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Abstract Transforming growth factor (TGF)-β signaling is
involved in almost all major cell behaviors under physio-
logical and pathological conditions, and its regulatory
system has therefore been vigorously investigated. The
fundamental elements in TGF-β signaling are TGF-β
ligands, their receptors, and intracellular Smad effectors.
The TGF-β ligand induces the receptors directly to
phosphorylate and activate Smad proteins, which then form
transcriptional complexes to control target genes. One of
the classical questions in the field of research on TGF-β
signaling is how this cytokine induces multiple cell
responses depending on cell type and cellular context.
Possible answers to this question include cross-interaction
with other signaling pathways, different repertoires of
Smad-binding transcription factors, and genetic alterations,
especially in cancer cells. In addition to these genetic
paradigms, recent work has extended TGF-β research into
new fields, including epigenetic regulation and non-coding
RNAs. In this review, we first describe the basic machinery
of TGF-β signaling and discuss several factors that
comprise TGF-β signaling networks. We then address
mechanisms by which TGF-β induces several responses
in a cell-context-dependent fashion. In addition to classical

frames, the interaction of TGF-β signaling with epigenetics
and microRNA is discussed.
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Introduction

Cytokines are small secreted proteins that are produced by
numerous types of cells and that play important roles in
intercellular communication to maintain order in the
organism. They elicit biological effects by binding to the
extracellular domains of specific transmembrane receptors
in the outer membrane of cells. Cytokines mediate
intercellular communication via the regulation of cell
growth and differentiation and are thus crucial for main-
taining the homeostasis of multicellular organisms. Aber-
rant regulation of cytokine signaling can therefore result in
various diseases.

The transforming growth factor (TGF)-β family is
particularly prominent among these signals (Blobe et al.
2000; Feng and Derynck 2005; Massagué 2008). TGF-β
signaling controls a diverse set of cellular processes,
including cell growth, differentiation, apoptosis, survival,
and specification of developmental fate, during embryo-
genesis and in mature tissues (Ikushima and Miyazono
2010a; Moustakas and Heldin 2009). To control TGF-β-
induced cell responses, numerous factors tightly regulate
this signaling pathway under physiological conditions
(Ikushima and Miyazono 2010b; Bierie and Moses
2006). Loss of balance of TGF-β signaling thus leads to
several pathological conditions, including malignant
tumors, fibrotic diseases, and abnormal immune reactions
(Levy and Hill 2006; Varga and Pasche 2009; Flavell et al.
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2010). Indeed, studies of clinical samples indicate that a
distortion of TGF-β signaling is one of the major causes
of several disorders. Here, we first discuss the way that (1)
cells translate TGF-β signaling into cellular responses,
and (2) TGF-β signaling and TGF-β-induced cell
responses are tightly controlled. Possible and/or estab-
lished mechanisms of the context-dependent diversity of
TGF-β-induced cell responses are also addressed. In
addition, recent research on TGF-β signaling has spread
into novel fields, including epigenetics and non-coding
RNAs. Thus, we also mention the involvement of
epigenetic regulation and non-coding RNAs in the
classical TGF-β signaling pathway.

Extracellular regulation of TGF-β signaling

Effects of TGF-β are mediated by three TGF-β ligands:
TGF-β1, TGF-β2, and TGF-β3 (Feng and Derynck 2005;
Shi and Massagué 2003). Although each of these ligands is
produced by distinct genes, they exhibit approximately
70%–80% sequence similarity. The TGF-β ligand is first
synthesized as a dimeric pro-protein (pro-TGF-β), which is
then cleaved to form the mature disulfide-bridged TGF-β
dimer. The pro-peptide has high affinity for the cleaved
mature TGF-β ligand, which is secreted from cells as a
small latent complex (ten Dijke and Arthur 2007). Since
TGF-β in this form does not have the ability to interact
with its receptor, the pro-peptide is termed the latency-
associated protein (LAP). The LAP dimer is also bound to
the latent TGF-β binding proteins (LTBPs) by disulfide
bonds, and the tri-molecular complex is termed the large
latent complex (Rifkin 2005). The dissociation of TGF-β
from the complex is a critical regulatory event and is
achieved by integrin, shear force, thrombospondin-1 (TSP-
1), some enzymes including plasmin, changes in pH, heat
treatment, radiation, and other agents. Among the four
different LTBPs, LTBP-1, 3, and 4 bind to small latent
complexes and play key roles in targeting the large latent
complex to the extracellular matrix, where active TGF-β is
released by proteolytic cleavage. Although the synthesis of
TGF-β is regulated by a variety of factors at the level of
transcription and/or mRNA stability, the generation of
active TGF-β from its latent form is also subject to
regulation.

