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Abstract The joint is a discrete unit that consists of
cartilage, bone, tendon and ligaments. These tissues are
all composed of an extracellular matrix made of collagens,
proteoglycans and specialised glycoproteins that are active-
ly synthesised, precisely assembled and subsequently
degraded by the resident connective tissue cells. A balance
is maintained between matrix synthesis and degradation in
healthy adult tissues. Different classes of proteinases play a
part in connective tissue turnover in which active protei-
nases can cleave matrix protein during resorption, although
the proteinase that predominates varies between different
tissues and diseases. The metalloproteinases are potent
enzymes that, once activated, degrade connective tissue and
are inhibited by tissue inhibitors of metalloproteinases
(TIMPs); the balance between active matrix metalloprotei-
nases and TIMPs determines, in many tissues, the extent of
extracellular matrix degradation. The serine proteinases are
involved in the initiation of activation cascades and some,
such as elastase, can directly degrade the matrix. Cysteine
proteinases are responsible for the breakdown of collagen
in bone following the removal of the osteoid layer and the
attachment of osteoclasts to the exposed bone surface.
Various growth factors increase the synthesis of matrix and
proteinase inhibitors, whereas cytokines (alone or in
combination) can inhibit matrix synthesis and stimulate
proteinase production and matrix destruction.
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Abbreviations
ADAM a disintegrin and metalloproteinase
ADAMTS a disintegrin and metalloproteinase with

thrombospondin motifs
BMP-1 bone morphogenetic protein-1
ECM extracellular matrix
GPI glycosylphosphatidyl inositol
HDAC histone deacetylase
IGFBP insulin-like growth factor binding protein
IL interleukin
Jak-STAT Janus kinase-signal transducer and activator of

transcription
MAPK mitogen-activated protein kinase
MMPs matrix metalloproteinases
NF-κB nuclear factor kappa B
OA osteoarthritis
OSM oncostatin M
RA rheumatoid arthritis
RANKL receptor activator of nuclear factor κB ligand
TNF tumour necrosis factor
TIMPs tissue inhibitors of metalloproteinases
TGF transforming growth factor

Introduction

Cartilage tissue consists of a single cell type, chondrocytes
(Goldring 2000), which are embedded within an extracel-
lular matrix (ECM) of aggrecan, type II collagen and other
minor components that are precisely arranged within an
interactive matrix. The rod-shaped collagen molecules
aggregate in a staggered array to form cross-linked fibres
giving connective tissues strength and rigidity. Trapped
between these collagen fibres are the aggrecan molecules
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(Iozzo 1998) that, in the presence of hyaluronic acid, form
highly charged aggregates that attract water into the tissue
and allow cartilage to resist compression. Chondrocytes in
normal adult cartilage maintain a steady state in which the
rate of matrix synthesis equals the rate of degradation. Any
change in this steady state will affect the functional
integrity of the cartilage. During growth and development,
the synthesis of matrix components exceeds the rate of
degradation; a reduction in the rate of matrix synthesis and
an increase in the rate of degradation occurs during matrix
resorption (Mort and Billington 2001).

Bone is a metabolically active tissue that is constantly
formed and removed throughout life. The processes are
carefully coordinated by bone cells that respond to a
variety of external factors. These include genetic, me-
chanical, hormonal and nutritional factors and a large
number of growth factors and cytokines. The cells
contained in bone belong to three types: osteoblasts,
osteocytes and osteoclasts. These are all contained within
a highly mineralised matrix of type I collagen and other
highly specialised proteins such as osteocalcin, osteonec-
tin and proteoglycan. The mineral is present mainly as a
mixture of calcium and phosphate in the form of
hydroxyapatite. Two anatomical types of bone exist,
namely trabecular and cortical. Trabecular bone exhibits
more metabolically active surfaces on which the basic
multicellular units act, whereas these multicellular units
operate through resorbing channels in cortical bones. The
cells of bone occupy a central role in this active
metabolism. Osteoclasts are haemopoietic in origin and
responsible for the resorption of bone and form following
the activation of macrophage-like mononuclear cells.

In childhood, more bone is formed than is resorbed,
whereas in the young adult, when the bone mass is
constant, these two processes are balanced. In later life,
more resorption than formation leads to diseases such as
osteoporosis. Many of the activities of the osteoclast
depend on the osteoblast. Osteocytes are formed from
osteoblasts that become isolated in bone and surrounded by
matrix. The osteocytes communicate with each other
through extended cellular processes that link cells allowing
them to respond to stimuli such as changes in mechanical
forces.

