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Abstract Proteases perform a diverse array of biological
functions. From simple peptide digestion for nutrient
absorption to complex signaling cascades, proteases are
found in organisms from prokaryotes to humans. In the
human airway, proteases are associated with the regula-
tion of the airway surface liquid layer, tissue remodel-
ing, host defense and pathogenic infection and inflammation.
A number of proteases are released in the airways under both
physiological and pathophysiological states by both the host
and invading pathogens. In airway diseases such as cystic
fibrosis, proteases have been shown to be associated with
increased morbidity and airway disease progression. In this
review, we focus on the regulation of proteases and discuss
specifically those proteases found in human airways. Attention
then shifts to the epithelial sodium channel (ENaC), which is
regulated by proteolytic cleavage and that is considered to be
an important component of cystic fibrosis disease. Finally, we
discuss bacterial proteases, in particular, those of the most
prevalent bacterial pathogen found in cystic fibrosis,
Pseudomonas aeruginosa.
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Proteases

Proteases (peptidases, proteinases) are broadly classified as
hydrolases that act on the peptide bond (Levene 1905). These
enzymes are ubiquitous and control a range of biological
functions across all kingdoms of life (Lopez-Otin and Bond
2008). This includes polypeptide cleavage in digestion and
nutrient absorption to complex cell signaling, as in the caspase
and blood-clotting cascades. Cleavage of the peptide bond
results in the liberation of amino acid or peptide sequences
from the original polypeptide polymer. These hydrolysis
events can be used post-translationally to regulate substrate
activity, localization and expression levels. A diversity of
proteases are expressed from prokaryotes to humans and have
been broadly classified into six family groups based on their
active site chemistry, namely, serine proteases, threonine pro-
teases, cysteine proteases, aspartate proteases and metallopro-
teases (MMPs) (Rawlings et al. 2010; Studholme et al. 2003).
In addition, a small number of glutamic proteases have
been isolated, although their identification has been limited
to filamentous fungi, to date (Oda 2012).

Over 550 proteases have been identified in the human
genome (Puente et al. 2003; Quesada et al. 2009). Of these,
~90 are thought to be homologs that are catalytically inac-
tive, potentially contributing to physiological regulation via
competitive interactions with their respective substrates. The
location of cleavage is specific to each protease (or family)
and can be broadly categorized as being either endoprotease
(internal cleavage site) or exoprotease (cleavage of terminal
residues) in nature (Overall et al. 2004). The substrate
sequence and cleavage site is also specific to each protease
or protease family. Specificities can be extremely permissive
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when cleavage sites are defined by a small number of amino
acids, as with Arg-C, Asp-N, Lys-C, or trypsin (Quesada et
al. 2009; Rawlings et al. 2012). Protease specificity can be
greatly increased when the recognition sequences are more
extended peptide sequences, as with thrombin and multiple
caspases (Di Cera and Cantwell 2001; Talanian et al. 1997).
Additional specificity is seen in proteases that recognize
protein tertiary structures, as with the de-sumoylating and
de-ubiquitylating proteases (Mossessova and Lima 2000).

The specific reaction mechanisms vary by active site com-
position and, in some cases, are still disputed. However, the
general mechanism of hydrolysis proceeds via a nucleophilic
attack on the backbone carbonyl of the protein/peptide sub-
strate (Erez et al. 2009). Protease residues can accomplish this
attack directly or through activated water and/or the coordi-
nate metal ion in the active site. In addition to the catalytic
domains, many proteases contain additional domains that
regulate activity and localization. These domains serve to
regulate protease function by changes in post-translational
modification, ligand binding and cleavage. In addition, acces-
sory domains serve to regulate membrane and cellular local-
ization and facilitate protein-protein interactions in proteolytic
cascades.

In this review, the regulation of proteases will be briefly
discussed and then our focus will shift to proteases in the
human airway and their role in the disease progression of
cystic fibrosis (CF). Particular attention will be paid to
proteases linked to pathogenesis and CF disease and to the
impact of proteases on the regulation of the epithelial sodium
channel (ENaC).

Protease regulation

Protease activity is tightly regulated at a minimum of
four levels, which include transcriptional regulation, post-
translational modification, physical compartmentalization
and functional inhibition (Chow et al. 1995; Gorogh et al.
2006; Lopez-Otin and Matrisian 2007; Mirghomizadeh et al.
2009; Muzio et al. 1997). The multiple levels of protease
regulation provide for tight tissue, temporal and environmen-
tally responsive control of activity. Dysregulation of these
regulatory events putatively contributes to multiple disease
pathophysiologies. Transcriptional and epigenetic regulation
of protease expression has been shown to be a major determi-
nant across multiple families of proteases. A variety of cancer
models suggest that the overexpression of proteases responsi-
ble for tissue remodeling is correlated with tumor proliferation
and disease progression (Lopez-Otin and Matrisian 2007).

