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Abstract Damage-associated molecular patterns (DAMPs)
comprise intracellular molecules characterized by the
ability to reach the extracellular environment, where they
prompt inflammation and tissue repair. The high-mobility
box group 1 (HMGB1) protein is a prototypic DAMP and
is highly conserved in evolution. HMGB1 is released upon
cell and tissue necrosis and is actively produced by immune
cells. Evidence suggests that HMGB1 acts as a key
molecule of innate immunity, downstream of persistent
tissue injury, orchestrating inflammation, stem cell recruit-
ment/activation, and eventual tissue remodeling.
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Introduction

Innate immunity encompasses an immediate and stereotyp-
ical response to diverse events that share the potential to
jeopardize cell and tissue integrity. Immunologists have,
until recent years, focused on the innate response elicited
by microorganisms. Protection against invading microbes
relies on the recognition of the molecular structures shared
by pathogens, referred to as pathogen-associated molecular
patterns (PAMPs; Janeway 1992). Dedicated pattern-

recognition receptors (PRRs) recognize PAMPs and thus
allow them to identify pathogens. Most innate immune cells
express PRRs. PRR activation in turn recruits several
signaling pathways. As a consequence, PAMP recognition:

(1) promotes the production of soluble inflammatory mole-
cules, including cytokines and chemokines, which recruit and
locally activate inflammatory leukocytes (Nathan 2002), with
the inflammatory cells acquiring the ability to terminate the
pathogen and any cells that had been infected;
(2) elicits an acute phase response, with the generation and
release of conserved soluble pattern recognition receptors
(Manfredi et al. 2008a), which locally tune and regulate the
potentially noxious effects of leukocyte activation;
(3) favors the migration of antigen-presenting cells, in
particular dendritic cells (DCs), to secondary lymphoid organs,
where they productively activate naive T cells. The clonal
expansion of antigen-specific T cells is the basis of an adaptive
immunological response, characterized by specificity for the
pathogen and by memory; expanded clones retain the ability to
react faster and more effectively in the case of a further
encounter with the microbe on future occasions (Pulendran et
al. 2001). The effect of PAMP recognition is not only
quantitative; depending on the specific array of PRRs, antigen
presentation in lymphoid organs results in the preferential
expansion of lymphocytes committed toward a Th1, Th2,
Th17, or regulatory T-cell fate, therefore better suited to
enforce protective immunity effective against diverse
microbes, to promote inflammation and autoimmunity, or to
establish tolerance (Manfredi et al. 2009).

Sterile inflammation, which occurs as a consequence of
tissue necrosis, even in the absence of pathogens, allows
effective clearance of necrotic cells and debris, thus prevent-
ing the dangers (Matzinger 2002) associated to residual
uncleared material (Munoz et al. 2010a) and enforcing
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effective regeneration programs, with eventual tissue healing.
Inflammation, in particular, sustains the secretion of growth
and survival factors by bystander tissue cells that have not
been directly damaged; this in turn recruits and activates local
precursor and stem cells (Shaw and Martin 2009). Novel
extracellular matrix assembly, via deposition by fibroblasts
and degradation by activated macrophages, further contributes
to eventual healing. Complex syndromes, including general-
ized sterile inflammation and systemic inflammatory re-
sponse syndrome on one hand, and possibly specific features
of autoimmune systemic rheumatic diseases, represent part
of the price for the protection that inflammation provides
(Banchereau and Pascual 2006; Pisetsky et al. 2008;
Hreggvidsdottir et al. 2009; Pisetsky and Ronnblom 2009).
Specifically, damage-associated molecular patterns (DAMPs)
or alarmins are intracellular molecules that are released during
cell and tissue necrosis and are endowed with the ability to
elicit inflammation and, possibly as a direct consequence, both
tissue regeneration and activation of acquired T-cell-dependent
protective immune (and autoimmune) responses (Oppenheim
and Yang 2005; Lotze et al. 2007; Bianchi and Manfredi
2009; D. Yang et al. 2010).

