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Role of L1CAM for axon sprouting and branching
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Abstract The central nervous system (CNS) has been tradi-
tionally considered as an organ that fails to regenerate in
response to injury. Indeed, the lesioned CNS faces a number
of obstacles during regeneration, including an overall non-
permissive environment for axonal regeneration. However,
research during the last few decades has identified axon sprout-
ing as an anatomical correlate for the regenerative capability of
the CNS to establish new connections. The immunoglobulin
superfamily member L1CAM has been shown to promote the
capability of neurons for regenerative axon sprouting and to
improve behavioral outcomes after CNS injury. Here, we
discuss the cell-autonomous role of L1CAM for axon sprout-
ing in experimental rodent injury models and highlight the
molecular interactions of L1CAM with ankyrins, ezrin-
radixin-moesin proteins and the Sema3A/Neuropilin ligand-
receptor complex in the context of axonal branching.
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Introduction

L1CAM, discovered in the mid-1980s (Rathjen and Schachner
1984), is the founding member of the L1CAM family. In
mammals, this family consists in L1CAM, the close homolog
of L1 (CHL1), the neuron-glial-related cell adhesion molecule
(NrCAM) and neurofascin (Grumet et al. 1991; Volkmer et al.
1992; Holm et al. 1996). L1CAM is composed of a large
extracellular region and a short cytoplasmic part, which is
highly conserved in the L1CAM family. The extracellular
domains are arranged as repetitive immunoglobulin-like
(Ig-like) and fibronectin type III (FNIII) modules that allow
complex molecular interactions with numerous ligands, in-
cluding other neural members of the Ig-superfamily, integrins
and extracellular matrix proteins (Friedlander et al. 1994;
Ruppert et al. 1995; Montgomery et al. 1996; Malhotra et al.
1998; Oleszewski et al. 1999; Haspel and Grumet 2003). The
intracellular domain of L1CAM mediates linkage to the actin
cytoskeleton and the endosomal membrane system, thereby
enabling axonal targeting, stabilization at the cell surface and
dynamics of cell surface expression (Dahlin-Huppe et al. 1997;
Hortsch et al. 1998; Kamiguchi et al. 1998; Dequidt et al.
2007; Herron et al. 2009; Lasiecka and Winckler 2011).

L1CAM participates in all steps during the establishment of
neuronal connectivity including neuronal migration, axon
growth, fasciculation and pathfinding and synapse formation
and plasticity (Stallcup and Beasley 1985; Chang et al. 1987;
Ohyama et al. 2004; Saghatelyan et al. 2004;Wiencken-Barger
et al. 2004; Anderson et al. 2006; Godenschwege et al. 2006;
Nakamura et al. 2006; Triana-Baltzer et al. 2006; Maness and
Schachner 2007; Wolman et al. 2007; Li et al. 2008; Barry et
al. 2010). Early during the neural development of mice, from
embryonic stage 9.5 (E9.5) onwards, L1CAM is found on
cell bodies of migrating neurons of the central nervous
system (CNS), is strongly expressed on growing axons at

This work has been supported by the Deutsche
Forschungsgemeinschaft (SCHA 1261/4-1 to M.S.). M.F. is Senior
Research Professor of the Hertie Foundation.

M. K. E. Schäfer (*)
Klinik für Anästhesiologie, Universitätsmedizin Mainz,
55131 Mainz, Germany
e-mail: michael.schaefer@unimedizin-mainz.de

M. K. E. Schäfer
Forschungsschwerpunkt Translationale Neurowissenschaften
(FTN), Johannes Gutenberg-Universität Mainz,
55131 Mainz, Germany

M. Frotscher
Zentrum für Molekulare Neurobiologie Hamburg,
20246 Hamburg, Germany

Cell Tissue Res (2012) 349:39–48
DOI 10.1007/s00441-012-1345-4



later developmental stages (Kallunki et al. 1997) and declines
to more moderate levels at postnatal stages (Liljelund et al.
1994; Akopians et al. 2003). In the adult, L1CAM localizes
also to presynaptic terminals in the hippocampus (Matsumoto-
Miyai et al. 2003; Nakamura et al. 2006). In the periphery,
myelinating Schwann cells express L1CAM only during em-
bryonic and early postnatal development, whereas expression
in non-myelinating Schwann cells persists into adulthood
(Faissner et al. 1984).