In addition to phosphorylation and glycosylation, a com-
mon means of protease regulation is through multiple post-
translational modifications. Whereas a variety of mechanisms
have been described for specific proteases, one of the most
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common is the proteolytic activation of pro-proteases (Salvesen
and Riedl 2008). A variety of protease families are initially
expressed, trafficked and/or secreted in an inactive state. Often,
this inactive state is associated with a pro-peptide sequence that
inhibits enzymatic activity. Removal of the pro-peptide, by
protease cascades or by autoproteolytic cleavage, results in a
disinhibition of protease activity and an active enzyme (Egnell
and Flock 1992). This type of proteolytic regulation is often
associated with secreted proteases and the pro-peptide cleavage
is accomplished after secretion from the cell or with specific
environmental triggers. Intracellular proteases can be regulated
in a similar manner with the most well-studied cascade being
that of the caspase apoptotic pathway (Salvesen and Riedl
2008). Such cascades often rely on an initial receptor or another
physiological sensor that mediates the activation of an up-
stream protease. The cascade is triggered when cleavage of
the downstream pro-peptides occurs as a result of upstream
protease activation.

In addition to pro-peptide cleavage, ligand-induced activa-
tion is associated with a variety of proteases (Baumann 1994;
Ravaud et al. 2003). Recent work on serralysin proteases has
demonstrated that Ca>* serves as a critical co-factor for prote-
ase folding and subsequent activation (Zhang et al. 2012). In
the absence of Ca®’, the proteases remain in an unfolded
conformation and are inactive. Calcium binding induces the
folding of a chaperone domain, which subsequently serves to
facilitate the folding and activation of the proteolytic domain.

Compartmentalization also serves as a major mechanism to
regulate protease activities. Membrane and organelle targeting
are key to regulating the functions of the extracellular MMPs
and organelle-specific proteases (Fritz et al. 1987; Kametaka
et al. 2003). In many cases, pro-peptide cleavage and/or
additional post-translational modifications are associated with
proper secretion or trafficking. This compartmentalization
serves to regulate the activities of the activated protease spa-
tially, with classic examples being lysosomal proteases and
furin, a protease found in the trans-Golgi network. In addition,
a unique mechanism to regulate protease activity intracellu-
larly is the auto-compartmentalization seen with the protea-
some (Song et al. 2003; Tomisugi et al. 2000; Unno et al.
2002). Structurally, the proteasome is a barrel formed of 28
core polypeptides. Within the core of the barrel, multiple
protein subunits form active sites that provide for proteolysis
with a range of substrate specificities. Regulatory complexes
found at either or both ends of the proteasome regulate access
to the central cavity and active sites. As a complex, access to
the active sites within the barrel provide for the regulation of
this important enzyme. Coupled with the ubiquitin modifica-
tion system, the proteasome is recognized as one of the most
critical components regulating the proteome in cells, degrad-
ing a majority of folded and misfolded substrates and regulat-
ing a wide range of physiological processes (Ciechanover
1998; Hershko and Ciechanover 1998).



Cell Tissue Res (2013) 351:309-323

311

Finally, inhibitors (or anti-proteases) provide an additional
layer of protease regulation. Emerging evidence suggests that
the protease-inhibitor balance is critical to a variety of normal
and disease states in humans (Gorogh et al. 2006; Guyot et al.
2008; Myerburg et al. 2006; Quesada et al. 2009). On their
initial discovery, protease inhibitors were thought to protect
the host from unwanted hydrolytic activities, both spatially
and temporally. However, recent work suggests that the
protease-anti-protease balance is a mechanism to fine-tune
protease activities. As an example, work on the airway surface
fluid in patients with compromised pulmonary systems (to be
discussed later in this review) suggests fluid volume is sensed
via changes in this protease/anti-protease balance (Kleyman et
al. 2009; Mall et al. 2004; Myerburg et al. 2006; Tan et al.
2011; Tarran et al. 2006). These changes in the protease/
anti-protease balance serve as a regulatory loop that alters
water secretion across the epithelia. Thus, the changes in the

protease/anti-protease balance both act as a signal and regulate
water secretion across the airway epithelium.

Proteases, inhibitors and disease

Altered protease function and regulation have been associated
with a large number of pathophysiological conditions
(Quesada et al. 2009). Both sporadic and hereditary diseases
are associated with endogenous protease dysregulation or
dysfunction (Table 1). A large body of work has evolved
looking specifically at the role of MMPs in cancer develop-
ment and progression and in cardiac disease. The roles of
these proteases were originally thought to be restricted to
modification of the extracellular matrix. However, recent
work suggests broader roles for the protease in other physio-
logical and pathophysiological states.

