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Abstract Transforming growth factor beta (TGF-β) has
been recognized as an important mediator in the genesis of
chronic kidney diseases (CKD), which are characterized by
the accumulation of extracellular matrix (ECM) compo-
nents in the glomeruli (glomerular fibrosis, glomeruloscle-
rosis) and the tubular interstitium (tubulointerstitial fibrosis).
Glomerulosclerosis is a major cause of glomerular filtration
rate reduction in CKD and all three major glomerular cell
types (podocytes or visceral epithelial cells, mesangial cells
and endothelial cells) participate in the fibrotic process. TGF-
β induces (1) podocytopenia caused by podocyte apoptosis
and detachment from the glomerular basement membrane; (2)
mesangial expansion caused by mesangial cell hypertrophy,
proliferation (and eventually apoptosis) and ECM synthesis;
(3) endothelial to mesenchymal transition giving rise to
glomerular myofibroblasts, a major source of ECM. TGF-β
has been shown to mediate several key tubular pathological
events during CKD progression, namely fibroblast prolifera-
tion, epithelial to mesenchymal transition, tubular and

fibroblast ECM production and epithelial cell death leading
to tubular cell deletion and interstitial fibrosis. In this review,
we re-examine the mechanisms involved in glomeruloscle-
rosis and tubulointerstitial fibrosis and the way that TGF-β
participates in renal fibrosis, renal parenchyma degeneration
and loss of function associated with CKD.
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Introduction to chronic kidney diseases

Definition, causes, consequences and epidemiology

Chronic kidney disease (CKD) is a condition in which the
renal excretory function progressively and irreversibly
decreases as a consequence of renal tissue injury, dysfunction
(namely, reduced filtration rate) and nephron loss. Decreased
excretory function gives way to the accumulation of metabolic
and waste products in the blood and organs, which cause
azotemia and multiorgan damage. Eventually, patients can die
from secondary conditions, the most important being cardio-
vascular events, or need renal replacement therapy (RRT) in
the form of renal transplant or dialysis to avoid sure death
(Remuzzi et al. 2006). Because of its high incidence and
prevalence and the disproportionate cost of RRT, CKD
represents a heavy human, clinical and socioeconomic
burden. It is estimated that 10%-20% of the adult population
have some degree of CKD and that dialysis (applied to 0.1%
of the population) consumes about 2% of total health
expenditure in many developed countries (De Vecchi et al.
1999). CKD can be caused by a variety of factors, including
diabetes, hypertension, infections, atherosclerosis, renal
artery and ureteral obstruction and genetic alterations. Renal
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function usually declines over a period of years or decades,
although some patients become eligible for RRT after only a
few months (López-Novoa et al. 2010, 2011).

A critical concept in CKD is that, early in the course of the
disease, renal tissue injury crosses a point of no return beyond
which a malignant scenario of self-destruction ensues inde-
pendently of the initial insult. Regardless of etiology, a typical
pathological phenotype appears in which the number of
nephrons decreases progressively and fibrosis and interstitial
scarring replace the space left by the destroyed nephrons.
Transforming growth factor beta (TGF-β) has been recog-
nized as an important mediator of a variety of glomerular,
tubular and inflammatory processes involved in the appear-
ance of this phenotype (Schnaper et al. 2009). Specifically,
this review deals with its effects at inducing glomerular and
tubulointerstitial fibrosis, which are the structural changes
supporting the appearance of CKD.

General etiopathology

CKD can be initiated by damage in the glomeruli, in the
tubuli, or in the renal vessels. Whether started as glomerular,
tubular, or renovascular damage, CKD progression eventually
converges into common renal histological and functional
alterations affecting all renal structures; these changes lead to
progressive and generalized fibrosis, nephron loss and
replacement with scar tissue. During progression, the struc-
tural damage compromises the function of an increasingly
number of nephrons. In the beginning, nephrons that are little
damaged or non-affected adapt and functionally compensate
the dysfunctional nephrons. As a result, the glomerular
filtration rate (GFR) is not significantly decreased. Overall
renal function is thus maintained until the damage halts the
function of over 60% of the nephrons. By such a time, the
extant nephrons, probably also somewhat compromised, are
incapable of copingwith the whole renal function necessary to
cleanse the blood and uremia ensues (López-Novoa et al.
2010, 2011).

The kidneys have an intrinsic repair capacity, as
demonstrated by the complete or almost complete structural
and functional restoration after most episodes of acute
lesions, even following severe acute damage (Humphreys et
al. 2006). As such, we can reasonably think that a parallel
repair response is initiated in the initial steps of CKD. The
key and yet unanswered issue is why and through which
mechanisms, the persistence of triggering damage or
repetitive bouts, which are initially repairable as in acute
damage events, eventually go beyond a point of no return,
after which repair becomes either skewed or overwhelmed
and non-reversible chronicity ensues.

Glomerulopathies are renal disorders affecting glomerular
structure and function. Primary glomerulopathies encompass
inflammatory glomerular diseases (glomerulonephritis) and

non-inflammatory glomerulopathies, such as the consequence
of hypertension and diabetes, which are the most frequent and
major causes of CKD (Couser 1998). Glomerular pathogenetic
mechanisms are as diverse as types of the primary glomer-
ulopathies. Dependent on the etiology, specific glomerular
diseases exhibit specific renal histopathological patterns,
including focal and segmental sclerosis, diffuse sclerosis,
mesangial, membranous, or endocapillary proliferation, mem-
branous alterations and immune deposits, crescent forma-
tions, thrombotic microangiopathy and vasculitis. A serious
glomerular disease may evolve through various histopatho-
logical patterns. Most commonly, these alterations have two
types of consequences. On the one hand, they might disrupt
the sieving properties of the glomerular filtration barrier
(GFB), leading to proteinuria and tubular damage. On the
other hand, they destroy the corpuscular structure leading to
fibrosis and sclerosis and to reduced or blocked filtration
(López-Novoa et al. 2010, 2011).