In real-life, sterile injuries readily become infected. Con-
versely, infection is associated with cell death and therefore
with the release of DAMPs, with the specific features and
extent of the inflammatory response. Here, we discuss, in
particular, the ability of the best-characterized endogenous
DAMP, the high-mobility group box 1 protein (HMGB1), to
contribute to the innate responses in injured and/or infected
peripheral tissues. HMGB1 is mostly located in the nucleus of
living cells. Its structure (Fig. 1) justifies its efficacy at bending
DNA, thus promoting the assembly of proteins on specific
targets. Moreover, it is possibly involved in the ability of
HMGB1 to form biologically active complexes with diverse
substrates, which are heterogeneous in terms of physico-
chemical and biological properties (see below).

The HMG family

HMGB1 is an abundantly occurring parent form of HMG
proteins. Its name indicates its ability to migrate quickly in
Triton-urea and polyacrylamide gels, a feature that reflects the
high content of charged amino acid residues and that
interestingly also reflects its “temperament” in the nucleus of
living cells, where it is highly motile. Hmgb1 is located on the
13q12 human chromosome. The gene consists of six exons
that encode for a 215-amino-acid polypeptide. It has a large
sequence consensus in all animal species (Sessa and Bianchi
2007). Mammals have several genes, including Hmgb1,
Hmgb2, and Hmgb3, which express similar (>80% identity)
proteins. They code for proteins with a molecular mass of
around 25 kDa, two DNA-binding domains (referred to as

box A and box B), and a long acidic carboxy-terminal region.
HMGB proteins are not redundant, as demonstrated by triple
HMGB silencing (Yanai et al. 2009). HMGB1 proteins from
all mammals are virtually identical (>99%), implying that
each single residue is under selective pressure; HMGB2 and
HMGB3 are also strongly conserved (Stros 2010). A shorter
HMGB4 protein, devoid of the acidic tail and possibly
endowed with specific nuclear roles, has also been recently
identified (Catena et al. 2009).

HMGB1 has been extensively studied during the last two
decades. So far, other members of the family have received
less attention. Embryos express high levels of both
HMGB1 and HMGB2 proteins. In contrast, HMGB1 is
expressed in almost all nucleated cells of adult animals (and
not only adults; see Rouhiainen et al. 2000) and HMGB2 in
testis and lymphoid organs (Muller et al. 2004). Moreover,
HMGB2 is expressed in the superficial zone of articular
cartilage, where it plays a protective role during aging
(Taniguchi et al. 2009). HMGB2 has been further charac-
terized during the last two years as a chromatin protein
(Stros 2010; Taniguchi et al. 2009; Ugrinova et al. 2009;
Tian et al. 2007; Lee et al. 2010). Moreover, HMGB2 plays
a role in cell death and inflammation (Pusterla et al. 2009;
Krynetskaia et al. 2009; Wixted et al. 2010) thanks to its
mitogenic and chemoattractant activities (Pusterla et al.
2009) and to its putative involvement in the response to
oxidative stress (Lee et al. 2010). HMGB proteins 1, 2, and
3 share the ability to bind to nucleic acids and are required
for type-I interferon and inflammatory cytokine induction
by DNA or RNA (Yanai et al. 2009; see also below).

HMGB1: a molecule in motion

The positively charged DNA-binding domains (A and B
boxes) of HMGB1 contain nuclear-localization signals.
Interestingly, they seem to have distinct extra-cellular
functions: the A box is an antagonist of B box pro-
inflammatory activity (Li et al. 2003). The tail specifically
interacts with the two boxes and influences their ability to
bind to DNA (Knapp et al. 2004).

HMGB1 is ubiquitously expressed; its level and sub-
cellular localization depend on the cell type and state of
activation, with more differentiated cells often being
characterized by a lower content of the protein (Muller et
al. 2004). HMGB1 expression is mostly nuclear; however,
under certain conditions, the molecule reaches the cyto-
plasm and thereafter the extracellular environment. Sche-
matically, HMGB1 leaves the nucleus either because:

(1) cells die via an unscheduled accidental pathway that is
associated with the loss of membrane compartmentalization
and with the release of intracellular components;
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(2) cells undergo activation and actively secrete HMGB1.
During innate immune responses, leukocytes secrete intracel-
lular components, thus artificially recreating the environment
associated with cell necrosis, a primeval condition associated
with immune activation (Bianchi and Manfredi 2004, 2007).