Table 1 Human proteases,

inhibitors and disease (adapted Protease Gene Disease
from Quesada et al. 2009)
Angiotensin-converting enzyme ACE Renal tubular dysgenesis
ADAM9 ADAMY Cone-rod dystrophy
ADAMTS-13 ADAMTS- Thrombotic thrombocytopenic purpura
13
Afg3-like protein 2 AFG3L2 Ataxia(s)
Complement factor B BF Atypical hemolytic uremic syndrome
Calpain-3 CAPN3 Limb-girdle muscular dystrophy type 2A
Caspase-2 CASP2 Autosomal recessive intellectual disability
Caspase-8 CASP8 Autoimmune lymphoproliferative syndrome
@
Carboxypeptidase E CPE Hyperproinsulinemia and diabetes
DJ-1 DJ1 Parkinson’s disease type VII
Neutrophil elastase ELA2 Cyclic neutropenia
Thrombin F2 Hyperprothrombinemia/hypoprothrombinemia
Mitochondrial inner membrane IMMP2L Tourette syndrome
protease2
Neurotrypsin PRSS12 Nonsyndromic mental retardation
Presenilin 1 PSEN1 Alzheimer type 111
Presenilin 2 PSEN2 Alzheimer type IV
Renin REN Renal tubular dysgenesis
Paraplegin SPG7 Spastic paraplegia
Transmembrane protease, serine 3 TMPRSS3 Deafness
Ubiquitin C-terminal hydrolase 1 UCHLI1 Parkinson’s disease type V
Ubiquitin-specific protease 26 USP26 Sertoli-cell-only syndrome
Ubiquitin-specific protease 9Y USP9Y Azoospermia and hypospermatogenesis
FACE1/ZMPSTE24 FACEI Progeria, mandibuloacral dysplasia
Chymotrypsin C CTRC Hereditary pancreatitis
Procollagen C-proteinase BMPI Osteogenesis imperfect
Ataxin 3 MJD1 Machado-Joseph disease
Proprotein convertase 1 PCSK1 Obesity
Lysosomal carboxypeptidase A PPGB Galactosialidosis
Proteasome catalytic subunit 3i PSMBS Nakajo-Nishimura sundrome
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Table 2 Protease inhibitors and human disease (adapted from Quesada
et al. 2009)

Inhibitor Disease

al Antitrypsin Thrombosis, emphysema

Al-Antichymotrypsin Vascular disease
Kallistatin Pancreatitis
Angiotensinogen Hypertension, hypotension

Protein Z-dependent protease inhibitor ~ Venous thrombosis

Vaspin Diabetes
Maspin Cancer progression
Megsin IgA nephropathy

Antithrombin 1T Venous thrombosis

Heparin cofactor 11 Venous thrombosis

Plasminogen activator inhibitor 1 Bleeding disorders,

myocardial infarction

Pigment epithelium-derived factor Age-related macular disease

In addition, a growing number of hereditary diseases are
associated with alterations in protease inhibitor expression and
function (Table 2) (Quesada et al. 2009). Whereas the exact
mechanisms associated with the pathophysiological states
vary by disease, evidence for both the direct and indirect
involvement of proteases and protease inhibitors suggests that
balanced protease activities are critical for regulating physio-
logical processes.

Cystic fibrosis

CF is a disease of altered salt and water movement across
epithelial tissues. Mutations within the CF transmembrane
conductance regulator (CFTR) that result in a loss of CFTR
function at the plasma membrane underlie the pathophysiol-
ogies of CF and CF-related diseases (Dean et al. 2001; Drumm
etal. 1990; Mall et al. 1999; Riordan et al. 1989). The primary
complications associated with CF are found in the digestive
and pulmonary systems. Pancreatitis and associated nutritional
deficiencies are associated with abnormal buffering of the
pancreatic duct leading to premature zymogen activation
(Choi et al. 2001; Ko et al. 2002; Marino et al. 1991;
Stuhrmann et al. 1990). Similarly, lung function is chronically
degraded as a result of decreased mucocilliary clearance and
the persistence of airway pathogens (Rich et al. 1990). The
ensuing inflammatory and immune responses result in chronic
injury to the airway epithelium and a decrease in pulmonary
function.

CFTR functions as a protein kinase A (PKA-) and ATP-
regulated CI” channel, facilitating the secretion of Cl across the
apical membranes of epithelial cells (Cheng et al. 1991;
Gregory et al. 1990). In the airway, CI” secretion is thought to
impact the regulation of Na" absorption through ENaC, either
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by an alteration in the electrogenic driving force for Na* or by
the direct regulation of ENaC by CFTR itself (Briel et al. 1998;
Hopfetal. 1999; Ji etal. 2000; Kunzelmann et al. 1997; Reddy
et al. 1999; Schreiber et al. 1999; Stutts et al. 1997). The
luminal surfaces of the conducting airways are lined with a
thin layer of fluid known as the airway surface liquid (ASL),
which facilitates mucus clearance from the lung. The height of
the ASL is determined by the net osmotic gradient established
by Na" absorption and CI secretion through these apically
located ion channels. ENaC, in conjunction with the basolateral
Na' /K" ATPase, is believed to be the predominant means for
Na" absorption across the airway epithelium. The loss of CI
channel activity (as in CF) or an increase in Na' absorption
putatively results in increased water absorption and dehydra-
tion of the ASL. This dehydration, in turn, increases mucus
viscosity, decreases the efficacy of the mucocilliary clearance
and facilitates pathogen adherence and colonization in the lung
(Tarran et al. 2006; Voynow et al. 2008).

The role of ENaC in contributing to human CF lung
pathophysiology is still under investigation. Studies of the
recently generated CF pig suggest that Na" hyperabsorption
is not associated with the CF phenotype (Abu-El-Haija et al.
2011; Chen et al. 2010; Itani et al. 2011). In ex vivo tissue and
cell studies, significant changes in CI” conductance but not in
Na" conductance have been observed. Similarly, ex vivo stud-
ies of human CF tracheal and bronchial epithelial cells indi-
cate a primary role for altered ClI" conductance, associated
with the loss of CFTR, in the CF tissues. However, they fail
to show widespread changes in Na" absorption (Itani et al.
2011; Reddy and Quinton 2003). These data stand in contrast
to several in vivo and in vitro experiments that have
implicated altered Na* absorption in CF pathophysiology
(Boucher 2004; Jiang et al. 2000; Myerburg et al. 2006).
Thus, the exact nature of ENaC involvement has still not
been fully elucidated from a functional and physiological
perspective.

