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Abstract The type II transmembrane serine protease matrip-
tase has an essential role in the integrity and function of
multiple epithelial tissues. In the epidermis, matriptase acti-
vates the glycosylphosphatidylinositol (GPI) anchored mem-
brane serine protease prostasin to initiate a proteolytic
cascade that is required for the development of the stratum
corneum barrier function. Accordingly, mice deficient for
matriptase phenocopy mice deficient for epidermal prostasin
and present with impaired corneocyte differentiation,
imparied lipid matrix formation, loss of profilaggrin process-
ing and loss of tight junction formation and function.
Together, these defects lead to a compromised epidermal
barrier and result in fatal dehydration during the neonatal
period. Proteolytic activity of the matriptase-prostasin cas-
cade is regulated in the epidermis via inhibition by the
Kunitz-type serine protease inhibitor hepatocyte growth fac-
tor activator inhibitor-1 (HAI-1). Importantly, targeted post-
natal ablation of matriptase in mice perturbs the function of
multiple adult tissues, indicating an ongoing requirement for
matriptase proteolysis in the maintenance of diverse types of
epithelia. Impaired matriptase proteolytic activity has been
linked to human Autosomal Recessive Icthyosis with
Hypotrichosis (ARIH), whereas aberrant matriptase activity
has been implicated in Netherton’s Syndrome. This review
will summarize information pertaining to the role of matrip-
tase in epithelial biology and will discuss recent advance-
ments in our understanding of how matriptase activity is
regulated and the down-stream effectors of matriptase
proteolysis.
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Extracellular proteolysis

Matriptase is a type II transmembrane serine protease

Serine proteases represent a significant portion of the mam-
malian degradome, encoding over 175 predicted proteins
within the human genome (Puente et al. 2005). The vast
majority of these proteases are secreted; however, a burgeon-
ing sub-class has recently been characterized that localizes to
the plasma membrane, indicating a potential role in cell sur-
face and pericellular proteolytic signaling. These membrane
serine proteases are attached to the cell membrane via three
different mechanisms; (1) a carboxy terminal GPI anchor, (2)
a carboxy-terminal transmembrane domain (Type I), or (3) an
amino terminal transmembrane domain (Type II transmem-
brane serine proteases, or TTSPs). There are 17 TTSPs con-
served between mice and humans, all containing a serine
protease domain with a highly conserved chymotrypsin (S1)
fold that is found in the majority of secreted serine proteases
(Di Cera 2009; Hooper et al. 2001). TTSPs are synthesized as
inactive single chain zymogens and are subsequently cleaved
into a two-chain active enzyme during a process that allows
the protease domain to remain tethered to the cell surface by a
disulfide bridge (Bugge et al. 2009). The serine protease
domain of TTSPs is located at the C-terminus and all contains
a variable “stem region” between the N-terminal transmem-
brane domain and the protease domain that is critical to the
demarcation of four subfamilies: the HAT/DESC subfamily,
Hepsin/TMPRSS subfamily, Corin subfamily and matriptase
subfamily (Bugge et al. 2009; Hooper et al. 2001).

Matriptase is a member of the eponymous matriptase
subfamily, which includes matriptase 1–3 and polyserase-
1. Following from the transmembrane domain, the stem
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region of matriptase comprises a single SEA (sea urchin
sperm protein, enteropeptidase, agrin) domain, two CUB
(Cls/Clr urchin embryonic growth factor, bone morphogenic
protein-1) domains and four LDLA (low density lipoprotein
receptor class A) domains. At the C-terminal end of the stem
region is an essential activation motif conserved in all
TTSPs where proteolytic cleavage activates the serine pro-
tease domain. The unique stem region of individual TTSPs
is critical for the regulation of expression, activation and
interactions with substrates and inhibitors (Szabo and
Bugge 2008; Szabo et al. 2003). Among TTSPs, matriptase
proteolytic activity is relatively discriminating in vitro,
perhaps owing to structural motifs in the stem region and a
protease domain that confer substrate specificity (Beliveau
et al. 2009). Matriptase expression is found in a variety of
epithelial tissues, where it has been shown to have pleiotro-
pic effects on development, cell–cell adhesions and
homeostasis.