TGF-β receptors

Activated TGF-β ligands transduce their effects through
TGF-β type I and II receptors (Ikushima and Miyazono
2010b; Wrana et al. 2008). The TGF-β type II receptor
(TβRII) is the specific receptor for TGF-β ligands. Both

type II and type I receptors are comprised of an N-terminal
extracellular ligand-binding domain, a transmembrane
region, and a C-terminal intracellular serine/threonine
kinase domain. TGF-β has high affinity for TβRII, and
upon binding the ligand, the type I receptor forms a
heteromeric complex consisting of two of each receptor
type and is activated by the type II receptor (Fig. 1). The
type I, but not type II, receptors contain a characteristic
GS domain, located N-terminal to the kinase domain.
Activation of the type I receptor involves the phosphor-
ylation of its GS domain by the type II receptor. Although
activin receptor-like kinase 5 (ALK5), also known as
TβRI, mediates TGF-β signal transduction in most types
of cells, ALK1 and other type I receptors also transduce
TGF-β signaling in certain cells, including endothelial
cells (Goumans et al. 2003; Daly et al. 2008).

TGF-β is also able to interact with proteins called
TGF-β type III receptors, which do not have intrinsic
kinase activity (Bernabeu et al. 2009). Betaglycan is a
membrane-anchored proteoglycan that facilitates binding
of TGF-β2 to TβRII (Gatza et al. 2010). Endoglin, a
glycoprotein expressed at high levels in endothelial cells,
binds to TβRII and is thought to act as an accessory
protein for the receptor complex (ten Dijke et al. 2008).
Although the function of endoglin in TGF-β signaling is
still controversial, mutations of it have been linked to
hereditary hemorrhagic telangiectasia (McAllister et al.
1994; Abdalla and Letarte 2006). In addition, endoglin
produced in a soluble form is associated with the
pathogenesis of preeclampsia (Venkatesha et al. 2006).
These findings indicate the central roles of endoglin in
controlling vascular homeostasis.

Intracellular signal transduction through Smad proteins

Once the functional TGF-β receptor complex is formed, it
regulates the activation of downstream signaling pathways.
Although several substrates for the type I receptor kinases
have been identified, the most important ones for the
transduction of TGF-β stimulation are members of the
Smad family proteins (Massagué et al. 2005; Schmierer and
Hill 2007; Derynck and Zhang 2003). Phosphorylation and
activation of the type I receptor enable the recruitment of
receptor-regulated Smads (R-Smads). The type I receptor
then phosphorylates R-Smads, allowing them to form
hetero-oligomeric complexes with the common-partner
Smad (Co-Smad) and to move into the nucleus. Of the
five R-Smads in mammals, Smad2 and Smad3 are activated
by the TβRII–ALK5 complex, whereas Smad1, Smad5,
and Smad8 are activated by the TβRII–ALK1 complex.
Interestingly, Liu et al. (2009) have recently reported that
ALK5 can directly activate Smad1/5 in certain types of
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cells. Smad4 is the only known Co-Smad in mammals.
R-Smads consist of conserved Mad homology 1 (MH1)
and MH2 domains, which are connected with a less-
conserved linker region. The C-terminus of R-Smads has
a characteristic SSXS (Ser-Ser-X-Ser) motif that is
phosphorylated by active type I receptors. Smad4
contains MH1 and MH2 domains but lacks the C-
terminal SSXS motif and, thus, is not phosphorylated
by type I receptors. Smad complexes bind specific DNA
sequences, namely 5′-AGAC-3′ or its reverse comple-
ment 5′-GTCT-3′, in the promoters or enhancers of target
genes. They interact with other DNA-binding transcrip-
tion factors, co-activators or co-repressors, and chromatin
remodeling factors to the regulatory regions of target
genes in order to regulate diverse TGF-β-induced cell
responses. TGF-β stimulation also activates intracellular
signals through non-Smad pathways, including mitogen-
activated protein kinase, PI3K-Akt, and small GTPase
pathways (Moustakas and Heldin 2005; Zhang 2009).