Characteristic hallmarks of tubulointerstitial diseases are
tubular atrophy leading to cell infiltration, inflammation,
tubule deletion and interstitial fibrosis (Cogan 1980), resulting
in a significant increment in interstitial volume (Norman and
Fine 1999). In early stages, glomerular filtration becomes
slowly altered and tubular dysfunction constitutes the main
manifestation of tubulointerstitial nephropathies (Cogan
1980; Okoń et al. 2007). As the disease progresses, the
tubules collapse or become obstructed, which reduces renal
filtration (López-Novoa et al. 2010, 2011). Renovascular
diseases comprise a group of progressive conditions involv-
ing renal dysfunction and renal damage derived from the
narrowing or blockage of the renal blood vessels. According
to the US Renal Data System (2002), about one third of all
end-stage renal disease cases are related to renovascular
diseases. Renovascular diseases usually appear as thrombotic
microangiopathies, although renal artery occlusion, renal vein
thrombosis and renal atheroembolism are also potential
causes. In renovascular diseases, renal dysfunction results
from a reduction in renal blood flow (RFB). This leads
directly to reduced filtration and to renal parenchymal damage
associated with low oxygen input and ischemia. In turn,
reduced RBF is the consequence of atherosclerotic narrowing
or renal vasoconstriction (López-Novoa et al. 2010, 2011).

Inflammation plays a pivotal role in the progression of
many, if not all, forms of CKD. In the glomerulus,
inflammation exerts various effects that amplify the damage
and directly contribute to the reduction in glomerular filtration
(see below). Initially, inflammation is probably activated as a
repair mechanism upon cellular and tissue injury. However,
undetermined pathological circumstances skew persistent
inflammation into a vicious circle of destruction and progres-
sion. Indeed, inflammation activates many renal cell types to
produce cytokines, which directly damage renal cells and
intensify inflammation.

142 Cell Tissue Res (2012) 347:141–154



TGF-β signaling

TGF-β is a group of three ubiquitous cytokines (named 1–3)
belonging to the TGF-β superfamily. The most abundant form
in mammals is TGF-β1. In addition to its transcription, a key
regulatory step of TGF-β action is its activation from its
reservoir, a latent protein complex in the extracellular matrix
(ECM). Activation of TGF-β receptors in the cell membrane
induces intracellular signals that mediate many developmen-
tal, physiological and pathological processes, including CKD
(Schnaper et al. 2009). TGF-β has been recognized as a
central player in many pathological events related to CKD
progression, at the glomerular, tubulointerstitial and vascular
levels (López-Novoa et al. 2011; Schnaper et al. 2009).
Indeed, the experimental inhibition of TGF-β actions has
proven efficacious at impeding or softening the chronic renal
damage in a number of different pathological scenarios
(López-Novoa et al. 2011; Schnaper et al. 2009), whereas
TGF-β overexpression causes renal fibrosis (Kopp et al. 1996;
Mozes et al. 1999).

Both the physiological and the pathological effects of
TGF-β are induced by the stimulation of specific receptors
in the surface membrane of target cells. The TGF-β
membrane receptor complex comprises two families of
proteins with serin-threonin kinase activity, namely type II
(TβRII) and type I (TβRI) receptors. TβRI includes
activin-like kinase (ALK) receptors. TGF-β binds to
TβRII, which then recruits TβRI. The complex phosphor-
ylates and activates several intracellular signaling cascades
including (1) Smads (small mothers against decapentaplegic),
(2) mitogen-activated protein kinases (MAPKs), such as
extracellular regulated kinases (ERKs), p38 and Jun kinase
and (3) integrin-linked kinase (ILK; Massagué and Chen
2000; Siegel and Massagué 2003). These effectors modulate
the expression of target genes involved in physiological and
CKD-associated events, e.g., cell growth, differentiation,
apoptosis and ECM deposition.

TGF-β is also a mediator of the pathological effects
induced by other hormones and cytokines, most prominently
represented by the renin-angiotensin system (López-Novoa et
al. 2010, 2011). Indeed, angiotensin II (Ang II), a trophic and
proinflammatory hormone widely implicated in the progres-
sion of CKD stimulates the expression of TGF-β (Wolf
1998). In turn, TGF-β directly stimulates the expression of
other throphic and pro-fibrotic factors, such as connective
tissue growth factor (CTGF; Weston et al. 2003; Wolf 1998).
Indirectly, TGF-β also induces the production of other
pathological mediators, such as tumor necrosis factor alpha
(TNF-α) and inteleukins, because it participates in inflam-
matory cell infiltration and activation and in the conversion
of epithelial cells and fibroblasts into myofibroblasts (Border
and Noble 1997; Strutz and Neilson 2003; Tamaki and
Okuda 2003).

Glomerular effects of TGF-β

Introduction

Glomerular sclerosis is a process bywhich normally functional
glomerular tissue is replaced by deposits of ECM, resulting in
excessive protein ultrafiltration and a progressively reduced
GFR. It represents a common pathway for the loss of
functioning glomeruli associated with primary diseases as
diverse as chronic glomerulonephritis, diabetic nephropathy,
hypertension, obstructive uropathy and retroviral infection
(López-Novoa et al. 2011). All three major glomerular cell
types, namely podocytes or visceral epithelial cells, mesangial
cells and endothelial cells participate in the fibrotic process.
In addition, alterations in the glomerular basement membrane
(GBM) also play a role in glomerulosclerosis. TGF-β has a
major function in the pathogenesis of glomerulosclerosis.
Overexpression of active TGF-β1 in transgenic mice causes
mesangial expansion, interstitial fibrosis, decreased GFR and
progressive proteinuria (Kopp et al. 1996).