Monocytes, macrophages and immature DCs secrete
HMGB1 in response to lipopolysaccharide (LPS), tumor
necrosis factor α (TNFα), or interleukin-1β (IL-1β)
stimulation (Wang et al. 1999; Dumitriu et al. 2005a, b,
c). Post-translational modifications, including acetylation,
phosphorylation, methylation, and oxidation influence the
function of extracellular HMGB1 (Gardella et al. 2002;
Bonaldi et al. 2003; Hoppe et al. 2006; Youn and Shin
2006; Ito et al. 2007; see also below).

Acetylated lysines at positions 2 and 11 are a feature of
HMGB1 released by dying cells. In contrast, lysines
throughout the entire length of actively secreted HMGB1 are
acetylated (Bonaldi et al. 2003), including those within the
27–43 and 178–184 domains that behave as nuclear localiza-
tion signals. Acetylation might influence the intracellular
localization of the HMGB1 in activated cells, facilitating
access to “secretory” lysosomes, a group of intracellular

vesicles whose content is released into the extracellular
environment in the presence of appropriate secretagogs
(Bianchi and Manfredi 2007; Wang et al. 1999; Dumitriu et
al. 2005a, b, c; Gardella et al. 2002). This pathway is
apparently dominant in myeloid cells. Other cells, including
neurons, also actively secrete HMGB1 in the absence of
bona-fide secretory lysosomes (Rauvala and Rouhiainen
2010). Other modifications, including acetylation and phos-
phorylation possibly facilitate nuclear/cytoplasmic shuttling
(Youn and Shin 2006). Phosphorylation is calcium-dependent
and is mediated by the classical protein kinase C (Oh et al.
2009). Mono-methylation of lysine at position 42 also occurs
post-translationally. Methylated HMGB1 is less effective at
DNA binding and, apparently as a consequence, passively
diffuses in the cytoplasm of neutrophils (Ito et al. 2007).

A redox-regulated biological function?

HMGB1 function in the environment depends on its
functional integrity. In turn, environmental cues directly
target and modify HMGB1. Oxidative stress is an early
player during acute inflammatory response and results in

Fig. 1 High-mobility group box 1 (HMGB1) domains and putative targets for post-translational modifications
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the formation of reversible covalent disulfide bonds
between thiols (Rubartelli and Sitia 2009; Carta et al.
2009). HMGB1 contains three cysteine residues at positions
23, 45, and 106. Upon mild oxidation, cysteines at
positions 23 and 45 establish an intra-molecular disulfide
bridge, which is reverted under reducing conditions (Hoppe
et al. 2006). In contrast, the cysteine at position 106
contributes to the nuclear localization of the molecule
(Hoppe et al. 2006). Moreover, the residue is required for
binding to the Toll-like receptor 4 (TLR4) PRR on the
macrophage plasma membrane and for HMGB1-elicited
cytokine secretion (H. Yang et al. 2010). So far, the precise
effect of the redox state on this interaction has not, to the
best of our knowledge, been investigated.

The latter issue is relevant; a regulated change of the
intra- and extra-cellular redox state characterizes two events
in which HMGB1 plays a key role, i.e., cell death and
inflammation. Necrotic cells are a primary source of
HMGB1 (Scaffidi et al. 2002; Raucci et al. 2007). HMGB1
released by necrotic cells appears to be oxidized: the
molecular pathway by which oxidation takes place has not
so far been elucidated (Urbonaviciute et al. 2009).
Eventually, HMGB1 also undergoes oxidation in cells that
die via apoptosis. Apoptosis is associated with the
generation of reactive oxygen species (ROS) by mitochon-
dria, which in turn oxidize the cytosine at position 106
(Kazama et al. 2008). As a consequence, HMGB1
extracellular functions are dramatically altered. This aspect
has been studied verifying, in particular, the ability of the
molecule to activate or tolerate the acquired immune
response (Kazama et al. 2008), a feature that primarily
depends on the action of HMGB1 on DCs (Manfredi et al.
2009; Dumitriu et al. 2007; Yang et al. 2007). This is of
particular importance, since HMGB1 associates with
nucleosomes that are generated during apoptotic cell death
and that represent a key autoantigen in systemic autoim-
munity (Urbonaviciute et al. 2008; Munoz et al. 2010b).
The central role of HMGB1 in autoimmune diseases has
been the topic of excellent recent reviews (Pisetsky et al.
2008; Abdulahad et al. 2010; Andersson and Harris 2010;
Pisetsky 2010) and will not be discussed further here.