In nearly all murine epithelial tissues, matriptase is co-
expressed with the membrane serine protease prostasin, one
of only two known mammalian proteins attached to the
membrane via a GPI-anchor (Chen et al. 2001a; Hooper et
al. 1999; List et al. 2007b). Prostasin is also termed channel-
activating protease 1 (CAP-1), following from its ability to
activate epithelial sodium channels (ENaCs) and effect the
sodium current across the plasma membrane in vitro
(Adachi et al. 2001; Tong et al. 2004; Vallet et al. 1997;
Vuagniaux et al. 2002). Prostasin contains an N-terminal
secretion signal that is cleaved during intracellular transport
in the ER and a GPI-anchor is attached at the C-terminal
(Chen et al. 2001b; Yu et al. 1994, 1995). From the N-
terminus, prostasin comprises a pro-domain and a serine
protease domain with trypsin-like activity. Subsequent to
surface localization, prostasin is cleaved at a conserved
activation site in the pro-domain and remains attached to
the serine protease domain via a disulfide bridge (Chen et al.
2001b). Unlike matriptase (see below), prostasin zymogen
is incapable of auto-activation and thus requires proteolytic
processing by a second protease for conversion into an
active protease (Shipway et al. 2004).

Matriptase activation

In order to become catalytically active, matriptase must
undergo two sequential proteolytic processing events that
occur near the termini of the stem region. The first cleavage
occurs after Gly149 within a conserved GSVIA motif in the
SEA domain and may occur spontaneously during intracel-
lular transport as the result of conformation-induced hydro-
lysis (Kim et al. 2005; Oberst et al. 2003). While this severs
the link between the subsequent peptide and the signal
anchor, matriptase remains attached to the cell surface,

possibly through non-covalent interactions within the pro-
tein itself or through complex formation with the Kunitz-
type serine protease inhibitor HAI-1 (Oberst et al. 2005,
2003). The second cleavage occurs after Arg614 within
the highly conserved RVVGG activation motif and requires
both the initial SEA domain cleavage event and the catalytic
amino acids of the matriptase serine protease domain
(Oberst et al. 2003). Matriptase undergoes rapid auto-
activation in vitro, which is believed to occur through
trans-activation following oligomerization, a process that
requires the presence of a biomembrane (Lee et al. 2007;
Oberst et al. 2003; Takeuchi et al. 2000).

Interestingly, matriptase activation appears to require
physical interaction with its related inhibitor, HAI-1, which
may serve to protect against aberrant matriptase proteolysis.
In the absence of HAI-1, nascent matriptase constructs are
sequestered in the Golgi in cell culture models, while dele-
tion or mutation of the LDLA domain of HAI-1 results in
both a reduction in surface matriptase expression and abol-
ishment of matriptase activity (Oberst et al. 2005, 2003).
Consistent with a role in matriptase activation, HAI-1 co-
localizes with matriptase in a variety of epithelial tissues
and is found in a complex with the protease in instances
where matriptase is released from the cell surface (Lin et al.
1999; Szabo et al. 2007; Wang et al. 2009). The fact that
HAI-1 is an extremely effective inhibitor of matriptase in
vitro, has a high affinity for matriptase binding and is
typically co-expressed with matriptase in vivo has led to
the hypothesis that matriptase is only active for a brief
interval at the cell surface prior to its inactivation by HAI-
1 (Chen et al. 2010b; Tseng et al. 2010). Matriptase can be
activated in cell culture systems through the addition of
reactive oxygen species (ROS) or through subtle acidifica-
tion of the extracellular pH (Chen et al. 2010a; Tseng et al.
2010). The ability of matriptase to become activated at an
acidic pH may have physiological relevance, as the epider-
mal matrix becomes acidic at the transitional layer between
the stratum granulosum and stratum corneum where matrip-
tase is active (see below). In vitro substrates of matriptase
proteolysis include urokinase-type plasminogen activator
(uPA), the G-protein-coupled protease activated receptor-2
(PAR2), platelet-derived growth factor-D (PDGF-D) and
human acid-sensing ion channel 1, while known in vivo
substrates include hepatocyte growth factor (HGF) and the
serine protease prostasin (Clark et al. 2010; Lee et al. 2000;
Netzel-Arnett et al. 2006; Szabo et al. 2011; Takeuchi et al.
2000, Ustach et al. 2010).