In severe cases of arthritis, both cartilage and the
underlying bone are destroyed and this prevents joints
from functioning normally. The primary cause of carti-
lage and bone destruction in joint pathology involves
elevated levels of active proteinases that are secreted
from a variety of cells and that degrade the ECM. These
proteinases are regulated by various cytokines and
growth factors acting on cells found within the joint. In
osteoarthritis (OA), the proteinases produced by chon-
drocytes play a major role (Takaishi et al. 2008; van den

Berg 2000). In a highly inflamed rheumatoid joint,
proteinases produced primarily by synovial and inflam-
matory cells contribute to the loss of tissue matrix
(Firestein 2003). This review describes the proteolytic
enzymes that are implicated in the destruction of cartilage
and bone tissue and considers the inhibition of matrix
metalloproteinases (MMPs) as an effective strategy for the
prevention of joint destruction.

Role of proteolytic enzymes in matrix breakdown

The five main classes of proteinases are classified accord-
ing to the chemical group which participates in the
hydrolysis of peptide bonds (Barrett et al. 1998). Cysteine,
aspartate, and threonine proteinases are predominantly
active at acid pH and act intracellularly; the serine and
metalloproteinases are active at neutral pH and act
extracellularly (Fig. 1). Some proteinases are membrane-
bound rather than secreted from the cell and such enzymes
are associated with cytokine processing, receptor shedding
and the removal of proteins that are associated with cell–
cell or cell–matrix interactions (Becherer and Blobel 2003).
Some enzymes, such as elastase are released when
neutrophils are stimulated, whereas others might not
participate in the cleavage of matrix proteins but activate
proenzymes that then proceed to degrade the matrix. All
classes of proteinase play a part in the turnover of
connective tissues and one proteinase pathway may precede
another. For example, in bone, the removal of the osteoid
layer by metalloproteinases precedes the attachment of the
osteoclast and subsequent breakdown of the ECM by
cysteine proteinases (Everts et al. 1992). A close apposition
of intra- and extra-cellular pathways will be found in many
conditions involving connective tissue turnover.

Neutral proteinases

Metzincin superfamily

These metalloproteinases are distinguished by a highly
conserved motif containing three histidines that bind zinc at
the catalytic site and a conserved methionine turn that lies
beneath the active-site zinc (Stocker et al. 1995). Metal-
loproteinases are further divided into four multigene
families: the serralysins, the astacins, ADAMs (a disinte-
grin and metalloproteinase)/adamalysins and MMPs
(Egeblad and Werb 2002). These families are classified
according to the sequence around the three conserved
histidines that bind zinc. A fifth group, the pappalysins,
have been proposed (Boldt et al. 2001) that cleave insulin-
like growth factor binding protein-4 and -5 (Overgaard et
al. 2001).
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Matrix metalloproteinases

The MMPs constitute a multigene family of over 23
secreted and cell-surface zinc-dependent endopeptidases
that process or degrade numerous substrates at neutral pH
(Nagase and Woessner 1999; Tallant et al. 2009). All
MMPs contain common domains (Fig. 2), zinc is present at
the catalytic centre and all are produced in a proenzyme
form. Latency of the proMMP is maintained by the
interaction of a conserved cysteine residue in the prodo-
main with the catalytic zinc in the active site (Springman et
al. 1990; Van Wart and Birkedal-Hansen 1990). The MMP
family are best known for their ability to cleave compo-
nents of the ECM but they also cleave other proteinases,
proteinase inhibitors, latent growth factors, chemotactic
molecules, growth factor binding proteins, cell surface
receptors and cell-cell adhesion molecules (Fig. 3; Sternlicht
and Werb 2001).

Traditionally MMPs have been divided into various
groups, according to the ECM substrates that they cleaved:
the stromelysins, collagenases, gelatinases (Nagase and
Woessner 1999). MMP-3 and MMP-10 (stromelysin-1 and
-2, respectively) have a broad and similar substrate
specificity (Nagase 1995) but the expression pattern of
these enzymes is often distinct. Their natural substrates are
probably proteoglycans, fibronectin and laminin. Both
enzymes are able to activate latent collagenases (Knäuper
et al. 1993, 1996b; Murphy et al. 1987) and are present in
articular cartilage and synovium from patients with either
rheumatoid arthritis (RA) or OA (Hembry et al. 1995;
Okada et al. 1992; Wolfe et al. 1993).

The three mammalian collagenases, viz. MMP-1,
MMP-8 and MMP-13 (collagenase-1, -2 and -3 respec-
tively), cleave fibrillar collagens producing three-quarter-

and one-quarter-sized fragments; MMP-2 and MMP-14
(MT1-MMP) can also cleave at this site (Aimes and
Quigley 1995; Ohuchi et al. 1997). The enzymes differ in
their specificity for different collagens; MMP-13 prefers to
cleave type II collagen (Knäuper et al. 1996a), whereas
MMP-1 and MMP-8 prefer type III and I, respectively.
Both MMP-1 and MMP-13 are synthesised by macro-
phages, fibroblasts and chondrocytes when these cells
are stimulated with inflammatory mediators. MMP-8 is
predominantly released from intracellular storage gran-
ules within neutrophils upon stimulation but can also
be produced by chondrocytes. All three collagenases
are present in diseased cartilage (Tetlow et al. 2001),
although their control can be different; for example,
retinoic acid, which downregulates MMP-1, is known to
upregulate MMP-13 in some cells (Shingleton et al.
2000).