Context-dependent diversity of TGF-β-induced cell
responses

At the core of this signaling pathway, TGF-β induces its
membrane receptors directly to activate Smad proteins,
which then form transcriptional complexes to control target
genes. The aspect that makes this system complex is that
these complexes activate or repress numerous target genes
at the same time in a tightly regulated fashion. Furthermore,
TGF-β stimulation induces numerous cell responses in a
cellular context-dependent fashion (Roberts and Wakefield
2003; Bierie and Moses 2006). For example, TGF-β
promotes cell proliferation in certain cellular contexts but
inhibits it in most others (Ikushima and Miyazono 2010a).
This cytokine plays crucial roles in the maintenance of the
tumorigenic activities of some types of cancer stem cells
(Ikushima et al. 2009; Peñuelas et al. 2009; Anido et al.
2010; Naka et al. 2010) but promotes the loss of
tumorigenicity in others (Tang et al. 2007; Ehata et al.
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2011). The cells making up one human body are all derived
from a single cell, even if they are abnormal. However, they
exhibit different responses to TGF-β because of slight but
crucial differences. Moreover, even in the same type of cell,
the cell responses mediated by TGF-β differ depending on
environmental factors. Because of this inherent diversity,
TGF-β-based therapeutic strategies are considered com-
plex. Here, we discuss proposed or established mechanisms
responsible for the chaotic diversity of TGF-β signaling.

Signal cross-talk

TGF-β is able to induce certain cell responses, under
conditions including other types of signaling, but fails to
induce the same responses without such signaling (Guo and
Wang 2009). Cross-interaction with additional signaling is
thus required for some TGF-β-induced cell responses
(Fig. 2). Many signaling pathways have been reported to
exhibit cross-talk with the TGF-β signaling pathway (Luo
2008; Zhang 2009); here, we discuss cross-talk with the
Wnt, p53, and Ras signaling pathways.

Wnt signaling plays diverse roles in regulating
numerous cell responses, including cell proliferation,

differentiation, migration, and survival (Kestler and Kühl
2008; Logan and Nusse 2004). Canonical Wnt signaling is
mediated by β-catenin, which functions as a transcription
co-factor and is also essential for the formation of
adherence junctions between cells through its interaction
with cadherins. In the absence of Wnt, cytoplasmic β-
catenin is degraded through glycogen synthase kinase
(GSK)-3β-mediated serial phosphorylation and subse-
quent polyubiquitination, which keeps the Wnt pathway
in an "OFF" state. The binding of Wnt ligand to its
receptor Frizzled (Fz) and co-receptor LRP5/6 leads to
GSK-3β inactivation and β-catenin stabilization. The
cytoplasmic accumulation of β-catenin promotes its
translocation into the nucleus, where it binds the lympho-
cyte enhancer factor/T-cell transcription factor (Lef/TCF)
family of transcription factors and turns the Wnt pathway
“ON”. The most common format of cross-talk between the
TGF-β and Wnt signaling pathways occurs in the nucleus,
where the Smads and Lef/β-catenin synergistically regu-
late a set of shared target genes (Labbé et al. 2000, 2007;
Hussein et al. 2003; Sasaki et al. 2003). These two
pathways are also linked by protein interactions in the
cytoplasm (Tang et al. 2008; Han et al. 2006; Liu et al.
2006; Edlund et al. 2005; Furuhashi et al. 2001).
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Fig. 2 “Signal cross-talk” mod-
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stream transducers of TGF-β
signaling and induce a certain
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Perturbations of TGF-β signaling have been strongly
implicated in cancer progression. TGF-β can play both
tumor-suppressive and tumor-promoting roles and is now
generally accepted to act as an anti-oncogenic factor in the
early phase of tumorigenesis, although it can be converted
to a pro-oncogenic factor during cancer progression
(Roberts and Wakefield 2003; Bierie and Moses 2006).
This switching of TGF-β from an anti-oncogenic factor to a
pro-oncogenic factor might be induced by various mecha-
nisms. Adorno et al. (2009) have reported that additional
mutation of p53 plays a role in this switching. In the early
stages of tumorigenesis, TGF-β inhibits the proliferation of
tumor cells in concert with wild-type p53 as an anti-
oncogenic factor. In contrast, in the later stages, Smad
complexes function cooperatively with mutant p53 to
abrogate the abilities of p63 to suppress sharp-1 and cyclin
G2 expression and to inhibit metastasis. Indeed, the
expression of mutant p53 in noninvasive tumor cells
enhances the pro-invasive and migratory effects of TGF-
β, whereas the suppression of mutant p53 expression in
aggressive tumors impairs their ability to metastasize.