Matriptase in epithelial biology

The crucial function of the epidermis is to form a protective
barrier between underlying tissue and the external
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environment. The epidermal barrier provides a bulwark
against environmental toxins and pathogens, while concur-
rently preventing the loss of vital fluids and dissipation of
thermal energy. Critical to barrier function is the formation
of a water impermeable network of dead cells imbedded
within a lipid-enriched extracellular matrix that comprises
the outer layer of the skin. In order to form this layer (the
stratum corneum, or cornified layer), keratinocytes prolifer-
ate from the basal lamina and undergo several differentiation
events while traversing through the strata that constitute the
living epidermis (Ovaere et al. 2009) (Fig. 1a). At the
periphery of these strata, a transitional layer between the
stratum granulosum and stratum corneum separates the liv-
ing epidermis from the non-living epidermis and is the
location where keratinocytes undergo terminal differentia-
tion into corneocytes. Corneocyte differentiation is a spe-
cialized form of cell death that results in the loss of cellular
organelles, morphological flattening and the formation of a

dense complex of keratin filaments that is surrounded by a
specialized cornified envelope. As corneocytes are
connected by corneodesmosome adhesions and become em-
bedded in the lipid matrix of the stratum corneum, epider-
mal barrier function is conferred. In the transitional layer,
matriptase initiates a proteolytic cascade that is required for
normal corneocyte differentiation, essential to the integrity
of the epidermal barrier and obligatory to post-natal
survival.

Evidence implicating matriptase in epidermal development
was garnered from transgenic mice containing a null mutation
lacking all but a small fragment of the matriptase protein (List
et al. 2002, 2003). Matriptase-deficient mice present with a
variety of epidermal defects; including a generalized disrup-
tion of the stratum corneum architecture, loss of vesicular
bodies that generate intercorneocyte lipids and hypoplasia
and dysgenesis of hair follicles (List et al. 2002, 2003).
Importantly, these defects result in compromised epidermal

Fig. 1 To visualize the localization of endogenous matriptase (blue
color), a knock-in mouse with a promoterless β-galactosidase marker
gene inserted into the endogenous matriptase gene was used (List et al.
2006). a In the epidermis, matriptase is expressed in the transitional
layer (arrowhead). The basal layer was visualized using a keratin-5
antibody (red color, arrow). Deficiency in epidermal matriptase or its
target prostasin results in a plethora of defects (compare a‘ to a“),
which together result in impaired barrier function. These defects

include the loss of tight junctions, lipid extrusion and impaired pro-
cessing of profilaggrin. b In the intestine, matriptase is expressed in
goblet cells (arrow) and in surface mucosal cells (arrowhead). Contin-
ual matriptase expression is required for tissue maintenance and results
in defects in tight junctions and cell polarity (compare b‘ to b“).
Ablation of matriptase in the large intestine causes architectural distor-
tion and compromised barrier function resulting in edema and diarrhea
and causing premature death
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barrier function that leads to fatal dehydration within 48 h of
birth. Matriptase hypomorphic mice containing approximate-
ly 1% matriptase mRNA in the epidermis have a shift in the
phylogeny of bacterial colonization, an increase in antimicro-
bial peptides and enhanced transepidermal water loss, indi-
cating that both outward and inward barrier function require
matriptase activity (List et al. 2002, 2007a; Scharschmidt et al.
2009). Unlike matriptase null animals, however, these animals
are able to survive through the neonatal period, ostensibly
owing to less severe impairment of the epidermal barrier
function (List et al. 2007a). Mice deficient in epidermal pros-
tasin display defects that are identical to matriptase-deficient
mice, suggesting that the two proteases reside in the same
proteolytic pathway (Leyvraz et al. 2005). In support of this
hypothesis, enzymatic gene trapping of matriptase combined
with immunohistochemistry of prostasin revealed that the two
proteases co-localize in the transitional layer of the epidermis,
where keratinocytes undergo terminal differentiation (List et
al. 2007b; Netzel-Arnett et al. 2006). Furthermore, the devel-
opmental onset of expression of matriptase and prostasin is
synchronized and correlates with the acquisition of epidermal
barrier function during embryonic development in mice
(Netzel-Arnett et al. 2006). Importantly, matriptase is an effi-
cient activator of prostasin zymogen in vitro and epidermal
tissue from matriptase deficient mice does not contain the
activated prostasin found in wild-type epidermis (Netzel-
Arnett et al. 2006). Taken together, this indicates that matrip-
tase activates prostasin in vivo and may act as the initiator of a
proteolytic cascade in the epidermis, following from the abil-
ity of matriptase to autoactivate.