Although CFTR is thought to play the dominant role in
CF pathophysiology, emerging evidence suggests a role for
ENaC in the airway (Huber et al. 2010). Consistent with a role
for ENaC in the CF phenotype, genetic studies of atypical CF
patients have identified mutations in ENaC that putatively
underlie their CF pathophysiology (Azad et al. 2009; Rauh
et al. 2010). Further evidence for a role of ENaC in regulating
lung function comes from transgenic mice overexpressing 3-
ENaC (Zhou et al. 2011). Disruption of the CFTR locus does
not induce full CF-like lung pathophysiology in mice as a
result of the divergent lung physiology (Kent et al. 1997).
However, transgenic overexpression of ENaC recapitulates the
CF-like lung physiology, consistent with a role for ENaC-
associated Na" absorption in the CF lung (Mall et al. 2004).
Together, these data suggest that ENaC may partially regulate
or contribute to the CF lung phenotype under specific spatial or
physiological conditions.
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Epithelial sodium channel

ENaC is expressed in the epithelial cells of several tissues,
including the kidneys, airways, salivary ducts, sweat ducts,
colon and taste cells (Butterworth 2010; Butterworth et al.
2009; Eaton et al. 2009; Hamm et al. 2010; Kleyman et al.
2009; Lang et al. 2010; Rossier and Stutts 2009). ENaC is a
sodium-selective ion channel comprising three homologous
subunits, namely, «-, 3-, y-, each composed of two
membrane-spanning domains, a large folded extracellular do-
main and intracellular amino- and carboxy-termini (see Fig. 1).
ENaC is the limiting step in the reabsorption of sodium across
epithelia. Because of its role in the regulation of sodium
homeostasis, ENaC has been associated with clinical defects
of salt and water transport and implicated in a number of
disease conditions including defects in airway surface hydra-
tion in CF (Capasso et al. 2005; Eaton et al. 2009; Ecelbarger
and Tiwari 2006; Edelheit et al. 2005; Freundlich and Ludwig
2005; Hummler 1999; Li and Wang 2007; Matthay et al.
2005; Sun et al. 2011; Wagner et al. 2008).

ENaC is regulated by a number of intrinsic and external
factors, the details of which have been reviewed previously

(Bens et al. 2006; Bhalla and Hallows 2008; Butterworth
2010; Butterworth et al. 2009; Eaton et al. 2009; Ecelbarger
and Tiwari 2006; Kleyman et al. 2009; Pochynyuk et al.
2006; Rossier and Stutts 2009). In every example of ENaC
regulation, a limited number of options alter Na" transport.
ENaC activity can be changed either by altering the amount of
time that the channel spends open (open probability or Pp) or
by modulating the surface membrane density (channel num-
ber or n) of the channel (Rossier 2002). Once fully active, the
predominant mechanism to reduce sodium transport is to
remove ENaC from the membrane surface by endocytosis.
More recently, a new mode of regulation was appreciated that
involved the activation of the channels by proteolytic cleavage
(Adebamiro et al. 2007; Bruns et al. 2007; Ergonul et al. 2006;
Hughey et al. 2003, 2004a, 2004b; Kleyman et al. 2009; Liu et
al. 2002; Passero et al. 2008; Planes and Caughey, 2007;
Planes et al. 2005; Tan et al. 2011; Vallet et al. 1997,
Vuagniaux et al. 2002; Vuagniaux et al. 2000). In this instance,
the Pg is dramatically increased, in some cases altering ENaC
from an electrically silent state to a fully active channel
(Caldwell et al. 2004, 2005). Once ENaC is activated by
proteases, however, the same mechanisms of retrieval and

Extracellular

NH,——{MSDY —{MSB]—— COOH 698aa
L ‘ «ENaC
Extracellular
NHz—m m m— COOH 638aa
BENaC
Extracellular
NH, —— MSD s MSD COOH 650aa

yENaC "

- Furin * -

| ~Prostasin (CAP1)
I-Plasmin
. ~Elastase

==Predicted protease site

Fig. 1 Representation of x-, 3- and y-ENaC structures with the
approximate locations of confirmed and predicted protease cleavage
sites (aa amino acids, MSD membrane spanning domain). Based on

figures presented in Kleyman et al. (2009), Rossier and Stutts (2009)
and Hamm et al. (2010)
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degradation need to be employed to reduce the net Na”
reabsorption.