ROS generation is a common occurrence in living cells.
In particular it occurs after activation of PRRs expressed by
inflammatory cells. As a consequence, antioxidant
responses are activated, which contribute to limit excessive
oxidation of the inflamed environment (Rubartelli and Sitia
2009; Carta et al. 2009). The net effect of oxidant and anti-
oxidant events might be important, given the exquisite
sensitivity of HMGB1 to oxidation. An oxidized environ-
ment by inactivation of HMGB1 has been proposed to
restrict the action of the molecule both temporally and
spatially, thus focusing it when and where it is needed.
Conversely, a reduced environment might contribute to

maintaining and prolonging HMGB1 bioactivity (Carta et
al. 2009). An interesting feedback loop has been recently
identified: HMGB1 promotes the survival and the activa-
tion of eosinophils, thus possibly providing a molecular
explanation for their preferential recruitment within necrotic
tissues. In turn, eosinophils respond to HMGB1 with an
oxidative burst, and the generated gaseous species inacti-
vate HMGB1 (Lotfi et al. 2009) possibly limiting the
immunogenicity of antigens associated with necrotic tis-
sues, including specifically tumor-associated antigens.
Further support for a role of the redox potential in finely
tuning the extracellular actions of HMGB1 is provided by
data on the role of apurinic/apyrimidinic endonuclease 1/
Redox factor-1 (APE1), a multifunctional protein that
regulates the reduction-oxidation balance on HMGB1
release and on events downstream of HMGB1 recognition,
including the activation of p38 and c-Jun N-terminal
kinase, ROS generation, cytokine secretion, and
cyclooxygenase-2 expression by monocytes and
macrophage-like cells (Yuk et al. 2009).

Bound (or unbound) HMGB1

HMGB1 per se is well established as having mitogenic and
chemoattractive properties (Rouhiainen et al. 2007). More-
over, HMGB1 triggers the release of cytokines from
inflammatory leukocytes, although the pro-inflammatory
effect of the recombinant molecule has been discussed
(Rouhiainen et al. 2007). The reasons for these discrep-
ancies have not so far been identified. Post-translational
modification of the molecule, depending on the character-
istics of the cells or on the environmental conditions (see
above), could well yield molecules endowed with only
partially overlapping extracellular functions.

The issue may be even more complex in vivo. HMGB1
is a molecule that “loves company” (Bianchi 2009) and has
promiscuous habits. It forms relatively stable multi-
molecular complexes with various substrates molecules.
Some ligands per se interact, on cells, with receptors of the
innate immunity system, including nucleic acids, PAMPs,
and selected cytokines and chemokines. HMGB1-
containing complexes are likely to be more the rule than
an exception in inflamed tissues, being by definition
characterized by the presence of cytokines, of microbial
products, and of by-products of dying and activated cells.
HMGB1 association stabilizes and complements the bio-
logical function of its substrate via the simultaneous or
sequential activation of various PRRs (see below).

HMGB1 and LPS physically interact (Hreggvidsdottir et
al. 2009; Youn et al. 2008). The complexes elicit the release
of inflammatory cytokines more effectively than either
molecule alone (Youn et al. 2008). HMGB1 therefore has
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the potential to act at inflammatory sites as a potent
endogenous amplificatory signal, endowed with the ability
to magnify the effects even of traces of bacterial compo-
nents. Interestingly, separate A box and B box HMGB1
domains bind to LPS and enhance IL-6 production
(Hreggvidsdottir et al. 2009). Inflammatory endogenous
molecules also associate with HMGB1: this is the case for
IL-1β (Sha et al. 2008). As described for LPS, HMGB1/IL-
1β complexes are more effective than IL-1β alone and
elicit a higher production of IL-6 (Hreggvidsdottir et al.
2009), of major intrinsic protein-2 and TNFα (Sha et al.
2008). The activity of HMGB1/IL-1β complexes is
inhibited by adding, separately, neutralizing antibodies for
the cytokine and its receptor, indicating that the complex
acts through the IL-1β receptor. The actual mechanism(s)
by which HMGB1 enhances and prolongs the activity of
IL-1β, and possibly also of TNFα and interferon γ (Sha et
al. 2008), has(have) not so far been identified.