Precise spatial and temporal co-expression of matriptase
and prostasin would appear to be a prerequisite for proteo-
lytic cross-talk, as the window for matriptase activity is
considerably diminished by the inhibitor HAI-1. Indeed,
HAI-1 is capable of rapidly inactivating both matriptase
and prostasin and upon experimental induction of matriptase
activity, complexes of matriptase and HAI-1, as well as
prostasin and HAI-1, are readily detected in a skin organo-
typic model (Chen et al. 2010b). Recent work has estab-
lished that, in polarized epithelium, matriptase and prostasin
co-localize briefly at the basolateral plasma membrane prior
to HAI-1-mediated matriptase endocytosis (Friis et al.
2011). Basolateral prostasin is also endocytosed, however,
not before being activated by matriptase and is subsequently
transcytosed to the apical plasma membrane where it accu-
mulates (Friis et al. 2011). Thus, complex mechanisms
involving matriptase, prostasin, HAI-1 and intracellular
transport may all be involved in regulating the matriptase-
prostasin proteolytic cascade.

One effect of matriptase or prostasin deficiency in the
epidermis is the loss of proteolytically processed filaggrin,
indicating that this proprotein may be a downstream target
of the matriptase-prostasin cascade (List et al. 2003).

Processing of profilaggrin into mature filaggrin monomers
and secondary products is a critical component of corneocyte
differentiation and aids keratin aggregation and cornified
envelope formation and may affect gene transcription that
regulates stratum corneum development (Dale et al. 1978;
Pearton et al. 2002; Steinert et al. 1994; Zhang et al. 2002).
Loss of function mutations in the human filaggrin gene are
associated with ichthyotic skin phenotypes similar to those
observed under conditions of matriptase deficiency and
filaggrin siRNA interferes with barrier function in a human
skin organotypic model (Mildner et al. 2010; Smith et al.
2006). The exact mechanism by which matriptase/prostasin
proteolytic activity regulates profillagrin processing remains
to be elucidated; however, it may involve ion transport.
Prostasin is a proteolytic activator of epithelial sodium chan-
nels (ENaCs) in several experimental systems, which regulate
sodium current in epithelial cells (Vuagniaux et al. 2000,
2002; Bruns et al. 2007). Following proteolytic processing
by the proprotein convertase furin, ENaCs are transferred to
the plasma membrane, where further processing by prostasin
may result in a high probability open configuration (Bruns et
al. 2007; Ovaere et al. 2009). Open ENaC conformation is
associated with Na+ influx that results in membrane depolar-
ization, causing an influx of calcium ions through voltage-
gated calcium channels that are necessary for profilaggrin
processing in the cytoplasm (Markova et al. 1993; Resing et
al. 1993). When prostasin is inactive, a reduction in Na+

conductance causes hyperpolarization of the plasma mem-
brane that impairs the opening of voltage-gated calcium chan-
nels (Vuagniaux et al. 2002). Thus, matriptase activation of
prostasin may cause a downstream Ca2+ influx resulting in
profillagrin processing and contributing to corneocyte differ-
entiation and stratum corneum formation.

In addition to the absence of profilaggrin processing,
both matriptase- and prostasin-deficient mice display
defects in the formation and function of epithelial tight
junctions. Immunohistochemical detection of tight junction
proteins (TJPs) in matriptase- or prostasin-deficient animals
reveals varying degrees of abnormality, ranging from de-
creased staining to a complete lack of focal expression of the
TJPs claudin-1, ZO-1 and occludin (Leyvraz et al. 2005;
List et al. 2009). In addition to aberrant protein expression, a
tracer injected into the dermis of matriptase- and prostasin-
deficient mice diffuses through the stratum granulosum and
into the stratum corneum, indicating a concomitant defect in
epidermal tight junction function (Leyvraz et al. 2005; List
et al. 2009). While the role of prostasin in tight junction
formation outside the epidermis has not been addressed,
matriptase deficiency also disrupts tight junctions in intesti-
nal epithelium (List et al. 2009). In Caco-2 cell monolayers,
which model intestinal epithelium, matriptase knockdown
or specific peptide-mediated inhibition of matriptase activity
causes an increase in macromolecular paracellular
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permeability and a decrease in transepithelial electrical re-
sistance (TEER) (Buzza et al. 2010; Sambuy et al. 2005).
Matriptase-deficient Caco-2 monolayers as well as matrip-
tase hypomorphic mice were shown to express abnormally
high levels of the TJP claudin-2, which is associated with
the formation of ion channels that decrease the cohesion
between adjacent epithelial cells (Van Itallie and Anderson
2006). Claudin-2 is incorporated into intercellular junctions
in matriptase-silenced Caco-2 monolayers and has deregu-
lated expression in matriptase hypomorphic mice as the
result of impaired protein turnover (Buzza et al. 2010).
This may contribute to the observation that continual
matriptase expression is required throughout the lifespan
of mice for the maintenance of integrity in multiple adult
epithelia. Postnatal ablation of matriptase from the large
intestine through conditional gene knockout results in per-
sistent edema and increased epithelial permeability, likely
caused by the loss of function of tight junctions (List et al.
2009) (Fig. 1b). Because matriptase has not yet been proven
to proteolytically process TJPs, additional experimentation
is required to elucidate the downstream effectors of matrip-
tase activity that contribute to tight junction formation and
maintenance. A summary of the defects in the epidermis and
large intestinal epithelium associated with the loss of matrip-
tase is shown in Fig. 1.