Effect of TGF-β on podocytes

Podocytes are highly specialized pericytes that cover the
outside layer of glomerular capillaries and extend long
processes toward the GBM, to which they affix by cell
surface adhesion proteins. The foot processes of adjacent
podocytes interdigitate and are separated by narrow spaces
(30–40 nm) linked by a porous membrane called the slit
diaphragm, which is freely permeable to water and small
solutes but relatively impermeable to plasma proteins. The
integrity of the slit diaphragm is one of the principal
determinants of the perm-selective properties of the GFB.
Alterations in the number, structure and function of the
podocytes have been reported in patients with glomerulo-
pathies (Srivastava et al. 2001) and diabetes (Steffes et al.
2001) and in transgenic mouse models of glomeruloscle-
rosis (Shih et al. 1999). This suggests that the loss of
podocytes is significantly involved in glomerular diseases.
In addition, TGF-β1 plays a major part in podocyte loss in
glomerular disease. TGF-β induces podocyte apoptosis by
the activation of mitogen-activated protein (MAP) kinase
p38 and classic effector caspase-3 (Schiffer et al 2001). In
TGF-β1–overexpressing transgenic mice, podocytes under-
go apoptosis in situ shortly after the sclerotic lesion appears
in the glomerulus (Schiffer et al. 2001). In patients with
progressive podocyte diseases, such as focal segmental
glomerulosclerosis and membranous nephropathy, the expres-
sion of TGF-β is enhanced in podocytes. Biomechanical
strain in these diseases can cause the overexpression of TGF-
β and Ang II by podocytes. Oxidative stress induced by Ang
II might activate the latent TGF-β. Increased TGF-β activity
by podocytes might induce not only the thickening of the
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GBM but also podocyte apoptosis and detachment from the
GBM, initiating the development of glomerulosclerosis (Lee
2011). In cultured mouse podocytes, high glucose or Ang II
significantly upregulates the expression of TβRII (Iglesias-de
la Cruz et al. 2002; Wolf et al. 2005). This makes the
podocyte more sensitive to elevated levels of TGF-β , which
is produced by stimulated mesangial cells and that reaches
podocytes through the glomerular ultrafiltrate (Wang et al.
2000). Ang-II-induced apoptosis in cultured podocytes is
mediated by TGF-β (Ding et al. 2002). TGF-β seems also to
be responsible for the detachment of podocytes from GBM
(Chen et al. 2000; Regoli and Bendayan 1997). Some debate
exists about which mechanism, namely podocyte apoptosis or
detachment, is quantitatively more important for podocyte
loss in glomerulopathies such as diabetic nephropathy.
Although TGF-β has been shown to induce podocyte
apoptosis in vitro and in vivo, the apoptosis rates detected
in vivo are low (Nam et al. 2011). The studies of Wharram et
al. (2005) have demonstrated that high rates of podocyte loss
are necessary to cause glomerular scarring: depletion of
podocytes by up to 40% results in only minor changes in the
glomerular structure and moderate proteinuria without mea-
surable changes in renal function, with podocyte depletion of
over 40% being required before a detectable decrease in renal
function can be observed. These data are in agreement with
those observed in patients with type 2 diabetic nephropathy
thereby demonstrating that a high level of podocyte depletion
is necessary to cause macroalbuminuria and glomeruloscle-
rosis (Dalla Vestra et al. 2003). All these data suggest that
podocyte detachment is probably the main mechanism of
TGF-β-mediated podocyte injury.

Furthermore, TGF-β1 stimulates endogenous vascular
endothelial growth factor (VEGF) secretion by podocytes
(Iglesias-de la Cruz et al. 2002), which in turn increases the
production of alfa3(IV) collagen (Chen et al. 2004). Blockade
of endogenous VEGF action by the specific inhibitor of
VEGF receptor kinase, SU5416, reduces the TGF-β1
induced expression of alfa3(IV) collagen. Taken together,
these data suggest a major role for the TGF-β1–VEGF
autocrine system in the regulation of GBM composition by
podocytes (Chen et al. 2004).

Effect of TGF-β on mesangial cells

Mesangial cells are crucial for glomerular function under both
physiological and pathological conditions; they provide
structural support for the glomerular capillary loops and
modulate glomerular capillary flow and the ultrafiltration
surface, thereby regulating GFR. In addition, the mesangium
serves as a source and target of vasoactive hormones, growth
factors, cytokines and ECM proteins and thus contributes to
the pathophysiology of a variety of glomerular diseases
(Sinuani et al. 2010; Schlöndorff and Banas 2009). These

factors activate mesangial cells in an autocrine manner and
mediate interactions with glomerular endothelial and epithe-
lial cells and with blood-borne inflammatory cells. A major
event in the glomerulosclerosis of any origin is an increase in
the mesangial compartment size, attributable to both mesan-
gial matrix deposition and mesangial cell proliferation and
hypertrophy, at least in the early stage.

Strong evidence has been provided that TGF-β is
important in many cases of glomerulosclerosis (Hoffman et
al. 1998). TGF-β over-expression produces renal fibrosis in
mice (Mozes et al. 1999) and rats (Isaka et al 1993).
Conversely, intrarenal infusion of antisense oligonucleotides
to decrease the expression of TGF-β ameliorates sclerosis in
experimental nephropathy (Akagi et al. 1996). TGF-β plays
a role in mesangial cell hypertrophy associated with diabetes
and other glomerulopathies (Das et al. 2010) through a
mechanisms mediated by CTGF (Wahab et al. 2002; Ito et al.
1998). TGF-β also plays also a major part in glomerular
ECM accumulation in several glomerular diseases including
diabetic nephropathy (Yoshioka et al. 1993; Chiarelli et al.
2009; Ziyadeh 2008). In cultured murine and human
mesangial cells, TGF-β1 stimulates the production of type I
and IV collagen, laminin, fibronectin and heparan sulfate
proteoglycans (MacKay et al. 1989; McKay et al. 1993;
Poncelet and Schnaper 1998; Suzuki et al. 1993; Rodríguez-
Barbero et al. 2006). The down-regulation of ECM degrada-
tion by TGF-β also plays a major part in ECM accumulation
(Baricos et al. 1999).