The response to chemotactic signals is a critical issue in
immunity; it requires that motile cells are recruited at
inflammatory sites or reach lymphoid organs. HMGB1 is a
crucial regulator of the fate and function of DCs (Dumitriu
et al. 2005a, c; Andersson and Harris 2010; Rovere-Querini
et al. 2004; Messmer et al. 2004; Semino et al. 2005; Ulloa
and Messmer 2006; Apetoh et al. 2007a, b), professional
antigen-presenting cells that connect innate and acquired
immune responses. DCs, like most myeloid cells, translo-
cate HMGB1 from the nucleus in the cytosol upon
activation and eventually release the molecule into the
extracellular environment (see above). Secreted HMGB1 is
biologically active and required for DC maturation, a
complex event by which activated DCs switch their
responsiveness to chemokines from CCL5 to CCL21, thus
acquiring the ability to migrate to the T cell zone of
secondary lymph nodes (Randolph et al. 2005). Indeed,
DCs acquire antigens in peripheral tissues and present them
to T lymphocytes several hours later in the lymph nodes, i.
e., at a distant site after a time-consuming journey. In the
presence of inhibitors of HMGB1 or of one of its best-
characterized receptors, the receptor for advanced glycated
end-products (RAGE; see below), DCs activated with
PAMPs or cytokines fail to mature (Dumitriu et al. 2005a,
c). As a consequence, they fail to sustain T cell proliferation
and survival and Th1 polarization (Dumitriu et al. 2005a,
c), to migrate in response to the lymph-node chemokines
CCL19 and CXCL12 (Dumitriu et al. 2007), and effectively
to reach lymphoid organs in vivo (Manfredi et al. 2008b).

Conversely, maturing DCs that migrate in response to
CXCL12 release HMGB1, which is required for CXCL12-
dependent migration in vitro; the formation of complexes in
the fluid phase between the two molecules maintains the
conformation and function of CXCL12 in a reducing
environment, such as that of the lymph-node. This is

therefore possibly important for the attraction of antigen-
presenting cells at the relevant sites at which T-cell-
dependent immune responses begin (Campana et al.
2009). The regulation of the leukocyte recruitment in vivo
clearly involves several steps, including the interaction
between RAGE and leukocyte β2 integrins (Orlova et al.
2007). HMGB1 also up-regulates the expression and the
sensitivity to TLR4 of maturing DCs; TLR4-dependent
signaling on DC is required for HMGB1-mediated liver
injury upon ischemia reperfusion (Klune et al. 2008; Tsung
et al. 2005, 2007).

The intracellular function of HMGB1 strictly depends on
its ability to bind to DNA. Therefore, unsurprisingly,
nucleic acids represent a ligand for HMGB1, even outside
the cell. Binding to HMGB1, as described for other
substrates (see above), influences nucleic acid recognition
by innate immune cells and, thus, their inflammatory
properties. The chromatin of cells undergoing apoptosis
undergoes extensive modifications that lead to a tight and
long-lasting interaction with HMGB1, in stark contrast with
the loose interaction of the molecule with the DNA of
living or primary necrotic cells (Scaffidi et al. 2002).
Apoptotic cells represent a source of HMGB1 and
nucleosomes (Bell et al. 2006; Jiang et al. 2007; Pisetsky
and Fairhurst 2007), which are released per se or as
multimolecular complexes. Nucleosome/HMGB1 com-
plexes can be traced in the blood of autoimmune patients
and represent the unusual combination between an auto-
antigen (the nucleosome) and a natural adjuvant such as
HMGB1, which is capable of conferring immunogenicity to
antigenic soluble and particulate substrates (Rovere-Querini
et al. 2004). Indeed, HMGB1/nucleosome complexes
effectively activate innate immune cells, including DCs
and macrophages in vitro, while triggering the production
of anti-histone and anti-double-stranded DNA in experi-
mental animals (Urbonaviciute et al. 2008). The complexes
might therefore be involved in the original breakdown of
tolerance associated with deregulated or uncleared apopto-
sis, which then fosters the development, in appropriate
genetic backgrounds, of self-sustaining autoimmune dis-
eases (Bondanza 2004; Mahoney and Rosen 2005; Bon-
danza et al. 2007; Rovere-Querini et al. 2007; Munoz et al.
2009, 2010a).