Matriptase pathobiology

In mice, matriptase deficiency as well as the deficiency of its
cognate inhibitor HAI-1 result in postnatal lethality, indicat-
ing that matriptase activity may require precise regulation
during the development and growth of epithelial tissues.
HAI-1 null mice perish during embryogenesis due to defects

in placental development, a phenotype that is reversed in
matriptase/HAI-1 double-deficient animals (Fan et al. 2007;
Szabo et al. 2007). Chimeric mice with HAI-1 expressed
only in the trophoblast survive through birth but develop
severe icthyosis and perish by day 16 (Nagaike et al. 2008).
Histological examination of these HAI-1 chimeric null ani-
mals reveals hyperkeratosis of the forestomach and hyper-
keratosis and acanthosis of the epidermis. These phenotypes
are reversed when HAI-1 is eliminated in the genetic back-
ground of matriptase hypomorphic mice and normal life-
span is restored, indicating that matriptase suppression via
HAI-1 is essential to postnatal epithelial function (Szabo et
al. 2009). In humans, hypomorphic matriptase activity is at
the etiology of Autosomal Recessive Ichthyosis with
Hypotrichosis (ARIH), a congenital disorder that manifests
in individuals with a homozygous point mutation in the
matriptase serine protease domain (Basel-Vanagaite et al.
2007; Alef et al. 2009). This G827R mutant form of matrip-
tase has dramatically reduced proteolytic activity toward
several synthetic peptides as well as recombinant prostasin
in vitro (List et al. 2007a). In order to assess the contribution
of reduced matriptase activity to ARIH symptoms, hypo-
morphic mice were characterized in detail (List et al. 2007a).
Interestingly, hypomorphic matriptase mice phenocopy all
of the major symptoms of human ARIH; including icthyosis
and hypertrichosis as well as abnormalities in tooth enamel.
Importantly, hypomorphic matriptase mice also display
hyperproliferation of basal keratinocytes and impaired des-
quamation in the stratum corneum, which are microscopic
hallmarks of the disease (Basel-Vanagaite et al. 2007; List et
al. 2007a). From a functional standpoint, the proteolytic
processing of prostasin as well as profilaggrin is greatly
reduced in matriptase hypomorphic mice as well as in hu-
man ARIH patients (Alef et al. 2009; List et al. 2007a),

Fig. 2 Outline of the matriptase-prostasin proteolytic axis in the epi-
dermis based on data from studies using genetic mouse models. The
auto-activating type II transmembrane serine protease matriptase acti-
vates the GPI-anchored serine protease pro-prostasin in the epidermis.
The activity of matriptase is inhibited by hepatocyte growth factor
activator inhibitor -1 (HAI-1). Matriptase cleaves and activates the
pro-form of hepatocyte growth factor (HGF) that activates c-Met.
Furthermore, matriptase is capable of activating epidermal kallikreins.

Matriptase and prostasin null mice have identical phenotypes, which
include impaired proteolysis of epidermal profilaggrin to filaggrin
monomers and loss of epidermal tight junctions. The underlying mech-
anisms are not fully understood. Thus, it is unclear whether matriptase/
prostasin mediated proteolysis is directly involved in profilaggrin
processing and degradation of tight junction proteins (indicated by
dotted lines)
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indicating that the matriptase-prostasin proteolytic cascade
may be deregulated in human ARIH.