The two gelatinases cleave denatured collagens, type IV
and V collagen and elastin (Aimes and Quigley 1995;
Fosang et al. 1992). MMP-2 (gelatinase A) is the most
widespread of all the MMPs and can activate proMMP-13
(Knäuper et al. 1996b). MMP-9 (gelatinase B) is expressed
in a wide variety of transformed and tumour-derived cells
(Murphy and Crabbe 1995). MMP-2 and MMP-9 protein
levels are elevated in RA synovial fluids and tissues
(Ahrens et al. 1996; Gruber et al. 1996; Yoshihara et al.
2000).

With the increasing numbers, complexity and range of
substrates, MMPs are now often grouped according to their
domain structure (Clark and Parker 2003; Fig. 2). Most
MMPs resemble MMP-1; MMP-2 and MMP-9 have
fibronectin-like inserts, whereas MMP-21 has a
vitronectin-like domain insert. MMP-17 and MMP-25 both
have a cytoplasmic glycosylphosphatidyl inositol (GPI)

Proteinases

Intracellular ExtracellularIntracellular Extracellular

Aspartic Cysteine Threonine Serine Metallo-
proteinases

y
proteinases proteinases proteinasesp p proteinases p p

Low pH Neutral pH

Cathepsin D Cathepsin B Proteosome Elastase MMP-1, -8, -13

Cathepsin K Cathepsin G MMP-3, -10, -11p

Cathepsin L Plasmin MMP-2, -9Ca eps

Cathepsin S PAs MT1-6 MMPCathepsin S
Furin ADAMs
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Fig. 1 The five classes of pro-
teinase, three of which act
predominantly intracellularly
(aspartate, cysteine and threo-
nine) and two predominantly
extracellularly (metallo and
serine). Examples are shown of
representative enzymes from
each class (MMP matrix metal-
loproteinase, ADAM a disinte-
grin and metalloproteinase,
ADAMTS a disintegrin and
metalloproteinase with throm-
bospondin motifs)
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anchor, MMP-23 has a C-terminal immunoglobulin-like
domain and neither MMP-7 (matrilysin) nor MMP-26 have
a haemopexin domain (Egeblad and Werb 2002).

Levels of different MMPs are increased in rheuma-
toid synovial fluid, in conditioned culture media from
rheumatoid synovial tissues and cells, in synovial tissue
at the cartilage–pannus junction from rheumatoid joints,
in osteoarthritic cartilage and in animal models of
arthritis (Cawston 1996; Konttinen et al. 1999; Murphy
and Crabbe 1995; Tetlow et al. 2001). In OA, both the
rate of matrix synthesis and breakdown are increased
leading to the formation of excess matrix in some
regions (such as osteophytes) with focal loss of the
ECM in other areas.

MMPs are controlled at different levels

MMPs regulate many biological processes and are precisely
controlled at a number of critical steps that include
synthesis and secretion, activation of the proenzymes,
inhibition of the active enzymes and localisation and
clearance of MMPs (Fig. 4; Clark et al. 2008).

Synthesis and secretion

Cytokines such as interleukin (IL)-1, tumour necrosis factor
(TNF)-α and IL-17 stimulate numerous cell types to
produce many MMPs (Goldring et al. 2008; Koshy et al.
2002a; van den Berg 1999; Yan and Boyd 2007). Within
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Fig. 2 Domain structures of metalloproteinases. MMPs, ADAMs
and ADAMTSs have a domain structure, with several common
domains across the family that influences the behaviour of the
protein. Top All MMPs have a catalytic domain containing the active
site zinc (Zn). Some MMPs contain a furin recognition motif (Fu)
that allows intracellular activation by furin-like proteinases. Apart
from MMP-7, -26 and -23, all MMPs contain a haemopexin domain
that often determines substrate specificity. Other domains found
within the MMPs are the fibronectin-like domains (F) in MMP-2 and
-9 and the vitronectin-like domain (V) in MMP-21. Some MMPs are
anchored to the cell surface via a trans membrane domain (TM) with
cytoplasmic tail (Cyt) or via a glycosylphosphatidyl inositol (GPI)
anchor. MMP-23 is structurally unique amongst the MMPs and
contains an N-terminal TM (actually an N-terminal signal anchor), a
cysteine array (CA) and a immunoglobulin-like domain (Ig-like).