Nucleic acids have long been known to trigger the
release of cytokines, including type 1 interferons and
chemokines. This event is mediated by the activation of
dedicated PRRs expressed either on the cell membrane or
within the cell (Latz et al. 2004; Marshak-Rothstein and
Rifkin 2007). The requirement of the HMGB proteins (see
above) for the innate recognition of nucleic acids has been
elegantly demonstrated by using genetic tools (Yanai et al.
2009), although the hierarchy of the associated molecular
events needs to be characterized at molecular levels.
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HMGB1 effectively binds to synthetic sequences contain-
ing unmethylated cytosine-guanine (CpG) dinucleotides.
These oligonucleotides mimic hypomethylated microbial
DNA, which exerts inflammatory and immunostimulatory
actions mostly via the activation of endosomal TLR9. CpG
containing sequences trigger the secretion of HMGB1 from
macrophages and DCs; in turn, HMGB1 favors the access
of the molecule to the receptor (Ivanov et al. 2007), thus
magnifying the cytokine release downstream of TLR9
activation (Hreggvidsdottir et al. 2009; Yanai et al. 2009).
The involvement of RAGE in TLR9-MyD88-mediated cyto-
kine production has also been clearly defined (Tian et al. 2007).

HMGB1: uno, nessuno, centomila (one, none, one
hundred thousand)

The plurality of effects of HMGB1 on innate immune cells,
mediated via direct or indirect actions on multiple PRRs
(Hreggvidsdottir et al. 2009; Rauvala and Rouhiainen 2010;
H. Yang et al. 2010; Andersson et al. 2000; Sims et al.
2010; Fig. 2) that converge on the activation of pathways
dependent on mitogen-activated protein kinase and nuclear
factor-κB (NF-κB; Palumbo et al. 2007, 2009; Penzo et al.
2010), provides a reason for its potent activity as a signal of
necrosis (Raucci et al. 2007) triggering inflammation and
tissue repair (Sims et al. 2010). HMGB1 acts on stem and
precursor cells, recruiting and activating them at sites of
damage and injury (Bianchi and Manfredi 2007; Palumbo
et al. 2004, 2007, 2009; Limana et al. 2005; Chavakis et al.
2007; Germani et al. 2007; Lolmede et al. 2009).

This action is physiologically important for wound healing
and tissue regeneration. Conversely, HMGB1 plays a major
role not only in inflammatory and autoimmune diseases, but
also in conditions as diverse as cancer and ictogenesis (Mittal et
al. 2010; Maroso and Balosso 2010) in which persistent
activation of inflammatory and reparative pathways leads to
inappropriate tissue remodeling (Vakkila and Lotze 2004; Zeh
and Lotze 2005). These studies highlight the potentially
noxious outcomes of sustained HMGB1 release in the
environment and imply that mechanisms exist that physiolog-
ically restrict the biological activity of the molecule. Two such
mechanisms involve thrombomodulin (TM) and CD24.

TM is a transmembrane protein that regulates hemostasis
through interactions with thrombin; it has been shown to
quench HMGB1 inflammatory action by sequestering it via
the N-terminal lectin-like domain (Abeyama et al. 2005;
Koutsi et al. 2008) and by promoting the proteolytic
cleavage of HMGB1 by thrombin (Ito et al. 2008). In vivo,
the recombinant human soluble TM reduces HMGB1 levels
and increases the survival of rats challenged with LPS
(Nagato et al. 2009). The anti-inflammatory activity of the
molecule and its ability to reduce HMGB1 levels after LPS

challenge have been confirmed by using hTM transgenic
mice (Crikis et al. 2010).

HMGB1 also interacts with CD24, a glycosylated glycosyl-
phosphatidyl-inositol-anchored membrane protein expressed
by immune and stem cells. As a consequence, Siglec 10 is
recruited, which contains an immune receptor tyrosine-based
inhibitory motif (ITIM); the result is the activation of a negative
feedback forward loop, which prevents HMGB1-elicited
inflammation by inhibiting NF-kB activation. CD24-/- and
siglec 10-/- mice are exquisitely sensitive to the systemic
effects of endogenous DAMPs, such as HMGB1. In contrast,
they are normally resistant to the effects of PAMPs (Bianchi
and Manfredi 2009; Chen et al. 2009; Liu et al. 2009). These
data hint at an unusual scenario in which HMGB1 differs
from PAMPs on the basis that it simultaneously activates
inflammation via activatory PRRs (see above) and a CD24/
Siglec-10-dependent regulatory pathway. This is possibly
advantageous, restraining the ability of HMGB1 to activate
inflammation and immunity under conditions of sterile tissue
injuries, including vascular diseases (Maugeri et al. 2009) and
ischemia/reperfusion (Chavakis et al. 2007).