The important role of L1CAM in the developing nervous
system is further emphasized by more than 200 human gene
mutations that cause a variety of neurological disorders referred
to as L1 syndrome (Jouet et al. 1995; Kanemura et al. 2006;
Schäfer and Altevogt 2010; Vos and Hofstra 2010). The broad
clinical spectrum includes X-linked hydrocephalus, hypoplasia
of the corticospinal tract, corpus callosum agenesis and mental
retardation (Rosenthal et al. 1992; Jouet et al. 1993, 1994;
Fransen et al. 1996). Similar phenotypes have been observed
in L1CAM-deficient mice (Dahme et al. 1997; Cohen et al.
1998; Fransen et al. 1998; Demyanenko et al. 1999).

Research over the last few decades has revealed that
L1CAM is dynamically regulated following brain lesion in
various animal model systems. L1CAM has been proposed to
reiterate its developmental role for axon growth in adults
following injury. To date, genetically augmented expression
of L1CAM in transplanted cells of various origins has been
shown to improve functional recovery in experimental animal
models of acute and chronic neurodegeneration (Bernreuther
et al. 2006; Cui et al. 2009; Ourednik et al. 2009; Cui et al.
2011; Xu et al. 2011). This important issue has been addressed
in recent reviews (Zhang et al. 2008; Lavdas et al. 2011).
Here, we focus on the cell-autonomous role of L1CAM in
axon sprouting. We summarize findings obtained in experi-
mental CNS injury models and highlight molecular mecha-
nisms related to L1CAM-mediated axon branching.

Role of L1CAM for axonal sprouting after experimental
injury

Plastic remodeling processes, in particular axonal sprouting,
are observed following brain damage and neuronal deafferen-
tation (Deller et al. 2006). In the hippocampus, the regulation
of L1CAM expression on sprouting axons has been investi-
gated following entorhinal cortex lesion (ECL) or fimbria
fornix lesion (Styren et al. 1995; Jucker et al. 1996; Aubert et
al. 1998). ECL leads to lamina-specific deafferentation of
granule cells in the dentate gyrus and evokes sprouting of
commissural/associational and septo-hippocampal afferents
(Deller et al. 1996, 2006). L1CAM expression progressively
declines from 2 to 16 days after lesion when sprouting is most
pronounced. Two months after ECL, L1CAM expression
appears substantially increased on regrown unmyelinated

axonal fibers and their presynaptic terminals (Jucker et al.
1996). This expression pattern suggests a role in maturation,
stabilization and formation of synapses by reinnervating axon
fibers, rather than the initiation of axonal sprouting. In contrast
to these findings, sprouting cholinergic septo-hippocampal
axons initially express L1CAM in the fimbria fornix lesion
model but not upon target innervation. Conversely, L1CAM
expression is maintained in sprouting sympathetic tyrosine-
hydroxylase-positive axons (Aubert et al. 1998).

In experimental animal models of spinal cord injury (SCI)
enhanced sprouting has been often correlated with improved
behavioral outcomes (Weidner et al. 2001; Bareyre et al. 2004;
Courtine et al. 2008; Goldshmit et al. 2008; Konya et al. 2008;
Giger et al. 2011). Several studies have examined the role of
L1CAM in axonal sprouting after SCI. L1CAM has been
shown in rats to be upregulated on sprouting sensory axons,
identified as small-diameter primary afferents containing the
peptidergic marker calcitonin gene-related peptide (CGRP;
Runyan et al. 2005). However, analyses of SCI in L1CAM-
deficient mice from various laboratories have led to contro-
versial results on the importance of L1CAM for the sprouting
of CGRP-positive fibers. Reduced axonal sprouting has been
reported in the dorsal transection SCI model (Deumens et al.
2007), whereas no effect has been observed in the extradural
rhizotomymodel (Runyan et al. 2007). In the contusion model
of SCI, reduced sprouting of CGRP-positive fibers has been
seen in L1CAM-deficient mice and they recover better from
neuropathic pain than wild-type mice, which show increased
sprouting of CGRP-positive fibers (Hoschouer et al. 2009). In
contrast, corticospinal axons in L1CAM-deficient mice dis-
play enhanced sprouting following contusion injury to the
spinal cord (Jakeman et al. 2006).