The mechanisms by which TGF-β stimulates ECM
synthesis by mesangial cells is complex. The Smad pathway
is present and functional in mesangial cells and can mediate
collagen I expression (Poncelet et al. 1999). However, the
inhibitory Smad7 decreases the collagen production in TGF-
β-stimulated mesangial cells (Chen et al. 2002). TGF-β1
might also stimulate a variety of kinases in mesangial cells.
In human and rat mesangial cells, TGF-β has been shown to
activate ERK1/2, PI3K and JNK-MAP kinase pathways
(Chin et al. 2001; Huwiler and Pfeilschifter 1994; Martínez-
Salgado et al. 2008), whereas p38 stimulation has been
found by some authors (Chin et al. 2001; Rodríguez-Barbero
et al. 2006) but not by others (Hayashida et al. 1999).
Activation of p38 has been implicated in TGF-β1-stimulated
α1(I) collagen mRNA expression (Chin et al. 2001;
Rodríguez-Barbero et al. 2006), whereas ERK1/2 has been
associated with the accumulation of collagen (Hayashida et
al. 1999) and fibronectin (Inoki et al. 2000).

In cultured human mesangial cells, Erk5, another MAP
kinase mainly localized at the glomerular mesangium, is
activated by TGF-β and the expression of a dominant-
negative form of Erk5 results in a significant decrease in
TGF-β1-induced collagen I expression (Dorado et al.
2008). Furthermore, the transfection of ERK5-specific
small interfering RNA results in a significant decrease in
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ANG-II-induced soluble collagen secretion (Urushihara et al.
2010), thus suggesting that ERK5 also mediates the effect of
TGF-β and Ang II on mesangial-derived ECM expansion. In
addition, in human mesangial cells, mechanical stretch
activates p38 MAP kinase, which independently induces
TGF-β1 and fibronectin. In turn, TGF-β1 contributes to
maintaining late p38 MAP kinase activation, which perpet-
uates fibronectin accumulation (Gruden et al. 2000).

The pro-fibrotic effect of TGF-β is modulated by endoglin.
Endoglin is a type 3 TGF-β receptor that modulates some
TGF-β functions (López-Novoa and Bernabeu 2010). Renal
endoglin expression has been reported to be up-regulated in
some models of renal fibrosis (Rodríguez-Peña et al. 2001,
2002). TGF-β also upregulates endoglin expression in
cultured human and rat mesangial cells (Diez-Marques et
al. 2002; Rodríguez-Barbero et al. 2001). Endoglin nega-
tively regulates TGF-β-induced collagen I and IV synthesis
(Diez-Marques et al. 2002). To assess the clinical importance
of these data, endoglin expression has been studied in skin
fibroblasts of patients with type 1 diabetes, namely 20 with
the fastest rate of mesangial expansion (estimated by electron
microscopy) and proteinuria ("fast-track"), 20 with the
slowest rate and normoalbuminuria ("slow-track") and 20
controls; endoglin mRNA expression levels assessed by
microarray and quantitative reverse transcription with the
polymerase chain reaction were significantly higher in slow-
track than in fast-track patients or controls (Alvarez-Muñoz
et al. 2010). These findings suggest that endoglin can
downregulate the fibrotic effects of TGF-β.

Effect of TGF-β on glomerular endothelial cells

Glomerular endothelial cells are fenestrated endothelial cells
covered by a glycocalyx and characterized by their high
hydraulic permeability; they share a basement membrane with
podocytes and interact closely with them (Hirschberg et al.
2008). As such, glomerular endothelial cells constitute an
integral part of the GFB and play key roles in the modulation
of vascular tone and glomerular filtration, thrombosis and
fibrosis (Navar 2009; Fogo and Kon 2010). In addition,
endothelial cells have been implicated in the sclerotic process
(Akaoka et al. 1995; Lee et al. 1995). In early diabetic injury,
glomerular endothelial cell proliferation and capillary surface
area increase resulting in glomerular hypertrophy, a charac-
teristic of early diabetic nephropathy (Ichinose et al. 2005;
Nyengaard and Rasch 1993; Yamamoto et al. 2004).

TGF-β regulates many endothelial functions including
proliferation, migration and apoptosis (Lebrin et al. 2005).
Arciniegas et al. (1992) have demonstrated that TGF-β1 can
induce aortic endothelial cells to differentiate into cells
positive for α-smooth muscle actin (α-SMA) in vitro, in a
process called endothelial to mesenchymal transition
(EndoMT). EndoMT has been observed in vivo in the heart,

where it is induced by TGF-β and plays a role in cardiac
fibrosis (Goumans et al. 2008). Similarly, EndoMT has been
suggested to be involved in glomerular fibrosis by increasing
the number of glomerular myofibroblasts (Zeisberg et al.
2008). The Smad3 pathway is essential for TGF-β1-induced
EndoMT and for the autoinduction of TGF-β1 (Sato et al.
2003). A specific inhibitor for Smad3, SIS3, abrogates TGF-
β1-induced EndoMT in renal endothelial cells and reduces
diabetic glomerulosclerosis (Li et al. 2010).

Unifying hypothesis on the effect of TGF-β in glomerular
sclerosis

All recent evidence suggests that mesangial cells, podocytes
and endothelial cells play a critical role in the early functional
and structural changes of glomerulosclerosis,. In glomerulo-
sclerosis, glomerular cells are subjected to several types of
pro-sclerotic stimuli, including physical and chemical stimuli.
Cell stretch is probably the most important physical stimulus.
It results from both increased intraglomerular pressure
attributable to afferent vasodilatation and increased wall
tension attributable to increased vascular radius secondary to
glomerular hypertrophy (Laplace´s Law). Cyclic stretch
caused by pulsatile changes in perfusion pressure is also
crucial in inducing glomerular sclerosis, mainly in the
mesangium (Cortes et al. 1999). The most important chemical
stimuli are hormones and cytokines, which reach the glomer-
ular cells from the blood or are produced by the glomerular
cells themselves, acting in an autocrine and paracrine manner.
These chemical stimuli include advanced glycation end
products (AGE), Ang II, reactive oxygen species, TGF-β,
VEGF and platelet-derived growth factor (PDGF).