Derestricted matriptase activity has recently been impli-
cated in the disease Netherton’s syndrome, which is charac-
terized by the detachment of the stratum corneum, exposing
the living surface of the epidermis to the external environ-
ment and leading to chronic inflammation (Descargues et al.
2005; Sales et al. 2010; Smith et al. 1995a, b). Netherton’s
syndrome is caused by the loss of the serine protease inhib-
itor LEKTI, which is a critical regulator of kallikrein pro-
teases in the epidermis. Kallikrein proteases are synthesized
and activated in the granular layer but are prevented from
performing proteolysis by forming complexes with LEKTI
(Bitoun et al. 2002; Deraison et al. 2007; Sales et al. 2010;
Schechter et al. 2005). In the upper regions of the stratum
corneum, decreased pH causes these complexes to disasso-
ciate, resulting in kallikrein-mediated corneodesmosome
degradation ultimately leading to desquamation. In the ab-
sence of LEKTI, ectopic desquamation occurs at the bound-
ary between the granular and transitional layer, resulting in
loss of the stratum corneum. LEKTI-deficient mice pheno-
copy the symptoms associated with human Netherton’s syn-
drome (Descargues et al. 2005; Hewett et al. 2005; Yang et
al. 2004). When LEKTI deficiency is combined with
matriptase deficiency, aberrant protease activity in the epi-
dermis is abolished, stratum corneum function is improved
and corneodesmosome function in the lower epidermis is
restored (Sales et al. 2010). While LEKTI does not directly
inhibit matriptase, matriptase is capable of activating pro-
kallikreins, indicating that, when LEKTI/kallikrein inhibito-
ry complexes are absent, matriptase acts to initiate the
ectopic activation of kallikreins (Sales et al. 2010). Thus,
deregulated matriptase activity may be involved in multiple
epithelial pathologies and precise regulation of the down-
stream targets of matriptase proteolysis is essential to the
proper formation of the epidermal strata.

Matriptase has garnered significant attention as a poten-
tial oncogene, as its expression correlates with the severity
of tumors in the breast and prostate and de novo matriptase
expression has been found in both ovarian and cervical
carcinomas (Lee et al. 2005; Saleem et al. 2006; Tanimoto
et al. 2005; Tsai et al. 2008). The ratio of matriptase/HAI-1
mRNA is increased in ovarian and colorectal cancer, indi-
cating that deregulated matriptase proteolysis may contrib-
ute to tumor formation or metastasis (Oberst et al. 2002;
Vogel et al. 2006). Interestingly, while matriptase expression
in normal mouse epidermis is confined to the post-mitotic
transitional layer, matriptase spatially translocates to the
proliferative basal layer during premalignant progression
and is highly expressed in rapidly dividing tumor cells in
squamous cell carcinoma (SCC) (List et al. 2006).
Transgenic mice engineered to express matriptase in the
basal layer of the epidermis develop spontaneous SCC,

confirming the ability of matriptase to initiate tumor forma-
tion when expressed in proliferative cells (List et al. 2005).
Importantly, when these mice also express the inhibitor
HAI-1 transgene in the basal layer, the oncogenic properties
of matriptase are completely abolished (List et al. 2005).
Recent work has demonstrated that matriptase-induced SCC
in mice requires c-Met and that matriptase increases the
processing of pro-HGF in primary keratinocytes, resulting
in the initiation of the c-Met/mTor signaling axis and in-
creased cell proliferation and migration (Szabo et al. 2011).

Concluding remarks

In summary, matriptase is a type II transmembrane serine
protease localizing to the plasma membrane, where it is
involved in cell surface proteolysis including activation of
prostasin. The matriptase-prostasin proteolytic cascade
(summarized in Fig. 2.) is crucial to the formation of the
epidermal barrier, terminal differentiation of keratinocytes
and the proper formation of tight junctions. Matriptase ac-
tivity is under tight control by the kunitz-type serine prote-
ase inhibitor HAI-1 and deficiency of either of these two
proteins results in lethality in mice, highlighting the impor-
tance of both expression and regulation of matriptase protein
during development. Postnatal ablation of matriptase from
epithelial tissue results in severe defects in multiple epithe-
lia, indicating an ongoing requirement for matriptase activ-
ity in tissue maintenance and homeostasis. Mutations
resulting in decreased matriptase activity have been impli-
cated as the etiological origin of Autosomal Recessive
Icthyosis and Hypotrichosis (ARIH) in humans, while ec-
topic matriptase activity contributes to Netherton’s syn-
drome in a mouse model of the disease. Future research
should seek to unveil the mechanisms of matriptase/prosta-
sin transcriptional regulation and identify the molecular
mechanisms by which matriptase/prostasin exerts down-
stream effects such as the maintenance of tight junctions.
In addition, as matriptase is one of several mammalian
TTSPs, many of which remain relatively uncharacterized,
there is strong impetus to continue to explore this unique
class of cell surface proteases.
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