ENaC activation by proteases

The potential for proteases and protease inhibitors to alter
ENaC activity and Na" transport was described in the early
1980s, before the molecular identity of the channel was
known. The ability of protease inhibitors to block sodium
flux was described in a number of model tissues without an
underlying knowledge of the mechanisms behind these
observations (Orce et al. 1980, 1981). The description of a
serine protease that specifically activated ENaC, called a
channel-activating protease (CAP1), opened the door to a
new field of investigation in the regulation of ENaC (Liu et
al. 2002; Vallet et al. 1997; Vuagniaux et al. 2000). CAP1
was eventually identified as prostasin or TMPRSSS and
these initial observations were quickly followed up with
the descriptions of two additional channel-activating pro-
teases, CAP2 (TMPRSS4) and CAP3 (matriptase; Planes
and Caughey 2007; Vuagniaux et al. 2002). To date, the major
class of proteases involved in ENaC cleavage belongs to the
broad family of serine proteases, which all have a conserved
serine in their active sites. The action of all these proteases is
to cleave sites on the extracellular loops of the ENaC subunits
at specific recognition sequences. Confirmed cleavage sites
have been found clustered predominantly toward the n-
terminal ends of «— and y—ENaC, an area that is presumably
exposed and accessible to protease action (Fig. 1; Adebamiro
etal. 2007; Bruns et al. 2007; Caldwell et al. 2004; Gormley et
al. 2003; Hamm et al. 2010; Hughey et al. 2004a, 2004b;
Kleyman et al. 2009; Passero et al. 2008; Planes and Caughey
2007; Rossier 2004). However, a number of putative protease
recognition sites have been mapped on all three subunits at
both the N- and C-terminal sides of the extracellular loops of
each subunit (Rossier and Stutts 2009). Protease action at
these predicted sites has yet to be demonstrated experimental-
ly. ENaC is acted on by proteases at intracellular locations or
at the surface membrane, either with membrane-bound/an-
chored proteases or extracellular/free proteases.

Intracellular proteases

To be fully active, with a high P, ENaC needs to be cleaved
more than once on the large extracellular domains of the «—
and y—subunits. One of the first steps in ENaC cleavage
appears to occur by the action of pro-protein convertases,
most likely located intracellularly (Fig. 2a; Schafer et al.
1995). The convertase furin is the most well-studied and
best candidate for this intracellular protease function
(Bosshart et al. 1994; Bruns et al. 2007; Hughey et al.
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2004a, 2004b; Schafer et al. 1995). Furin is responsible
for cleaving both o— and y—subunits through a consensus
sequence R/S-XX-R (where R is an arginine, S a serine and
X any amino acid; Bruns et al. 2007; Hughey et al. 2004a,
2004b; Sheng et al. 2006). In the case of the x-subunit, furin
is able to cleave at two distinct sites in the extracellular
domain of the channel (Fig. 1). Cleavage at both of these
locations releases a small inhibitory peptide. This cleavage
putatively relieves structural constraints and allows the
channel to become partially activated. Likewise, a furin site
has been found on the extracellular domain of the y-subunit
(Bruns et al. 2007). A second cleavage event by an addi-
tional protease is required to achieve full activation of
ENaC. The location of the distal y-ENaC cleavage site
varies with the specific protease investigated; however, it
is within approximately 60 amino acids from the first furin
cleavage site (Fig. 1). This second cleavage event also
releases an inhibitory fragment, similar to x-ENaC. To date,
a number of other serine proteases have been implicated in
the cleavage of ENaC subunits and include members of the
elastase family, plasmin, prostasin, chymotrypsin and tryp-
sin (Adebamiro et al. 2007; Caldwell et al. 2005; Carattino
et al. 2008; Kleyman et al. 2009; Passero et al. 2008; Rossier
and Stutts 2009; Vuagniaux et al. 2002). In most cases, a
double-cleavage event appears to release a small portion of
the extracellular domain of ENaC, thereby activating the
channel.

Functional and biochemical studies investigating ENaC
cleavage do not always make it clear precisely where in the
cell and when in the life of the channel the cleavage events
occur. However, the need for the double-cleavage seems to
be a requirement for full activation of ENaC. Therefore,
ENaC might be found in a range of processed states depend-
ing on the longevity of the channel and the opportunity for
interaction with both intracellular and extracellular pro-
teases. A range of channel-open probabilities are therefore
likely until full activation has been achieved; this observa-
tion has been made in the biophysical description of ENaC
(Caldwell et al. 2004, 2005).

Membrane-bound extracellular proteases

Following biosynthesis and trafficking to the Golgi, ENaC
is likely to encounter the intracellular protease furin, as this
convertase has been shown to recycle between the Golgi and
plasma membrane (Fig. 2a). Once ENaC is inserted into the
plasma membrane, the opportunity exists for full proteolytic
activation of the channel by extracellular proteases (Fig. 2b).
The three CAPs described above are all reported to be
membrane bound. CAP1 is anchored by glycosylphosphati-
dylinositol (GPI) and can be shed from the membrane sur-
face. The CAP2 and CAP3 proteases are membrane-bound
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ﬂ ENaC

‘ Cleaved ENaC subunit
Intracellular protease (furin
‘ p ( )

fMembrane bound protease

Fig. 2 Representation of protease activation of ENaC in airway epi-
thelial cells. a A double-cleavage event is required for full ENaC
activation (4SL airway surface liquid). The first step probably occurs
by intracellular proteases (furin), followed by a second cleavage event
at the surface (membrane protease). b Multiple cleavage events or a
cascade of proteolysis might be involved in achieving full ENaC
activation. In this scenario, ENaC is cleaved by intracellular proteases
and reaches the membrane surface in either an uncleaved or partially

serine proteases with portions of these proteins being located
intracellularly. Therefore, a direct association between ENaC
and these proteases would probably be required to achieve
proteolytic cleavage (Gormley et al. 2003; Rossier 2004;
Vuagniaux et al. 2002).

