like behav-
iours in mice (Glinka et al. 2012). No associated hyperactivity
was observed in the Cnga2mutant mouse, although this might
be because the open field was not illuminated. Glinka and co-
workers have also tested a mutant mouse that has a “monoclo-
nal nose” and therefore undergoes persistently increased
odour-evoked MOE signalling in response to a single odorant
found in mouse urine (Fleischmann et al. 2008). This line has
been found to have a similar anxious behavioural phenotype,
which is dependent on the aberrant odour-evoked signalling
(Glinka et al. 2012). Taken together, one can conclude that
olfaction has a greater influence on the anxiety-related behav-
iours observed in the OBX rodent than previously thought. As
hyper-activation of the MOE results in a similar phenotype to
no activation whatsoever, a general disturbance in olfactory
signalling, rather than the loss of a specific olfactory circuit,
appears to be a causative factor. Further work will be required
to ascertain the way that this promotes anxiety in a task that
does not appear to require odour processing, although, given
the strong social reliance of rodents on smell, an alteration in
olfactory perception is likely to be persistently stressful. To our
knowledge, rodents with both VNO and MOE genetically or
chemically inactivated have not been behaviourally tested;
therefore, complete peripheral congenital anosmia might reca-
pitulate OBX even more fully.

Olfactory testing

Some psychiatric disorders have hyposmia or anosmia as one
of their symptoms (Hardy et al. 2012, Negoias et al. 2010),
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whereas neurodegenerative diseases such as Alzheimer’s and
Parkinson’s can show deficits in olfaction many years before
any other cognitive or motor symptoms (Rahayel et al. 2012).
One has to consider that an olfactory dysfunction in a rodent
model could have indirect consequences that influence other
subsystems and eventually behaviour. Anosmia of the MOE,
for example, can reduce their sniffing rate and limit chemo-
investigatory behaviour, which in turn might inhibit VNO
function and affect aggressive behaviour (Meredith 1994).
Therefore, an assessment of the sense of smell of a rodent
model prior to widespread behavioural testing is of fundamen-
tal importance. Many different tests are available for assessing
olfactory function, with each paradigm providing different
information (Cleland et al. 2002). Therefore, any conclusion
regarding odour perception must be put carefully into context,
with due consideration of the odorant, animal model and
paradigm involved.

Identifying anosmia and hyposmia

Anosmia is usually considered to be the inability to smell
odours via the MOE, whereas hyposmia is a reduced func-
tioning of this subsystem. The inability to smell odours via
the VNO is sometimes referred to as avnosmia (Del Punta et
al. 2002) and here we refer to the inability to detect odours
via all olfactory subsystems as “complete anosmia”. The
identification of anosmic rodents is relatively easy, as they
display high levels of perinatal lethality (Belluscio et al.
1998; Brunet et al. 1996; Wong et al. 2000). However,
anosmic pups that survive their first 48 h tend to develop
normally; this is because MOE-mediated olfaction is critical
in guiding newborn rodents to their first milk meal but, once
suckling is initiated, it is reinforced by other sensory cues
(Logan et al. 2012; Teicher and Blass 1977). The survival
rate of newborn anosmic rodents can be enhanced by
reducing litter sizes, assisting the pups to locate their
mother’s nipples, increasing the nutritional content of
the maternal diet or hand-feeding. In contrast, hyposmic
animals, even those with severe olfactory deficits, appear to
have no problems suckling and are difficult to identify without
specific testing. The simplest method for assessing anosmia or
severe hyposmia is with a “buried food” or “hidden cookie”
test (Fig. 2b). This involves determining the time it takes for a
food-restricted rodent to locate a hidden morsel of familiar
palatable food (Yang and Crawley 2009). Hungry normosmic
rodents usually locate the food within 1–2 min and anosmic
animals are typically unsuccessful within the 5–15 min time
limit (Yang and Crawley 2009). Rodents with severe anosmia
might take significantly longer than controls to locate the food
but mild hyposmia is often not identifiable by using this test.
A more sensitive discrimination test should therefore also be
to carried out.

Olfactory habituation and discrimination

Habituation is a decrement of a behavioural response that
results from repeated stimulation, does not involve sensory
adaptation or fatigue and does not need a reward association
(Rankin et al. 2009). It is a simple form of implicit or non-
declarative memory when previous experience aids the
performance of the task but no conscious awareness of this
experience is apparent (Wilson and Linster 2008). Problems
with habituation and sensory gating (or filtering) have been
linked to disorders such as schizophrenia (Ludewig et al.
2003), autism (Ornitz et al. 1993), Alzheimer’s disease
(Takeuchi et al. 2011) and substance abuse (Hunt and
Morasch 2004). In rodents, rapid presentations of a neutral
odour, with intervals of a few seconds, will induce a habit-
uation that lasts a few minutes. This short-term habituation
is mediated by metabotropic glutamate receptors at synapses
from the OB afferents into the piriform cortex (Wilson and
Linster 2008). Odour presentations spaced 5 min apart will
produce a habituation that can last over an hour. This long-
term habituation is dependent on N-methyl-D-aspartate
receptors within the OB (McNamara et al. 2008).