Different patterns of axonal sprouting have been recognized
to occur, depending on the lesion model, age and genetic
background of the employed rodent strains (Ma et al. 2004;
Dimou et al. 2006; Kerr and David 2007; Lee et al. 2010; Li et
al. 2010; Omoto et al. 2010; Jaerve et al. 2011). Nevertheless,
the possible interaction of background strain and age in the
L1CAM-deficient mouse has not been investigated as yet
(Hoschouer et al. 2009). This is an important issue, because
genetic background effects are known to influence phenotypic
features of L1CAM-deficient mice, such as the development of
hydrocephalus (Itoh et al. 2004; Tapanes-Castillo et al. 2010).

Together, the lesion studies in the hippocampus and in the
spinal cord indicate that L1CAM does not stimulate axonal
sprouting per se but does so with spatiotemporal specificity. In
such a scenario, the role of L1CAM in regenerative axon
sprouting might depend not only on the lesion model, genetic
background and the age of the used animals but also on the
different locations of the injury. Moreover, neuronal cell-
type-specific L1CAM expression and accessibility of interac-
tion partners known to regulate L1CAM-dependent axon
growth might be critically involved.
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L1CAM-mediated axon branching in vitro

L1CAM is known as a potent regulator of axon growth and
branching both in vivo and in vitro. The in vitro effects have
been observed when L1CAM has been either overexpressed
in diverse types of primary neurons and/or offered as a sub-
strate for developing neurons (Cheng and Lemmon 2004;
Cheng et al. 2005; Hoffman et al. 2008; Moon and Gomez
2010; Schäfer et al. 2010b). In addition to studies in develop-
ing primary neuronal cultures, L1CAM overexpression has
been shown to promote axonal branching in mature CA3
pyramidal neurons of organotypic hippocampal slice cultures.
Dendritic branching appears unaffected in this in-vivo-like
model system, both after overexpression of wild-type
L1CAM and with mutant L1CAM carrying a missense muta-
tion in the fifth FNIII domain, which causes mistargeting to
dendrites (Schäfer et al. 2010b). Rescue experiments in culti-
vated L1CAM-deficient cerebellar neurons grown on a
L1CAM-substrate indicate that pathological missense muta-
tions affecting the extracellular domains impair neurite
branching rather than neurite growth (Cheng and Lemmon
2004). Since impaired homophilic interaction appears to be an
unlikely explanation, certain mutations might affect protein
conformation or impair cis-interaction with heterophilic bind-
ing partners leading to altered association with the actin cyto-
skeleton (Cheng and Lemmon 2004).

Association of the cytoplasmic part of L1CAM with the
actin cytoskeleton is known to depend on members of the

ankyrin and ezrin-radixin-moesin (ERM) protein families.
Various studies have implicated these two protein families in
the regulation of L1CAM-dependent axon growth, targeting
and branching.

L1CAM and ankyrins

Two members of the ankyrin-family, ankyrin B (ANK2) and
ankyrin G (ANK3), have been shown to bind reversibly to the
cytoplasmic domain of L1CAM and to mediate linkage of
L1CAM to the actin cytoskeleton via the spectrin-based mem-
brane cytoskeleton (Davis et al. 1993; Davis andBennett 1994;
Dubreuil et al. 1996; Bennett and Chen 2001; Nishimura et al.
2003; Hortsch et al. 2009; Fig. 1). In general, ankyrins are
thought to stabilize L1CAM family members and compart-
mentalize them to distinct axonal compartments, including the
axon initial segment and the nodes of Ranvier (Bennett and
Lambert 1999; Bennett and Chen 2001; Huang 2006;
Dzhashiashvili et al. 2007). Homophilic interaction of
L1CAM has been shown to recruit ankyrins to its cyto-
plasmic domain (Malhotra et al. 1998). L1CAM-ankyrin
binding is then controlled by the mitogen-activated protein
kinase (MAPK) pathway-dependent phosphorylation of the
FIGQY motif (Whittard et al. 2006), which is conserved in
all L1CAM familymembers (Garver et al. 1997). Pathological
L1CAMmutations located to this motif interfere with ankyrin
binding (Needham et al. 2001). Phosphorylation of the