Podocytes suffer the harmful effects of high glucose, AGE,
Ang II, ROS, TGF-β and mechanical stretch. For instance,
Ang II, whose local concentration is increased in most
glomerular diseases, induces TβRII expression in podocytes,
perhaps intensifying the paracrine effects of the TGF-β derived
from the mesangium or glomerular endothelium. Increased
TGF-β activity can lead to podocyte apoptosis and/or
detachment, which induce podocytopenia and the develop-
ment of progressive glomerulosclerosis. However, podocytes
are also responsible for glomerular damage. Increased ANG II
suppresses nephrin, which leads to the broadening and
effacement of podocyte foot processes. In addition, increased
VEGF production might exacerbate GBM thickening and
proteinuria, leading to tubular atrophy and interstitial fibrosis.

Endothelial cell function is dependent on determined factors
produced by other glomerular cells. Podocyte-derived growth
factors are key for the maintenance of endothelial cell viability
and function and conversely, endothelial cells affect both
podocytes and mesangial cells. Podocytes produce angiogenic
factors, including VEGF and angiopoietin-1 (Angio-1), which
reach the glomerular endothelium and are necessary for
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endothelial cell survival. Mesangial cells produce Angio-2,
which reaches endothelial cells, modulates endothelial cell
function and might counteract the proangiogenic effects of
Angio-1. Endothelial cells themselves produce numerous
vasoactive factors, such as endothelin-1, renin angiotensin
system factors, nitric oxide synthase and prostacyclin; they
also modulate hemostasis by balancing, for example, the
plasmin/plasminogen activator system and its inhibitors and
upregulate adhesion molecules in response to injury.

In many models of glomerulosclerosis (and in idiopathic
focal segmental glomerulosclerosis), ECM accumulation
often appears to begin in the mesangium. In addition, filtered
macromolecules might be trapped in the mesangium and
initiate an inflammatory response that possibly plays a role in
stimulating ECM synthesis. Increased hyperfiltration can be
caused by glomerular capillary hypertension or a genetic or
acquired abnormality of podocyte adhesion or structure that
allows the hyperfiltration of macromolecules. Signals from
epithelial or endothelial cells to the mesangium or the direct
delivery of proinflammatory substances through the glomer-
ular filtrate initiate a process that culminates in the accumu-
lation of ECM. In turn, mesangial expansion infringes on the
capillary spaces, impairing glomerular hemodynamics and
decreasing filtration surface area in the glomerular tuft. These
relationships are presented schematically in Fig. 1.

Tubular effects of TGF-β

Regardless of CKD etiology, TGF-β exerts various effects
leading to tubule deletion and fibrosis. TGF-β has been
shown to mediate several key tubular pathological events
during CKD progression, namely interstitial fibrosis, epithe-
lial to mesenchymal transition (EMT) and epithelial cell death
and proliferation (García-Sánchez et al. 2010). TGF-β is a
strong profibrotic cytokine that activates the expression of
ECM components, such as collagens I and IVand fibronectin
and the inhibition of collagen-degrading enzymes such as
certain matrix metalloproteinases (MMPs) involved in the
control of ECM homeostasis (Eddy 1996). This leads to
excessive ECM accumulation and fibrosis. In addition, TGF-
β is the strongest known inducer of the EMT process in
tubule epithelial cells; this process transforms them into
profibrotic and pro-inflammatory myofibroblasts (López-
Novoa and Nieto 2009). TGF-β also seems to be involved
in the death of tubule cells. The in vivo inhibition of TGF-β,
or even of Ang II, reduces the extent of tubule cell death in
animal models of CKD (see below).

TGF-β in tubule loss

The involvement of TGF-β in tubule cell apoptosis has
been evidenced by studies showing that the inhibition of the

actions of TGF-β in vivo reduces the extent of apoptosis
seen in the tubular compartment under CKD situations.
For example, treatment of mice with an anti-TGF-β
antibody reduces tubular apoptosis in a model of kidney
damage by ureteral obstruction (Miyajima et al. 2000).
This effect might result from either direct effects of TGF-β
on tubular cells or indirect effects, such as fibrosis or
inflammation, to the induction of which TGF-β might
contribute. In this sense, some studies have reported that
TGF-β activates apoptosis in cultured tubule epithelial and
other cell lines (Bhaskaran et al. 2003; Docherty et al.
2006). However, the extent of cell apoptosis induced by
TGF-β in cultured cells is low in these systems. On this
basis, hypotheses have been proposed that either (1) the
proapoptotic effect of TGF-β only takes place under
pathological circumstances with the cooperation of other
mediators or cytokines, or (2) amplifying mechanisms of
damage are present only in vivo but are absent in in vitro
systems.