Some uncertainty exists about the absolute requirement
for the catalytic activity of CAP1 to achieve ENaC activa-
tion. Purported CAP1 catalytic mutants were still capable of
activating ENaC; however, mutation of the proposed pros-
tasin recognition sequence on YENaC (RKRK) eliminates
the ability of prostasin to activate ENaC (Harris et al. 2008;
Kleyman et al. 2009; Rossier 2004; Rossier and Stutts
2009). Several authors have suggested the possibility of an
indirect mechanism for CAP1 activation of ENaC or the role
of another protease in a cascade of proteolytic activity
(Gaillard et al. 2010; Rossier and Stutts 2009; Tarran et al.
2006). Both of these possibilities remain plausible. In line
with these suggestions and observations, we consider that a
multi-step process might be required for full ENaC activa-
tion (see below; unpublished observations; Fig. 2b). Unlike

® swunc

Soluble protease
( Intracellular protease

Membrane bound

protease

cleaved state. It can then be further activated by membrane-bound
proteases or by soluble proteases. In addition, soluble protease might
initiate a cascade of proteolytic events eventually resulting in full
ENaC activation. Soluble protease inhibitors and proteins that prevent
ENaC cleavage (SPLUNC) might modulate the extent of ENaC acti-
vation. Images based on previous reviews (Rossier and Stutts 2009;
Gaillard et al. 2010)

the discrepancies for CAPI1, greater consensus has been
achieved with regard to the requirement for catalytic activities
of CAP2 and CAP3 to activate ENaC fully and these cleavage
sites have been mapped by using model expression systems
(Planes and Caughey 2007; Planes et al. 2005; Vuagniaux et
al. 2002).

One of the factors that might contribute to the seemingly
contradictory studies for CAP1 activation of ENaC is that
protease activity can itself be modulated by protease inhibi-
tors, as described above. The interplay between protease ac-
tivity and the action of protease inhibitors has been proposed
as an underlying factor in excessive airway surface liquid
reabsorption in the CF airway (Donaldson et al. 2002;
Gaillard et al. 2010; Hughey et al. 2007; Myerburg et al.
2010; Rossier and Stutts 2009; Tan et al. 2011). Several
protease inhibitors have been identified that result in the direct
inhibition of the target proteases. These include the Kunitz-
like inhibitors (aprotinin) and the serpins (protease nexin 1;
Adebamiro et al. 2002, 2005, 2007; Myerburg et al. 2010;
Orce et al. 1980, 1981; Planes et al. 2005; Tarran et al. 2006;
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Tong et al. 2004; Vallet et al. 1997). Alternatively, inhibitors
might bind to ENaC directly and prevent protease access and
subsequent activation of the channel (Fig. 2b). The protein
SPLUNCI appears to bind to ENaC and prevent access of
proteases to cleavage sequences, thereby inhibiting proteolytic
activation of ENaC (Gaillard et al. 2010; Rollins et al. 2010).

Added to this interplay between proteases and their inhib-
itors is the possibility that a series of proteolytic steps is
required for full ENaC activation. In this scenario, the activity
of'a protease might activate a protease pathway or a cascade of
proteases that cleave ENaC. This could involve the inactiva-
tion or degradation of a protease inhibitor or conversion of a
protease from an inactive to active form (Fig. 2b). These
possibilities have been recently suggested in the literature
but evidence for this activation and the nature of these pro-
posed cascades have yet to be demonstrated experimentally
for ENaC (Chambers et al. 2007; Gaillard et al. 2010; Tarran
et al. 2000).

ENaC and proteases in the airway

Previous work from our group and others indicates that a
balance between the protease activity of membrane-tethered
channel-activating proteases (CAPs) and soluble protease
inhibitors in the ASL modulates ENaC activity and therefore
Na' absorption across human bronchial epithelial (HBE) cells
(Gaillard et al. 2010; Kleyman et al. 2006; Mall 2008;
Myerburg et al. 2006, 2010; Rossier and Stutts 2009). In this
scheme, when the ASL volume is low, soluble protease inhib-
itors would achieve a sufficiently high local concentration in
the ASL to minimize constitutive activation of ENaC by
CAPs. This would lead to reduced Na" and water reabsorp-
tion. Conversely, when the ASL volume is expanded, the
soluble protease inhibitors are diluted, relieving the inhibition
of CAPs. ENaC activation would presumably occur from
membrane-bound proteases that cannot be removed from the
airway surface.