Fig. 1 Model for the ankyrin-
mediated linkage of L1CAM to
the actin cytoskeleton. Homo-
philic L1CAM binding (cis-
binding indicated by double-
headed arrow) leads to the re-
cruitment of ankyrin. L1CAM-
ankyrin interaction has been
shown to stabilize L1CAM and
to be engaged in cell-cell adhe-
sion, axon growth and fascicula-
tion. Binding of ankyrin is
controlled by tyrosine phosphor-
ylation of the FIGQYmotif in the
cytoplasmic domain of L1CAM
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FIGQY motif abolishes ankyrin binding to L1CAM in a
physiological manner (Fig. 1) and has been reported to pro-
mote axon growth (Gil et al. 2003; Whittard et al. 2006). In
support of a stabilizing function of ankyrin, deletion of the
ankyrin-binding region in L1CAM knock-in mice leads to the
progressive loss of L1CAM expression (Nakamura et al.
2010). An additional transgenic mouse model has been gen-
erated carrying a point mutation of the Tyr1229 phosphoryla-
tion site in the ankyrin-binding region of L1CAM. The same
point mutation has been earlier reported to constitutively
enhance the endocytosis of L1CAM in vitro (Needham et al.
2001) suggesting reduced stability of cell-surface-expressed
L1CAM. In Tyr1229His transgenic mice, disturbed topogra-
phy of retinal axons including abnormalities in their interstitial
branches (Buhusi et al. 2008) and impaired elongation and
branching of interneurons have been observed (Guan and
Maness 2010).

Whereas accumulating evidence indicates that ankyrin G is
related to stationary behavior (Gil et al. 2003) and, together
with its binding partner βIV-spectrin, maintains axonal polar-
ization of L1CAM (Nishimura et al. 2007), the role of the
L1CAM-ankyrin B interaction is less clear. Genetic ablation of
ankyrin B in mice leads to reduced axonal levels of L1CAM,
hypoplasia of axonal tracts and degeneration of the optic tract
after completed target innervation (Scotland et al. 1998), all of
which argues for similar functions of ankyrin B and ankyrin G
for stabilizing L1CAM in the plasma membrane. On the other
hand, ankyrin B, rather than ankyrin G, has been reported to
colocalize with L1CAM in developing axons both in vitro
(Boiko et al. 2007) and in vivo (Scotland et al. 1998), suggest-
ing different modes of interaction. Furthermore, ankyrin B has
been proposed to play a role in the dynamic behavior of
L1CAM. The interaction of L1CAM with ankyrin B appears
to induce neurite formation but not elongation and to couple
L1CAM to retrograde actin flow (Nishimura et al. 2003).
However, these results are partially contradictiory to the find-
ings of Gil et al. (2003) and Cheng et al. (2005). The dynamic
behavior of L1CAM in growth cones is well established
(Kamiguchi et al. 1998; Kamiguchi and Lemmon 2000;
Schaefer et al. 2002) and ankyrin B has recently been reported
to be critically involved in the L1CAM-dependent increase of
cyclic adenosine monophosphate (cAMP) in growth cones,
thereby determining growth direction (Ooashi and Kamiguchi
2009). Thus, the axonal co-expression of L1CAM and ankyrin
B, together with the proposed function of the L1CAM-ankyrin
B interaction in neurite induction and growth cone behavior,
suggests a regulatory role for L1CAM-mediated axonal sprout-
ing following injury. To the best of our knowledge, protein
expression regulation of ankyrins in the context of regenerative
axonal sprouting has not been studied as yet. Investigation of
axonal sprouting in the aforementioned mice models with
disrupted L1CAM-ankyrin interaction should help to improve
our understanding of L1CAM function in neural repair.