TGF-β induces epithelial-mesenchymal transition
(EMT), in which epithelial cells acquire mesenchymal
characteristics (Thiery et al. 2009). Some transcription
factors, including Snail, Slug, Twist, δEF1/ZEB1, and
SIP1/ZEB2, are induced by TGF-β signaling and regulate
the expression of E-cadherin and other EMT-related genes.
In certain cells, oncogenic Ras and TGF-β signaling
pathways have been shown to induce EMT cooperatively
(Oft et al. 1996, 2002). TGF-β alone can only weakly
induce the expression of Snail and repress that of E-
cadherin; however, oncogenic Ras signaling enhances the
expression of Snail induced by TGF-β and synergistically
induces EMT (Horiguchi et al. 2009).

In this fashion, TGF-β-induced cell responses can be
determined by cooperatively acting signaling pathways.

Co-factors

Since the affinity of the activated Smad complex for the
Smad-binding element (SBE) is insufficient to support an
association with promoters of target genes, Smad com-
plexes are associated with other DNA-binding transcription
factors to regulate gene expression. Furthermore, the
combination of the direct interactions of Smads with DNA
and with sequence-specific DNA-binding transcription
factors yields the selectivity of interaction between Smad
complexes and the regulatory promoter sequences. Various
families of transcription factors, such as the forkhead,
homeobox, zinc-finger, activator protein 1, Ets, and basic
helix-loop-helix (bHLH) families, serve as Smad partners
(Ikushima et al. 2008; Koinuma et al. 2009a, b). The

juxtaposition of an SBE at variable distances from the
sequence, to which the Smad-interacting transcription
factor binds, allows selection of a subset of promoter
sequences to which the Smad transcription complexes bind
with high affinity. Each Smad-cofactor combination targets
a particular set of genes, which is determined by the
presence of cognate binding sequence element combina-
tions in the regulatory regions of target genes. Gene
responses induced by TGF-β are thus classified by groups
of genes that are simultaneously regulated by a common
Smad-cofactor combination. A group of genes jointly
controlled by a given Smad-cofactor complex is denoted a
“synexpression group”. Cells of different types or those
exposed to different environments contain distinct reper-
toires of transcriptional partners for Smads and link their
cellular context to their responses to TGF-β (Fig. 3).

A novel negative regulator of TGF-β signaling, human
homolog of maternal Id-like molecule (HHM), has been
demonstrated to suppress TGF-β signaling in a cell-
response-selective fashion (Ikushima et al. 2008; Seto et
al. 2009). Among the several cell responses induced by
TGF-β, cell cycle arrest is repressed by HHM, but EMT is
not. HHM bins to DNA-binding transcription factor Olig1
(oligodendrocyte transcription factor 1), a novel Smad-
binding cofactor, and abrogates the binding of Olig1 to
Smad proteins. Olig1 and R-Smads interact with each other
on chromosomes and synergistically promote the expres-
sion of TGF-β target genes whose promoter regions have
Olig1-binding sequence(s) and Smad-binding sequence(s)
in close vicinity. HHM interferes with the interaction
between Olig1 and the activated Smad complex and, as a
consequence, inhibits the gene expression of the Olig1-
Smad synexpression group at the transcriptional level.
Since HHM interacts with some but not all Smad-binding
transcription factors, HHM abrogates only a subset of
Smad-cofactor complexes, including the Olig1-Smad com-
plex. HHM thus inhibits TGF-β-induced cell responses,
which are controlled by Smad-cofactor synexpression
groups targeted by HHM, but fails to affect cell responses,
which are regulated by Smad-cofactor synexpression
groups not targeted by HHM.

The transcriptional cooperativity of Smad complexes
with a variety of DNA-binding transcription factors thus
creates marked complexity in the transcriptional regulation
of target genes.