A number of proteases have been identified in the airway,
not all of which are associated with ENaC activation (Cottrell
et al. 2004; Elizur et al. 2008). The most common and abun-
dant proteases found in the extracellular milieu in human
airway are the serine and metallo-proteases (Conese et al.
2003; Elizur et al. 2008; Voynow et al. 2008). In the airways
of CF patients, extracellular proteases are derived predomi-
nantly from two sources: external and intrinsic. Proteases are
released by invading bacterial pathogens as virulence factors
that facilitate infection and colonization. As a consequence of
immune, inflammatory and cell damage/repair responses, the
host also secretes proteases (Bainbridge and Fick 1989;
Conese et al. 2003; Elizur et al. 2008; Terheggen-Lagro et
al. 2005; Voynow et al. 2008). These proteases, combined
with a number of endogenous and epithelial-cell-derived
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proteases, make up the large number of active proteases in
the surface fluid overlaying the airway epithelium and have a
range of impacts in the airway. Serine proteases have been
shown to increase mucus expression, which decreases ciliary
beating and results in ciliary injury (Griese et al. 2008). In
addition, serine proteases induce goblet cell hyperplasia and
degrade extracellular matrix (Coraux et al. 2008; Elizur et al.
2008; Voynow et al. 2008; Wynn 2008). The proteases also
induce increased interleukin expression (IL-8), causing down-
stream pro-inflammatory signaling. Finally, the serine pro-
teases degrade innate and adaptive immune molecules,
altering immune signaling in the airway (Downey et al.
2007a, 2007b, 2009).

On balance these proteases are detrimental to the host,
while aiding the pathogenesis of bacterial infection. In re-
sponse to invasion, the host innate immune response might
exacerbate the inflammation and protease damage, particular-
ly in patients with CF and progressive lung diseases. One of
the downstream consequences of infection is the accumulation
of neutrophils at the site of infection (Downey et al. 2009). A
large number of proteases are released by neutrophils them-
selves. These include neutrophil serine proteases, neutrophil
elastase (which is known to activate ENaC), proteinase 3 and
cathepsin G. Metalloproteases, collagenase and gelatinase
have also been detected in the ASL under inflammatory con-
ditions (Downey et al. 2009; Elizur et al. 2008; Voynow et al.
2008). In addition, bacterial pathogens are known to secrete a
variety of proteases that are capable of host remodeling (see
below). These external bacterial proteases might also serve to
activate ENaC (Fig. 2b).

Bacterial infection in CF

The major opportunistic pathogen associated with CF lung
disease is Pseudomonas aeruginosa, a gram-negative rod-
shaped bacterium (Burke et al. 1991; Jagger et al. 1982;
Parmely et al. 1987). Pseudomonas infection and coloniza-
tion presents early in the patient’s life and persists in the CF
lung as a result of the ability of the bacterium to evade and
neutralize the host’s defenses (Lazdunski et al. 1990; Lyczak
et al. 2000; Suter 1994). Pseudomonas colonization is aided
by the compromised mucociliary clearance associated with
CF. The persistence of Pseudomonas induces lung injury by
both direct and indirect mechanisms (Hobden 2002;
Kharazmi et al. 1984a, 1984b; Lyczak et al. 2002; Parmely
et al. 1990; Sarkisova et al. 2005a; Suter 1994). The secre-
tion of multiple virulence factors results in direct injury to
the epithelial tissue (Kudoh et al. 1994; Wiener-Kronish et
al. 1993). Additionally, the chronic involvement of immune
and inflammatory responses, resulting from Pseudomonas
colonization, leads to indirect injury (Granstrom et al. 1984;
Jagger et al. 1982; Kharazmi et al. 1984a; Parmely and
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Horvat 1986; Parmely et al. 1984; Reeves and McElvaney
2012; Saadane et al. 2006; Sagel et al. 2002). Specifically,
the long-term recruitment and activation of neutrophils is
associated with epithelial damage as a result of sustained
secretion of bacterial killing proteins (Conese et al. 2003;
Kercsmar and Davis 1993).

Pseudomonas has evolved multiple mechanisms to facili-
tate adherence and colonization. Among these, the secretion
of virulence factors and the formation of biofilms are thought
to contribute to Pseudomonas resistance to host and antibiotic
insults (Kudoh et al. 1994; Lazdunski et al. 1990). Biofilm
formation provides a physical barrier between the bacterial
cells and the extracellular environment, decreases the efficacy
of host and pharmacological agents and facilitates adherence
(Byrd et al. 2011; Kobayashi 2005; Lee et al. 2011; Sarkisova
et al. 2005b). Composed of DNA, polysaccharides and pro-
teins, the biofilms form a matrix that encapsulates the bacterial
cells (Byrd et al. 2011; Lee et al. 2011). The development of
this matrix is a compounding factor in the treatment of
Pseudomonas infection. Virulence factors also play key roles
in modulating the virulence of many pathogens and include
proteins that modulate innate and adaptive immune signaling
and inflammatory signaling and that break down epithelial
barriers (Kobayashi 2005; Sarkisova et al. 2005b; Tomlin et
al. 2001).

Multiple proteases have been implicated in the virulence
of Pseudomonas, including elastase A and B (LasA and
LasB), protease IV (PIV) and alkaline protease (AP)
(Jagger et al. 1982, 1983). Bronchiolar lavage and sputum
from CF patients have demonstrated the presence of multi-
ple bacterial proteases in the Pseudomonas-infected lung.
Similarly, the expression and secretion of these proteases
have been reported in other modes of Pseudomonas infection,
including burn and ocular injury (Hobden 2002; Kharazmi et
al. 1984a). Multiple proteolytic targets are associated with the
expression of these proteases and might contribute to changes
in the physiology of infected tissue.