Tubule loss can also occur by EMT in which tubule cells
transform into mesenchymaloid cells, a process that has
been postulated to contribute to tubule degeneration and
renal fibrosis (López-Novoa and Nieto 2009). TGF-β is the
strongest inducer of EMT in tubule cells. TGF-β initiates
and completes the EMT process in vitro and in vivo under
determined conditions (Liu 2004). In most in vivo studies,
EMT is assessed by the appearance of fibroblastoid markers
(i.e., fibroblast-specific protein, α-SMA, or vimentin) in
tubule cells co-expressing epithelial markers, actin reorga-
nization and basement membrane disruption (Liu 2004).
Nevertheless, this is a transition state toward the acquisition
of a full phenotype underlying the behavior as a mesenchymal
fibroblastoid cell, which is used as a surrogate marker of the
extent of EMT. Three TβRIs have been implicated in TGF-β-
induced EMT, namely ALK 4, 5 and 7, of which ALK-5
seems to play the most central role in vivo. Upon receptor
stimulation, both TGF-β-activated Smad and the ILK and
ERK signaling pathways have been shown to be crucial for
EMT through the modulation of the expression of key genes.
Abrogation of TGF-β action by expression of mutant TGF-β
receptors lacking the ability to activate Smads, together with
inactive mutants of Smad-2, 3 and 4, prevent EMT-related
target gene expression, EMT and excessive ECM deposition
in cultured cells. In addition, the selective inhibition of
components of the Ras-ERK (Xie et al. 2004) and ILK (Li
et al. 2009) axis also suppresses EMT in various tumoral cell
types. In addition, the lower renal level of myofibroblast
markers (α-SMA and vimentin) in an in vivo model of
obstructive nephropathy after ERK and PI3K/Akt inhibition
is also consistent with a reduced EMT (Rodríguez-Peña et al.
2008). The Ras familiy of proteins mediates TGF-β-induced
activation of ERK (Rodríguez-Peña et al. 2008). Interestingly,
upon unilateral ureteral obstruction, EMT markers (α-SMA,
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vimentin and snail-1 and snail-2) are significantly reduced in
mice lacking H-ras compared with WT mice (Grande et al.
2010a). However, although TGF-β-induced EMT is a well-
defined process “in vitro”, several studies cast doubts about
the quantitative relevance of EMT in “in vivo” models (for a
review, see Kriz et al 2011). A detailed description of the
evidence for and against a significant role of EMT on tubule
degeneration in response to TGF-β “in vivo” is outside the
scope of this review.

Inflammation as a mechanism of tubular damage:
role of TGF-β

Injured tubular cells and immune system cells are activated by
TGF-β and other growth factors to produce inflammatory
cytokines and to unleash an inflammatory response in a
nuclear factor kappa B (NF-κB)-dependent manner. In
addition, TGF-β directly and indirectly stimulates monocyte
and macrophage infiltration (Tian and Schiemann 2009). In

Fig. 1 Effects of TGF-β leading to glomerulosclerosis during chronic
kidney disease (AGE advanced glycation end products, Angio-1
angiopoietin 1, BMbasement membrane, ECM extracellular matrix,
EndoMT endothelial to mesenchymal transition, GFB glomerular

filtration barrier, PDGF platelet-derived growth factor, ROS reactive
oxygen species, TGF-β transforming growth factor beta, VEGF
vascular endothelial growth factor)
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turn, inflammation activates tubule cells, fibroblasts and
myofibroblasts to produce ECM and amplifies fibrosis and
tubular damage (Border and Noble 1997; Tamaki and Okuda
2003). Inflammation (1) further activates renal cells to
produce TGF-β and cytokines that, in turn, stimulate
fibroblasts (Strutz and Neilson 2003) and (2) activates
macrophages, which damage tubule cells (Lenda et al.
2003) through the production of proapoptotic molecules,
such as TNF-α, reactive oxygen species and NO. However,
TGF-β is essential for the correct homeostasis of the immune
system and its surveillance function (Tian and Schiemann
2009). Indeed, TGF-β1 knock-out mice exhibit spontaneous
multifocal inflammation and deregulated inflammatory
responses (Schull et al. 1992; Kulkarni et al. 1993). However,
under pathological circumstances, an imbalance between the
opposing actions of TGF-β and other cytokines probably
causes the net effect of TGF-β to change from regulated
repair, in order to control the extent of the inflammatory
response, toward deregulated injuring inflammation.

TGF-β in tubulointerstitial fibrosis

Tubulointerstitial fibrosis is considered a central event in
the progression of CKD, independently of etiology. Even in
glomerulopathies, tubulointerstitial fibrosis correlates better
than glomerular injury with their evolution and prognosis
(Nath 1992). TGF-β is widely recognized as a strong
inducer of fibrosis in renal structures during CKD. Renal
fibrosis is thought not only to be a primary pathological
event leading to glomerular and tubular dysfunction and
degeneration but also to act as a mediator of the scarring
process that replaces lost structures by abnormal ECM in
the aftermath of a failed repair process. Nevertheless, the
mechanisms underlying the damaging action of fibrosis on
tubular cells are not well understood (García-Sánchez et al.
2010). Tubulointerstitial fibrosis is the result of an increased
deposition of ECM, resulting from an increased production
and an altered degradation of ECM components. The pro-
fibrotic effect of TGF-β results from a number of actions
including increased ECM synthesis, decreased ECM degra-
dation, resident myofibroblast activation, EMT and inflam-
mation. Although EMT has become widely accepted as a
mechanism that contributes to the development of fibrosis in
CKD, several studies suggest that unequivocal evidence
supporting the contribution of EMT to kidney fibrosis is
lacking (Kriz et al. 2011). In addition to stimulating EMT
and inflammation, TGF-β activates resident fibroblasts,
myofibroblasts and tubule epithelial cells to produce ECM
components and downregulates ECM degradation (Grande
and López-Novoa 2009). The transformation of the normal
production of ECM for the basement membrane and tissue
repair into a deleterious action is thought to be the consequence
of (1) the persistence of overstimulation and (2) the imbalance

of other homeostatic signalers such as other cytokines that
counteract the effects of TGF-β, such as human growth factor
(HGF) and bone morphogenetic protein 7 (BMP7; Zeisberg et
al. 2003; Zeisberg and Kalluri 2008).

The interstitial wound in the fibrotic kidney is formed
by excessive deposition of constituents of the interstitial
matrix (e.g., collagens I, III, V, VII and XV and fibronectin),
components restricted to tubular basement membranes in
normal conditions (collagen IV and laminin) and by de novo
synthesized proteins (e.g., tenascin, certain fibronectin iso-
forms and laminin chains; Vleming et al. 1999). Fibronectin
has chemoattractant effects for the recruitment of fibroblasts
and the deposition of other ECM components (Gharaee-
Kermani et al. 1996). Fibroblasts, myofibroblasts, macro-
phages and mesangial and tubular cells are sources of
fibronectin in inflammation and fibrogenesis (Eddy 1996;
Van Vliet et al. 2001).