Genetic alterations

Although all cells except immune cells have nearly
identical blueprints, or genomes, under physiological
conditions, cancer cells have a variety of genetic alterations
conferring survival advantage on them. Deletion or ampli-
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fication of TGF-β target genes in cancer cells alters their
responsiveness to TGF-β stimulation (Fig. 4). Although
TGF-β up-regulates the expression of p15Ink4b, one of the
tumor suppressor genes, to inhibit cell proliferation (Han-
non and Beach 1994), a subset of glioma cells sustains
homozygous deletion of the p15Ink4b locus on chromosome
9p21 (Jen et al. 1994). Loss of p15Ink4b attenuates the anti-
oncogenic effects of TGF-β, and glioma cells might benefit
from host- and/or tumor-derived TGF-β stimulation.

Thus, genetic alterations of downstream genes modify
the cell responses induced by TGF-β and contribute to the
cellular context-specific plasticity of TGF-β signaling.

Epigenetics

Classical genetic processes are not sufficient to establish an
organism. For proper development and cell functioning,

epigenetic phenomena are absolutely required for the
control of gene expression (Hirabayashi and Gotoh 2010;
Ordovás and Smith 2010). In addition to genetic mecha-
nisms, the gene expression and cell responses induced by
TGF-β stimulation are regulated by epigenetic systems,
including DNA methylation and post-translational histone
modulation (Fig. 5).

DNA methylation is one of the most intensely studied
epigenetic modifications in mammals and has a large
impact on molecular pathophysiology and normal cell
physiology (Esteller 2008; Suzuki and Bird 2008).
Indeed, tumor cells are characterized by a different
methylome from that of normal cells (Kulis and Esteller
2010). Interestingly, both hypo- and hypermethylation
events can be observed in cancer. For instance, two cell-
cycle-related genes, p16INK4a and p15INK4b, undergo DNA
methylation-mediated silencing in various types of cancer,
leading to tumor development (Kulis and Esteller 2010).
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On the other hand, a global decrease in methylated CpG
content contributes to genomic instability and to the
activation of silenced oncogenes.

The regulation of gene expression by TGF-β can be
affected by DNA methylation status. TGF-β induces
platelet-derived growth factor-B (PDGF-B) expression in
glioblastoma U373MG cells but fails to affect it in another
glioblastoma cell line, U87MG cells. TGF-β thus induces
the proliferation of U373MG cells but inhibits that of
U87MG cells (Bruna et al. 2007). This difference can be
explained, at least in part, by the DNA methylation of SBEs
of the PDGF-B promoter. In addition, hypomethylation of
the PDGF-B promoter is associated with poor prognosis in
glioma patients. DNA methylation status in cells can thus
determine whether a certain cell response is controlled by
TGF-β.

Covalent modification of conserved residues in core
histones by acetylation, phosphorylation, methylation,
ADP-ribosylation, ubiquitination, and sumoylation is a
reversible post-translational modification and is thought to
be an important mechanism by which cells regulate
chromatin accessibility and the function of chromatin
DNA (Rice and Allis 2001). Thus, epigenetic de-
regulation involving histone-modifying complexes and
histone marks might be an important mechanism underly-
ing the development and progression of diseases (Sawan
and Herceg 2010). Furthermore, recent research has
demonstrated that different types of cells might have
specific patterns of histone modifications (histone modifi-
cation signatures), which cause cellular context-dependent
behaviors of cells (Lee et al. 2010). Indeed, the modifica-
tion of histones varies drastically during tumorigenesis, and
the disruption of many chromatin-modifying proteins is
associated with the formation of various malignant tumors
(Esteller 2007).

Differences in the histone status of promoters and
enhancers of target genes might lead to alterations in the
TGF-β-mediated transcription profile, resulting in distinct
TGF-β-induced cell responses. Regulatory T (Treg) cells
function as a safeguard against autoimmunity and immune
pathology (Sakaguchi et al. 2010), and TGF-β signaling
plays important roles in the induction of Treg cells through
the stimulation of the expression of the transcription factor
Foxp3, which confers Treg cell function (Yoshimura et al.
2010). Di- and trimethylation of lysine 4 of histone H3
(H3K4me2 and −3) near the Foxp3 transcription start site
and within the 5’ untranslated region is lost as a result of T
cell receptor (TCR) stimulation and PI3K/Akt/mTOR
activity, as a consequence of which the ability of TGF-β
to induce Foxp3 expression is abrogated (Sauer et al. 2008).
Post-translational histone modification status in cells can
thus determine the ability of TGF-β to induce a certain cell
response.