L1CAM and ERM proteins

The ERM protein family, comprising ezrin, radixin and
moesin, is known to link filamentous (F-) actin to various
transmembrane proteins (Fehon et al. 2010) including
L1CAM (Dickson et al. 2002). Two ezrin-binding regions
have been identified in the cytoplasmic domain of L1CAM
and localize to a juxtamembrane region and the neuron-
specific YRSLE region, respectively (Cheng et al. 2005;
Sakurai et al. 2008; Fig. 2a). In vitro experiments have
revealed a role of ERMs in the regulation of L1CAM-
dependent axon branching (Dickson et al. 2002; Cheng et al.
2005; Sakurai et al. 2008). Neurons grown on a L1CAM
substrate have been shown to display increased axonal
branching and filopodia formation when disrupting ezrin-
actin binding by dominant-negative ezrin (Dickson et al.
2002). Different effects have been observed following site-
directed mutagenesis of the ezrin-binding regions of L1CAM
demonstrating that ezrin is required for L1CAM-mediated
axon branching (Cheng et al. 2005). Interestingly, the juxta-
membrane ERM site appears to play a more important role for
axon branching than the ERM binding to the RSLE region of
L1CAM (Nakamura et al. 2010). In support of this notion, the
juxtamembrane ERM-binding region in the cytoplasmic do-
main of CHL1, which lacks a second ERM-binding region, is
required for axonal branching in cultured cortical neurons
(Schlatter et al. 2008).

ERM-binding to the neuron-specific RSLE region of
L1CAMoverlaps with that of the μ2 subunit of the endocytosis
adaptin complexAP-2 (Dickson et al. 2002; Cheng et al. 2005).
Similar to the regulation of ankyrin binding by the phosphor-
ylation of Tyr1229 in L1CAM, binding of ezrin and the μ2
subunit of AP-2 is abolished by phosphorylation of the
Tyr1176 residue (Schaefer et al. 2002; Sakurai et al. 2008).
Experimental evidence has been provided that the phosphory-
lation and dephosphorylation of Tyr1176 controls cycles of
L1CAM endocytosis and cell surface trafficking in the advanc-
ing growth cone (Kamiguchi and Lemmon 2000; Kamiguchi
and Yoshihara 2001; Schaefer et al. 2002). Double-
immunolabeling has revealed distinct localizations of these
ERM and AP-2 proteins in growth cones of cortical neurons
suggesting the lack of competitive binding of these molecules
to the cytoplasmic domain of L1CAM (Mintz et al. 2008). One
possible explanation might be that lateral redistribution of
L1CAM to distinct membrane microdomains allows associa-
tion either with ERM or AP-2 proteins (Fig. 2b).

Whether interaction of ERM proteins with L1CAM is
important for neural repair processes in the adult CNS is, to
date, unclear. The modeling of transection injury has at least
revealed the re-expression of ERM proteins in growth cones
of sprouting neurites and their involvement in the regener-
ation of mature hippocampal neuronal cultures through in-
teraction with L1CAM (Haas et al. 2004).
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More recently, the extracellular binding of the β-
galactoside-binding protein Galectin-3 to hippocampal neu-
rons has been identified to induce L1CAM-dependent axon
branching (Diez-Revuelta et al. 2010). When offered as an

immobilized substrate, Galectin-3 triggers the redistribution
and co-localization of L1CAM, ERM and F-actin to discrete
membrane sites at which axonal branches emerge (Diez-
Revuelta et al. 2010; Fig. 2a). ERM proteins have also been

Fig. 2 Model showing various modes of intracellular interactions in
response to extracellular ligand binding to L1CAM. a Semaphorin 3A
(Sema 3A) binding to L1CAM/Nrp-1 or Galectin-3 (Gal3) binding to
L1CAM or a homophilic L1CAM interaction leads to association of
phosphorylated ezrin (p-ezrin) with the cytoplasmic part of L1CAM,
thereby providing linkage to the actin cytoskeleton. b L1CAM/Nrp-1
mediate growth cone collapse and axon repulsion upon Sema 3A

binding. Endocytosis of L1CAM/Nrp-1 might occur in membrane
microdomains devoid of ezrin via interaction with the AP-2 complex
(AP-2), which desensitizes for repulsive action of Sema 3A. Soluble
L1CAM converts growth cone collapse to attraction and enables neu-
ronal growth and branch formation, hypothetically involving the sta-
bilizing function of ankyrins
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reported to co-localize in growth cones with another Ig
superfamily member, the receptor protein called deleted in
colorectal cancer (DCC), in response to the soluble DCC-
ligand netrin-1, thereby mediating axon growth (Antoine-
Bertrand et al. 2011). These findings are compatible with the
hypothesis that ligand-receptor interactions can control ax-
onal growth and branching via the redistribution of ERM
proteins to the cytoplasmic part of transmembrane proteins
such as L1CAM.