A failure of these and most likely of other negative feed-
back regulatory circuits underlie diseases attributable to the
deregulated activation of innate immunity. Sepsis is a typical
example; it is the leading cause of death in intensive care units
in developed high-income countries and represents an urgent
and unmet medical need. The first evidence that links HMGB1
to sepsis was obtained more than ten years ago when, in a
pioneering study, HMGB1 was identified as a late mediator of
lethal systemic inflammation and as being involved in the
delayed lethality of endotoxin and systemic inflammation
(Wang et al. 1999). Since then, we have gained a better
insight into the underling mechanisms, and preclinical studies
have validated the possibility of targeting HMGB1 as a
therapeutic agent, by using independent approaches (Sims et
al. 2010), including anti-HMGB1 antibodies and the A box
fragment of HMGB1, which has antagonistic actions.
Recently, encouraging results have been obtained, including
the blocking of RAGE-HMGB1 signaling (Susa et al. 2009)
and, as discussed above, exploiting the regulatory properties
of TM (Nagato et al. 2009; Crikis et al. 2010). The
identification of HMGB1 polymorphisms as significant
factors associated with early and late mortality systemic
inflammatory response syndrome and sepsis hints at a
possible role for HMGB1 genetics in predictive medicine
(Kornblit et al. 2008, 2010).

HMGB1 has also been linked also to tumor formation,
progression, and metastasis and to the responses to chemo-
therapeutics. Its expression is elevated in several solid
tumors, and HMGB1 serum levels are often associated with
worse prognosis (Sims et al. 2010; Chung et al. 2009;
Sparvero et al. 2009). On the other hand, HMGB1 plays a
role in the immune responses against tumors elicited by
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conventional therapies. HMGB1 is released from irradiated
and doxorubicin-treated tumor cells, and through TLR4,
HMGB1 is efficient in activating DCs to cross-present
tumor antigens, suggesting a dual role for the molecule
(Apetoh et al. 2007a, b; Campana et al. 2008). The redox
state of HMGB1 is important in this context. Reduced HMGB1
binds to RAGE, but not to TLR4, promoting tumor resistance
to chemotherapeutic agents such as melphalan, paclitaxel, UV,
and oxaliplatin. Oxidized HMGB1, in contrast, apparently
increases the cytotoxicity of the agents, with the eventual death
of tumor cells (Tang et al. 2010).

Concluding remarks

HMGB1 has many lives (Muller et al. 2001). The
concentrated efforts of several groups have revealed some
of them, providing hints regarding its multi-layer actions as

a master regulator of innate immunity. The studies of the
last few years suggest that the possible function of HMGB1
reflects the variable conditions of the extra-cellular envi-
ronment, by signaling to immune cells the need for an acute
and immediate response or for stem cell activation and
wound repair, depending on the post-translational modifi-
cations of the molecule and/or on the array of substrates
with which HMGB1 preferentially interacts. Other DAMPs
are possibly more potent at immediately activating the
inflammatory response to cell death (Chen et al. 2007;
Rock and Kono 2008; Zhang et al. 2010; Manfredi and
Rovere-Querini 2010). However, the versatility of HMGB1
makes it an intriguing molecule for unraveling the plasticity
of innate immunity; it acts immediately under dangerous
conditions and selects, in any given tissue and depending
on the nature of injury or of the offending agent, the most
appropriate (more effective and less harmful) response to be
made.

 

 
 

Fig. 2 The many lives of HMGB1: a molecule that shapes
inflammation and tissue repair and that depends on environmental
conditions and interactions with selected substrates and receptors (TM
thrombomodulin, LPS lipopolysaccharide, IL-1β interleukin-1β, IFNγ
interferon γ, TNFα tumor necrosis factor α, CXCL-12 a lymph-node

chemokine, RAGE receptor for advanced glycation end-products,
TLRs Toll-like receptors, CD24 a glycosylated glycosyl-phosphatidyl-
inositol-anchored membrane protein expressed by immune and stem
cells, NS nucleosomes)
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