Non-coding RNA

Interactions of TGF-β signaling and non-coding RNA
occur at various levels. microRNAs (miRNAs) are small
non-coding RNAs that modulate diverse biological func-
tions through the repression of target genes (Filipowicz et
al. 2008; Winter et al. 2009). Recent studies have
demonstrated that Smad complexes play a regulatory role
in the processing of miRNA in the nucleus (Hata and Davis
2009). During the process of the maturation of miRNA, the
first cleavage after the transcription of the miRNA gene is
catalyzed by the RNase III enzyme Drosha, which
generates precursor miRNA from primary miRNA (Davis-
Dusenbery and Hata 2010). Davis et al. (2008, 2010) have
showed that the knockdown of the R-Smads prevents the
induction of mature miR-21 and pre-miR-21, although no
alteration in pri-miR-21 transcription has been detected.
Furthermore, co-immunoprecipitation and RNA-
immunoprecipitation studies have confirmed that Smads
are present in a complex with Drosha and the pri-miR-21
hairpin following TGF-β stimulation. The binding of
Drosha to pri-miR-21 is also elevated following TGF-β
treatment. These findings indicate that Smad complexes
promote the association of Drosha with a subset of miRNA
hairpins, resulting in the facilitation of the processing of the
miRNAs, and that TGF-β can regulate gene expression not
only through the direct transcriptional regulation of target
genes, but also through miRNA processing.

Non-coding RNAs also contribute to the context-
dependent diversity of TGF-β-induced cell responses
(Singh and Settleman 2010). Cells of different cell types
or cells exposed to different conditions express diverse
repertoires of non-coding RNA (Lu et al. 2005), and TGF-
β stimulation thus produces context-specific cell responses.
Even when TGF-β stimulation activates promoter and/or
enhancer regions to the same degree in two different
contexts, differences in post-transcriptional regulation can
result in differences in the levels of expression of proteins
and hence in different cell responses to TGF-β stimulation
(Fig. 6).

Two miRNA clusters, miR-17-92 and miR-106b-25,
have been reported to affect the TGF-β signaling pathway
(Petrocca et al. 2008; Ventura et al. 2009). The miR-17-92
cluster is composed of miR-17, miR-18a, miR-19a, miR-
20a, miR-19b-1, and miR-92a-1. Tumor-promoting roles
have been suggested for it based on its frequent amplifica-
tion and overexpression in small-cell lung carcinoma and
diffuse large B cell lymphoma. The miR-106b-25 cluster
contains the highly conserved miR-106b, miR-93, and miR-
25, which accumulate in different types of cancer, such as
neuroblastoma, gastric cancer, and multiple myeloma.
Recent studies have unveiled the functional involvement
of miR-17-92 and miR-106b-25 clusters in TGF-β-induced
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apoptosis and cell cycle arrest. They silence two main
downstream effectors playing central roles in these cell
responses: the pro-apoptotic gene Bim and the cyclin-
dependent kinase inhibitor p21Waf1. Furthermore, over-
expression of miR-25 inhibits TGF-β-induced apoptosis,
and overexpression of miR-106b and miR-93 prevents
TGF-β-mediated cell cycle arrest. These reports indicate
that the profiles of expression of miR-17-92 and miR-106b-
25 clusters can determine whether TGF-β signaling has
tumor-suppressive effects.

The miR-17-92 cluster is also involved in the post-
transcriptional regulation of some of the regulatory compo-
nents in TGF-β signaling. This cluster targets Smad4 and
TβRII and, as a result, shuts down this signaling pathway
(Dews et al. 2010; Mestdagh et al. 2010). In addition,
enforced expression of miR-17-92 has been demonstrated
to result in impaired gene activation by TGF-β in
glioblastoma cells (Dews et al. 2010) and neuroblastoma
cells (Mestdagh et al. 2010).

TGF-β-induced EMT, in which epithelial cells acquire
mesenchymal characteristics, has been reported to be
regulated by the miRNA-200 family (miR-200a, miR-
200b, miR-200c, miR-141, and miR-429; Gregory et al.

2008; Korpal et al. 2008; Burk et al. 2008; Park et al.
2008). These miRNAs cooperatively interfere with expres-
sion of δEF1/ZEB1 and SIP1/ZEB2, which are transcrip-
tional repressors of E-cadherin induced by TGF-β and
involved in EMT. Manipulation of miR-200 family expres-
sion suppresses EMT and induces the opposite change,
namely mesenchymal-epithelial transition. Since the levels
of expression of the miR-200 family might vary from cell
to cell, they determine, at least in part, at downstream gene
levels whether TGF-β induces EMT. TGF-β has also been
demonstrated to induce miR-155 expression through the
Smad pathway, which in turn regulates epithelial plasticity
by targeting RhoA and promotes TGF-β-mediated EMT as
a result of the dissolution of tight junctions (Kong et al.
2008).