Supporting evidence for this hypothesis has been recently
provided by Marsick et al. (2012). The authors report a rapid
coincidental increase of L1CAM and phosphorylated ezrin in
growth cone filopodia of dorsal root ganglion cells following
neurotrophin stimulation. Conversely, depletion of L1CAM
reduces filopodial levels of phosphorylated ezrin (Marsick et
al. 2012). Earlier studies have highlighted the role of L1CAM
in axonal responses to the soluble repulsive guidance cue
Semaphorin 3A (Sema 3A). Work of Castellani and col-
leagues (2000, 2002) have uncovered that L1CAM is required
for Sema 3A-mediated growth cone collapse. This effect has
been attributed to an interaction of L1CAM and the Sema 3A-
receptor Neuropilin-1 (Nrp-1) rather than plexin A, which also
takes part in the transduction of Sema 3A signaling (Bechara
et al. 2008). Moreover, the addition of soluble L1CAM-Fc
protein to neuronal cultures, probably interfering with
L1CAM in cis-binding to Nrp-1, converts Sema 3A chemo-
repulsion into attraction (Castellani et al. 2002; Fig. 2b).
Dominant-negative ezrin also inhibits Sema 3A-mediated
growth cone collapse (Mintz et al. 2008) suggesting a coop-
erative mode of interaction for L1CAM and ezrin in this
process. Studies of growth cones of dorsal root ganglion cells
indicate that Sema 3A induces the dephosphorylation of ERM
proteins (Gallo 2008). This effect has also been observed in
growth cones from cortical neurons. In addition, the dephos-
phorylation of ezrin causes enhanced internalization of
L1CAM and Nrp-1 in these cells (Mintz et al. 2008). After
the endocytosis of L1CAM/Nrp-1, ezrin has been hypothe-
sized to become reactivated, thereby again stabilizing
L1CAM/Nrp-1 in the plasma membrane and mediating their
linkage to the actin cytoskeleton (Mintz et al. 2008).

Interestingly, L1CAM has been shown not only to interact
physically with Nrp-1 (Bechara et al. 2008) but also to control
the Sema 3A-induced internalization of Nrp-1 (Castellani et al.
2004). Ezrin-binding to the cytoplasmic domain of Nrp-1 has
not been reported as yet. Thus, L1CAM-ezrin interaction might
regulate Nrp-1 internalization in response to Sema 3A. There-
fore, L1CAM-ezrin interaction might serve as an integrative
step to regulate neurite growth and branching in response to
Sema 3Avia cell surface expression modulation of its own and
Nrp-1. This mechanism likewise includes local rearrangements
of the actin cytoskeleton and regulation by components of the
focal adhesion kinase and MAP kinase cascade (Bechara et al.
2008). Additional mechanisms involved in the control of

L1CAM cell surface abundance and recycling in growing
neurons might relate to the partial ubiquitination and lysosomal
degradation of L1CAM after endocytosis (Schäfer et al.
2010a). Further studies to dissect the regulatory mechanisms
exerted by various protein kinases and associated signaling
pathways that lie downstream of L1CAM might help to con-
nect the role of this protein to neural repair processes in the
damaged CNS.

Conclusions and perspectives

Since its discovery in 1984, substantial progress has been
made in the understanding of the function of L1CAM in
neurons and the developing nervous system. Mechanistic
insights have been obtained into L1CAM-mediated axon
branching in vitro, which might represent an anatomical
correlate for axonal sprouting observed after CNS injury.
The intrinsic role of L1CAM in regenerative axonal sprout-
ing might, however, depend on the experimental lesion
model, genetic background and age of the used model
animals and on the cellular and molecular context of sprout-
ing axons. Although the exact mechanisms of action are still
incompletely understood, accumulating evidence indicates
that L1CAM is important for the induction of a regenerative
phenotype in neurons. As has become evident, the function-
ing of L1CAM and some of its interaction partners con-
verges at the point of growth cone attraction and collapse.
The unraveling of these mechanisms might represent a key
step for the manipulation of axonal sprouting and promotion
of neural repair in the adult CNS.
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