In certain types of CKD, a marked reduction of renal
collagenase activity is observed. Renal fibrosis in mice with
ureteral obstruction is also the result of decreased collage-
nolytic activity (Gonzalez-Avila et al. 1988). In damaged
kidneys, the upregulation of TGF-β activation also contrib-
utes to counterbalance the natural ECM homeostatic equi-
librium by downregulating the expression of determined
MMPs and activating the expression of the MMP-inhibitor
plasminogen activator inhibitor 1 (PAI-1; Border and Noble
1997; Cheng and Grande 2002). Moreover, TIMP-1, an
endogenous tissue inhibitor of MMPs, is actively synthe-
sized by renal cells in progressive CKD (Roberts et al.
1992) and its expression is stimulated by TGF-β, TGF-α,
epithelial growth factor (EGF), PDGF, TNF-α, interleukin
1 (IL-1) and IL-6, oncostatin M, endotoxin and thrombin
(Eddy 2000).

Critical view of the tubular effects of TGF-β

Inhibition of TGF-β significantly reduces tubular fibrosis
and EMT markers and the tubular epithelial cell death seen
in many different experimental and etiologically diverse
scenarios of CKD (López-Novoa and Nieto 2009). The
latter suggests a relevant pathological role of TGF-β in
CKD progression. However, even under pathological
circumstances, TGF-β activation might also be viewed as
an element of a repair response (Massagué 1990) that, when
distorted, gives way to damage progression, which can be
understood as an epiphenomenon of repair. Not in vain, this
coincides with the critical localization and potential sentry
function of pre-active TGF-β in the ECM and basement
membranes. The pathological elements that turn the repair
process into degeneration are only partially known. The
persistence of injuring stimulation has been hypothesized to
prevail over repairing mechanisms, whose effects would
taper off over time for undetermined reasons. As a conse-
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quence, the dominance of the damaging factors would
make the homeostasis of the renal parenchyma cross over a
point of no return and install a degenerative process in a
progressively vicious circle of damage and imbalance.
Accordingly, TGF-β might be considered to be a passive
player in the outcome, which might mainly depend on the
modulation of inflammatory and fibrotic responses by the
relative level of other mediators. However, because of the
absence of modulation, under pathological circumstances,
TGF-β turns into a deleterious player and a subject of
therapeutic targeting.

TGF-β participates in most of the mechanisms being
initially activated by the damage to the tubular epithelium
as a repair response. Surviving tubule cells become
activated by (1) the insult itself, (2) death cell remains, (3)
an absence of appropriate cell-cell signaling and (4)
inflammatory mediators arising from damaged tubule cells
or activated resident macrophages (initially) and infiltrated
cells (progressively). In this setting, TGF-β is increasingly
produced and activated by all these cells and participates in
the inflammatory response and EMT. However, at some
time, myofibroblasts should re-differentiate into tubule
epithelial cells but this is not observed during progressive
tubule degeneration in CKD. Moreover, after regenerating
the intercellular scaffold and basement membranes, ECM
deposition, cell activation and inflammation should cease.
However, these events are also not observed in CKD.

Renal tissue repair is a tightly controlled process
whereby the intensity and duration of every event must be
precisely coordinated, so that cell proliferation, ECM
production and the inception and resolution of inflamma-
tion take place appropriately and in a timely fashion
(Chanson et al. 2005). The malfunction of any of these
events might send the wrong information and alter tissue
homeostasis. In this setting, TGF-β appears to have a
central pathological role, as a consequence of the absence
of an appropriate modulation and timely counterbalance of
its effects by antagonistic mediators, such as HGF and
BMP7, which converts TGF-β into a surrogate therapeutic
target. After EMT-mediated tubule cell dedifferentiation,
TGF-β locks the mesenchymal phenotype through the
expression of snail and prevents a myofibroblast mesenchy-
mal to epithelial transition (MET) to the tubule epithelial
phenotype. In mice, BMP7 counteracts this effect, the
increased ECM deposition (Zeisberg et al. 2003; Zeisberg
and Kalluri 2008) and the production of pro-inflammatory
cytokines (Gould et al. 2002). Moreover, the administration
of exogenous BMP-7 reverses moderate fibrosis in experi-
mental models of CKD. Under inappropriate modulation, the
effects of TGF-β prevail, thereby maintaining MET, inhibit-
ing tubule regeneration and promoting fibrosis. These events
further damage the renal tissue and lead to the scarring of
unrepaired areas.

Role of TGF-β in renal inflammation

Chronic renal fibrosis, even when the origin of the renal
damage is not an immune disease, has a major inflammatory
component, as it is accompanied by the overexpression of
inflammatory genes, the release of pro-inflammatory cyto-
kines, the activation of NF-κB and the infiltration of macro-
phages and lymphocytes (Grande et al. 2010b). Thus, renal
fibrosis can also be considered the end result of chronic
inflammatory reactions.

Continuous renal injury is associated with the increased
expression of the pro-inflammatory cytokines TNF-α and
IL-1 (Misseri et al. 2005; Meldrum et al. 2006) and with the
activation of NF-κB, the major inflammatory response
pathway, via increased IκB-alpha phosphorylation (Meldrum
et al. 2006). Continuous renal injury also leads to the
activation of the intrarenal renin–angiotensin system (Ruiz-
Ortega et al. 2006) and Ang II behaves as a pro-inflammatory
cytokine in the kidney by activating NF-κB (Ruiz-Ortega et
al. 2001; Wolf 2006). In addition to NF-κB, Ang II signaling,
through its receptors AT1 and AT2, also increases the
expression of other proinflammatory genes, including those
encoding IL-6, monocyte chemoattractant protein 1 and
RANTES (regulated upon activation, normal T cell expressed
and secreted; Ruiz-Ortega et al. 2001; Esteban et al. 2003).
Increased Ang II production further induces renal oxidative
stress (Zhong et al. 2011), which plays an important role in
inducing an inflammatory state as oxidative stress is a major
activator of the NF-κB pathway.