The two elastase proteases are metalloproteases and are
both capable of degrading human elastin; LasB protease is
also capable of degrading collagen (Goldberg and Ohman
1987; Johnson et al. 1967; Kessler and Safrin 1988; Kessler
etal. 1993; Rust et al. 1996; Saulnier et al. 1989; Toder et al.
1994; Uss et al. 1969; Voynow et al. 2008). Both elastin and
collagen are significant biopolymers and contribute to tissue
plasticity. Changes in elastin and collagen content in the
lung are associated with pulmonary fibrosis (Voynow et al.
2008). In addition, both proteases have also been shown to be
involved in the invasive phenotype of multiple Pseudomonas
strains (Azghani et al. 2002; Fleiszig et al. 1997). LasB has
also been shown to degrade IgA and IgG and surfactant
proteins A and D (SP-A and D), both being associated with
the identification and elimination of pathogens (Bainbridge
and Fick 1989; Heck et al. 1990; Mariencheck et al. 2003).

PIV is a serine protease that has been implicated in
corneal virulence of Pseudomonas (Engel et al. 1997,
O’Callaghan et al. 1996). As with the elastase proteases,
PIV can degrade surfactant and iron-binding proteins isolated
from bronchoalveolar lavage (Britigan et al. 1993; Malloy et
al. 2005). In addition, PIV can bind plasminogen and cleave
fibrinogen, which are both involved in regulating blood clot-
ting (Caballero et al. 2001; Engel et al. 1998). Specifically, the
degradation of fibrinogen is associated with hemorrhage,
which is often associated with Pseudomonas infection.

AP is a Ca*"-regulated Zn*" metalloprotease (Baumann
1994; Baumann et al. 1993; Duong et al. 1992; Guzzo et al.
1990; Zhang et al. 2012). The active protease is capable of
degrading <y-interferon and putatively inactivates multiple
protease inhibitors (Guyot et al. 2010; Horvat et al. 1989;
Leidal et al. 2003; Parmely et al. 1990). In addition, AP is
thought to alter the function of neutrophils and leukocytes,
facilitating evasion of host defenses (Kharazmi et al. 1984a,
1984b; Parmely et al. 1984). Whereas its substrate specificity
is currently unknown, the protease is thought to be capable of
cleaving a broad range of physiological targets (Louis et al.
1998). Previous studies suggest that AP expression is regula-
tory, both spatially and temporally (Lazdunski et al. 1990). AP
expression is modulated temporally during the infection and
colonization of the host tissue and is highly enriched in bio-
films (Manos et al. 2008, 2009; Salunkhe et al. 2005).

Bacterial proteases, ENaC and CF

Although long-term and widespread changes in ENaC activa-
tion might not directly contribute to the CF phenotype per se,
they might contribute significantly to local and acute changes
within the lung. Recent work suggests that, in addition to the
host proteases that are present in the lung, secreted pathogen
proteases might contribute to colonization and infection, as
detailed above. In such models, the secretion of bacterial
proteases would lead to the activation of ENaC, either directly
through its cleavage or indirectly through the activation of a
host protease. Evidence for the possibility of an indirect cas-
cade activation is suggested by the ability of a number of
bacterial proteases to cleave host proteases and protease inhib-
itors in vitro (Guyot et al. 2008, 2010; Johnson et al. 1967;
Kessler and Safrin 1994; Kessler et al. 1998; Leidal et al.
2003). The nature and molecular identities of these putative
cascades have not been characterized at this point in vivo.
The roles for the bacterial proteases in colonization,
infection and exacerbation are also not well established.
Secreted bacterial proteins and peptides are often immuno-
genic and, in many cases, become neutralized after recogni-
tion by the adaptive immune system (Granstrom et al. 1984;
Jagger et al. 1982). However, both the initial response and
generation of neutralizing antibodies occurs on timescales
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that would not be predicted to alter acute expression and
secretion during early steps in infection and colonization.
Evidence for the acute expression of Pseudomonas proteases
is found in analysis of bronchoalveolar lavage, wherein pro-
tease secretion and activation occurs extremely early in infec-
tion and colonization (Burke et al. 1991; Lyczak et al. 2000;
Suter 1994). The increase in local protease activity might
directly influence host defenses. In addition, the increase in
protease activity might result in local tissue remodeling that
facilitates adhesion and colonization. Moreover, the secreted
proteases, including elastase and alkaline protease, might
contribute to local remodeling by ENaC cleavage and alter-
ations in its activity. The resulting changes in ASL would
putatively facilitate adhesion by decreasing ASL and muco-
ciliary clearance. This, coupled with changes in epithelial
permeability, might lead to an increase in pathogen invasion
and infection.

Concluding remarks

The role of proteases in activating Na* conductance through
ENaC is now a well-established mechanism in ENaC regula-
tion. The appreciation of this mode of channel modulation has
prompted studies into underlying misregulation of proteases in
pathophysiological disease states such as CF. From the brief
summary provided above, we can clearly see that the airway is
awash with a large number of proteases and protease-
interacting proteins that are derived from a variety of sources,
both host and invading pathogen. Comprehension of the path-
ways that link the potential protease interactions and cascades
remains a challenging undertaking for a full understanding of
the physiology of the airway.
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