Two types of behavioural tests for olfactory habituation can
be used. The simplest type, both in terms of neural circuitry
and interpretation, is the odour-evoked orienting reflex.
Detection of a novel odour elicits investigative physiological
and behavioural reactions in rodents. These include change in
a breathing rate or of sniffing and re-directing the nose
towards the stimulus (Wachowiak et al. 2009). These changes
habituate with repeated stimulation and are odour-specific
(Sundberg et al. 1982). Thus, the measurement of a simple
behaviour such as sniffing can provide information about
olfactory orientation and gating. Both spontaneous and novel
odour sniffing rates are remarkably constant throughout the
life of a mouse but, in models of Alzheimer’s disease, spon-
taneous breathing rates change with age, whereas odour-
evoked sniffing remains unchanged (Wesson et al. 2011). In
humans, on the other hand, patients with Parkinson’s disease
have impaired odour-evoked sniffing. This is thought to be a
contributing factor to poor performance in olfaction tests
(Sobel et al. 2001).

A second and most commonly used test for olfactory
habituation in mammals is measurement of the active inves-
tigation of an odour stimulus (Cleland et al. 2002). If an
odour is presented to a normosmic rodent over repeated
trials, the time that the subject spends investigating it de-
creases (Fig. 2c). In contrast, an anosmic mouse will typi-
cally display significantly less initial time investigating an
odour stimulus and this does not decay over the trials.
Olfactory habituation tests are often used to demonstrate
that deficiencies in behavioural responses are not attribut-
able to an inability to detect odour cues (Ferguson et al.
2000), although due consideration is not always given to the
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olfactory subsystem being tested. Banana or almond extract
can be used to test MOE function and, whereas urine or a
swab from a soiled cage of a conspecific is often used as a
“social odour” (Stack et al. 2008), such odours are likely to
contain ligands that activate both the MOE and VNO. To
test VNO-mediated habituation specifically, synthesised or
recombinant protein pheromones should be used, although
whether rodents habituate differently to pheromones com-
pared with neutral odours is not yet clear. After odour
habituation, a dishabitution test can be carried out to test
olfactory discrimination (Fig. 2d). This can be a second
neutral odour, such as vanilla, or social odours from a
second conspecific of a different sex or strain. If the test
animal is able to discriminate the novel odour from the
familiar odour, it will often spend more time investigating
(Yang and Crawley 2009). By experimenting with test
odours that smell relatively similar, hyposmia can be iden-
tified by using a habituation/dishabituation paradigm,
although similar neutral odours might require reinforcement
to motivate the animal to discriminate between them
(Linster et al. 2002). A more sensitive method involves the
measurement of rapid reaction times to odour choices when
conditioned with a reward. Both healthy mice (Abraham et
al. 2004) and rats (Uchida and Mainen 2003) can discrim-
inate between odours with >90% accuracy in less than 0.5 s.
These tests, although more technically challenging to con-
duct, have the capacity to resolve even mild olfactory
impairments.

Motivation and odour hedonics

Several motivating factors can affect odour investigation.
Accordingly, the hedonic nature of the stimulus is of particular
importance. Odour hedonics can also influence olfactory func-
tion in psychiatric diseases. For example, whereas odour
identification impairment is a common feature in schizophre-
nia, the deficits seem only to be present when identifying
pleasant or neutral odours but not unpleasant ones (Kamath
et al. 2011). Social odours reproducibly exploit the innate
olfactory-mediated behaviour of rodents (Engelmann et al.
2011) but, ostensibly, neutral odours are not all equally attrac-
tive (Logan et al. 2012) and, thus, the absolute amount of
investigation or sniffing might vary by stimulus. The neutral
odours of vanilla, almond and banana are used because they
are all mildly attractive natural food odours but are unrelated
to the food with which laboratory rodents are likely to be
familiar. Odours that are naturally aversive, such as butyric
acid, butanol or 2,4,5-trimethyl-3-thiazoline (Endres and
Fendt 2009; Logan et al. 2012) or those that act as trigeminal
irritants, should be avoided, as should highly attractive odours
that could elicit behaviours (e.g., gnawing) that interfere with
the time spent investigating (Yang and Crawley 2009).

Future perspectives

Few mammals can rival the mouse and rat in their ability to
sense odours. The VNO alone expresses many hundreds of
receptors that are likely to influence every aspect of rodent
behaviour, whereas the reliance on smell is such that mice
and rats born without a functional MOE typically starve to
death within days. One could argue that the rodent olfactory
system is a particularly ill-suited model for investigating
human behavioural disorders, not least because the VNO
subsystem is entirely lacking in humans and our reliance on
smell is reduced, such that congenitally anosmic children
often remain undiagnosed for years. However, the research
described in this review demonstrates that the modelling of
human psychiatric disorders in rodents relies heavily on
interpreting natural olfactory-mediated rodent behaviour and,
with that, comes some unique advantages. First, the sources of
complex olfactory cues can now be purified to isolate discrete
ligands, such as single protein kairomone or pheromones
(Chamero et al. 2007; Haga et al. 2010; Papes et al. 2010;
Roberts et al. 2010), providing an experimental leverage over
complex social behaviours that is unmatched by other exoge-
nous stimuli. Eliciting social behaviours by biochemical moi-
eties (rather than exposure to other animals) should result in
more robust assays, less experimental variability, decreased
costs and a reduction in the number of experimental animals
used. Second, the one (or two) receptor(s) per neuron pattern-
ing logic of olfactory receptors and VRs provides the unique
means to track discrete, behaviourally relevant neurons from
the periphery to the brain (Luo and Katz 2004). Thus, an
understanding of which olfactory ligand activates which cog-
nate receptor neuron to release a distinct behaviour should
eventually enable the study of the entire neural circuit, first in
healthy animals and then in models displaying aberrant be-
haviours. When combined with the promise of optogenetic
technology for centrally controlling these circuits (Lin et al.
2011), olfactory-mediated behaviour in rodents seems likely
to remain at the forefront of psychiatric research for the
foreseeable future.
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