In addition to the secretion of inflammatory cytokines, the
kidney and other organs release TGF-β1 after injury
(Kisseleva and Brenner 2008]. TGF-β1 is considered a major
anti-inflammatory cytokine (Letterio and Roberts 1998) as
TGF-β1 knockout mice suffer from a lethal multifocal
inflammatory disease (Kulkarni et al. 1993). The biological
meaning of TGF-β1 release by renal cells in the damaged
kidney is probably to moderate the inflammatory reaction
and to heal the damaged tissue. Among its anti-inflammatory
functions, TGF-β1 antagonizes the proinflammatory cytokines
IL-1 and TNF-α in glomerular diseases and is a prominent
macrophage deactivator during kidney injury (Kitamura and
Suto 1997). TGF-β1 is induced by Ang II (Wolf 2006) and is
also produced by interstitial fibroblasts and infiltrating
macrophages (Diamond et al. 1998; Ding et al. 1993).

Even though TGF-β1 acts as an anti-inflammatory cytokine
to heal the injured kidney, it also promotes the development of
chronic renal disease as it plays a major role as a fibrogenic
agent, as previously described. Therefore, sustained aberrant
expression of TGF-β1 results in the pathological accumulation
of ECM material in both the glomerulus and interstitial
compartments (Bottinger 2007). TGF-β1 also has some pro-
inflammatory properties, as it functions as a chemo-attractant
for leukocytes (Wahl et al. 1987) and induces cyclooxygenase-
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2 in mesangial cells (Rodríguez-Barbero et al. 2006). The
profibrotic role of TGF-β1 is also based on being a major
contributor to the formation of myofibroblasts through the
activation of resident fibroblasts and the induction of the
transition of epithelial and endothelial cells to mesenchymal
cells (EMT; Zavadil and Böttinger 2005; Zeisberg et al. 2008).
Inflammation also seems to contribute to EMT, since Ang II
induces the synthesis of TGF-β1 and its receptors in tubular
epithelial cells (Wolf 2006).

Thus, TGF-β1, the molecule secreted to control inflam-
mation in the kidney, also promotes the development of
fibrosis (López-Novoa and Nieto 2009).

Integrative view

The preceding information reveals that TGF-β is a central
player in CKD regardless of etiology, with multiple effects in
all renal compartments. In this section, an integrated view of
all these responses during CKD inception and progression is
provided. Most renal lineages produce TGF-βwhen damaged
or activated by auto- or paracrine mediators, including
hormones, cytokines and chemokines. This local TGF-β, in
turn, acts on renal structures and exerts a mixture of repair,
physiological and pathological effects. Under pathological
circumstances, the final effect of TGF-β is deleterious for the

Fig. 2 Integrative view of the pathophysiological consequences of the
glomerular, tubular and vascular effects of TGF-β during chronic
kidney disease (ECM extracellular matrix, EMT epithelial to mesen-

chymal transition, TGF-β transforming growth factor beta, FPE&B
foot process effacement and broadening)
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kidneys. For unknown reasons, very early and probably
coinciding with trespassing over the point of no return, initial
repair actions become distorted by the pathological scenario
and turn TGF-β into a key factor of CKD progression (García-
Sánchez et al. 2010), regardless of whether the disease is
initiated in the glomeruli, the tubuli, or renal vessels. In any
case, TGF-β gains central stage at all damaged compart-
ments as they are recruited to degeneration.

Primarily, tubular diseases cause glomerular damage
through: (1) the paracrine action of pro-inflammatory and
profibrotic factors produced in the tubulointerstitial com-
partment, which include TGF-β and (2) tubular collapse
leading to the scission of the glomeruli from the tubuli
and the ulterior degeneration of the former. Similarly,
primarily glomerular diseases induce tubular damage
through: (1) increased filtration of proteins resulting from
the lesion of the GBM, (2) para-glomerular exudates
originating in glomerular sclerotic areas, (3) post glomerular
low perfusion causing tubular ischemia and (4) the action of
pro-inflammatory and pro-fibrotic mediators, including TGF-
β, which reach the tubuli through the interstitial space or the
ultrafiltrate.

As depicted in Fig. 2, TGF-β significantly contributes to
a number of key pathological events leading to renal
parenchymal degeneration and to reduced filtration and
impaired renal function. Renal dysfunction is the result not
only of renal tissue damage but also of other events that,
independently, cause vasoconstriction. At the glomerular
level, TGF-β mainly contributes to GFB alteration, fibrosis
and sclerosis, which reduce filtration and finally cause
glomerular collapse. At the tubular level, TGF-β has been
shown to participate directly and indirectly in tubule
degeneration. On the one hand, damaged tubuli shed tissue
debris to the tubular lumen, which partially or totally obstructs
them and causes filtration to decrease. On the other hand,
collapsed tubuli physically split from their glomeruli and
cancel the contribution of those nephrons to the overall
filtration (García-Sánchez et al. 2010). Finally, inflammation
acts as amechanism of damage amplification. Pro-inflammatory
cytokines activate renal cells to produce vasocontracting
mediators, such as Ang II, endothelin-1 and platelet-activating
factor (López-Novoa et al. 2010, 2011).

In perspective, because TGF-β is a central player of chronic
renal disease, it is also a potential target for pharmacological
intervention aimed at reducing or stopping CKD progression.
A number of pharmaceutical companies have identified new
ALK receptor inhibitors that are now under development for
their application to various diseases. They might indeed have
an application in the treatment of CKD progression. However,
in this case, the chronic inhibition of the actions of TGF-β
needs to be carefully tested for toxicity and side effects. In
addition to its pathological role in CKD, TGF-β exerts many
physiological effects that contribute to the homeostasis of

diverse systems, organs and tissues, including the immune
system, the cardiovascular system and bones.
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