TGF-β-induced miRNAs also play important roles in
cancer stem cells. TGF-β up-regulates miR-181 at the post-
transcriptional level in breast cancer cells. miR-181 targets
a tumor suppressor (ataxia telangiectasia mutaed, ATM)
and maintains the breast cancer stem cell population (Wang
et al. 2011).

PDGF-BB antagonizes the effects of TGF-β in certain
cells, including smooth muscle cells, and Chan et al. (2010)
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Fig. 6 “Non-coding RNA”
model. In Context 2, transcribed
mRNAs of TGF-β target genes
are negatively regulated by non-
coding RNA (ncRNA). In Con-
text 1, such ncRNA is not
expressed, resulting in the
translation of the mRNAs
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have reported that this antagonism is mediated in part via
the function of miR-24. However, PDGF-BB induces the
expression of miR-24, which in turn down-regulates
Tribbles-like protein-3 (Trb3). Trb3 has been shown to
induce the degradation of Smurf1 (Chan et al. 2007), and
repression of Trb3 by miR-24 therefore results in the
reduced expression of Smad proteins and the attenuation of
TGF-β and bone morphogenetic protein signaling.

The interaction of TGF-β signaling and miRNAs also
contributes to the regulation of renal function. TGF-β
activates prosurvival PI3K-Akt signaling in glomerular
mesangial cells by inducing the expression of miR-216a
and miR-217, which target the phosphatase and tensin
homolog (PTEN; Kato et al. 2009).

Concluding remarks and perspectives

TGF-β has been studied with regard to the regulation of
intercellular communication for over three decades. The
intracellular TGF-β signal transduction pathway has also
been vigorously investigated, and a large number of studies
have elucidated its simple but well-organized mode of
transmission. At the core of this signaling pathway, TGF-β
induces its membrane receptors directly to activate Smad
proteins, which then form transcriptional complexes to
control target genes. One crucial question concerning the
TGF-β signaling pathway is how such a simple signal
transduction pathway triggers multiple behaviors in cellular
context-dependent fashion, i.e., how does TGF-β induce
different responses in two different types of cells, despite
their derivation from a single cell and possession of
identical genetic makeup?

This question has been answered in part in terms of the
classical frames: cross-interaction with other signaling
pathways, different repertoires of Smad-binding transcrip-
tion factors, and genetic alterations, especially in cancer
cells. Nevertheless, the question remains largely unan-
swered, and recent research has added new frames to the
field of intracellular TGF-β signal transduction.

The importance of epigenetic regulation in the develop-
ment and maintenance of the human body is indicated by
its disturbance in several types of diseases. Not surprising-
ly, gene expression and cell responses induced by TGF-β
stimulation are regulated by epigenetic systems. Dynamic
epigenetic changes determine an “open conformation” or
“closed conformation” of chromatin status on TGF-β target
genes; this is directly reflected in the induction of certain
cell responses by TGF-β. Thus, differences in the epige-
netic map can, at least in part, explain the cellular context-
dependent diversity of TGF-β-induced cell responses.

Another new frame of intracellular signal transduction is
its regulation by non-coding RNAs. The subtraction of

transcribed mRNAs has added a novel paradigm to the
regulation of TGF-β signal transduction, and recent
research has demonstrated that interactions of TGF-β
signaling and non-coding RNA occur at various levels. In
addition to changes in non-coding RNA repertories by
TGF-β stimulation at the transcriptional level, the TGF-β-
Smad pathway is involved in the process of maturation of
miRNAs. On the other hand, TGF-β-mediated cell
responses, including cell proliferation and EMT, are
affected by non-coding RNAs through direct and/or indirect
modulation of TGF-β signaling.

The field of research into TGF-β signaling is thus still
spreading. In addition, recent research has added new
dimensions to the TGF-β field. Further work is needed to
obtain a complete TGF-β map for the elucidation of the
mechanisms of TGF-β-related diseases and for the devel-
opment of TGF-β-based therapeutic strategies.
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