Adapted from Egeblad and Werb 2002). Middle The ADAMs
contain a disintegrin (Dis) and a metalloprotease domain. The
metalloprotease domains of ADAMs can induce ectodomain shed-
ding and cleave extracellular matrix (ECM) proteins (EGF epidermal
growth factor-like). The ADAMs disintegrin (Dis) and cysteine-rich
(Cys) domains have adhesive activities. All ADAMs contain a trans
membrane domain (TM) and their activities may be controlled in part
via phosphorylation of their cytoplasmic tails (Cyt). Bottom
ADAMTS also contain a disintegrin (Dis) and a metalloprotease
domain but uniquely contain a thrombospondin type-1 (TSP-1)
repeat, then a Cys domain and one or more additional TSP-1 repeats,
except ADAMTS-4 (Sp signal peptide). This is frequently followed
by a C-terminal domain often containing a recently described
protease and lacunin motif (Clark and Parker 2003)
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the arthritic joint, different cell types produce specific
cytokines and growth factors that can be found in synovial
fluids from RA patients. These cytokines often differ in
their action on individual cell types and many cytokines can
synergise to increase the production of MMPs by cells.

Although IL-1 and TNFα are able to initiate cartilage
collagen resorption alone, when these cytokines are
combined with oncostatin M (OSM), a rapid and reproduc-
ible release of collagen is found in bovine and porcine
cartilage (Cawston et al. 1998). Human cartilage also
responds to this combination of cytokines (Morgan et al.
2006). Synthetic MMP inhibitors and two tissue inhibitors
of metalloproteinases, viz. TIMP-1 and TIMP-2, are able to
prevent this release, strongly implicating the collagenolytic
MMPs in this process (Ellis et al. 1994); chondrocytes are
known to synthesise collagenases-1, -2 and -3 (Kevorkian
et al. 2004).

Activation of proenzymes

The control of the activation of the proenzyme form of
MMPs is important in connective tissue breakdown
(Kleiner and Stetler-Stevenson 1993; Milner et al. 2001).
Some MMPs (Fig. 2) have a furin recognition sequence

between the propeptide and the catalytic domain and these
enzymes are often activated within the Golgi. Recent data
show that cartilage explant cultures, treated with cytokines
and an inhibitor of furin, have reduced levels of active
collagenases and low collagen release (Milner et al. 2003).
For those MMPs without a furin site, the proteolytic
removal of the propeptide is likely to be achieved in a
tightly controlled environment close to the cell surface.
Plasmin and other serine proteinases can activate some
proMMPs (Eeckhout and Vaes 1977; He et al. 1989;
Knäuper et al. 1996b; Werb et al. 1977) and are involved in
the activation cascades of the pro-collagenases (Milner et al.
2001). Active MMP-3 can activate pro-collagenases and
other proMMPs (Knäuper et al. 1993, 1996a; Murphy et al.
1987; Ogata et al. 1992). Several members of the membrane-
type MMP family (MMP-14, -16, -24 and 25) can activate
proMMP-2 (Butler et al. 1997; Pei 1999; Sato et al. 1994;
Takino et al. 1995; Velasco et al. 2000) and MMP-14 can
also activate proMMP-13 (Knäuper et al. 1996b).

Active enzyme inhibition

All active MMPs are inhibited by TIMPs (Brew et al. 2000;
Cawston 1996), which bind tightly to active MMPs in a 1:1

ProMMP

A ti t d MMPActivated MMP

MT-MMPMT MMP

MMP inhibitor

MMP receptorMMP receptor

Signal receptor

Fig. 3 Control of MMP activity (IGFBP insulin-like growth factor
binding protein, TGFB transforming growth factor β, EMPRIN
EMMPRIN extracellular matrix metalloproteinase inducers). Cyto-
kines and growth factors can up-regulate or down-regulate MMP
expression (1). Different intracellular signalling pathways combine (2)
to activate or suppress transcription (3). RNA can be unstable and

rapidly processed (4). ProMMPs can be activated intracellularly by
furin (5) or after they have left the cell (6). Some MMPs are stored in
granules within the cell (7) prior to secretion. Secreted MMPs can be
expressed on the cell surface (9), bound to cell surface receptor
proteins or sequested by ECM proteins (10). All active MMPs can be
inhibited by tissue inhibitors of metalloproteinases (11)

Cell Tissue Res (2010) 339:221–235 225



ratio (Fig. 3) and so can control connective tissue
breakdown. If TIMP levels exceed those of active enzyme,
then connective tissue turnover is prevented. TIMP-2 is
known to be associated with the activation of proMMP-2.
TIMP-3 is bound by the ECM after secretion and inhibits
some members of the ADAM family, whereas TIMP-4 is
predominantly localised in the heart but can be produced by
joint tissues (Greene et al. 1996). MMP-14 is known to be
poorly inhibited by TIMP-1. TIMP-1 and -3 are up-
regulated by growth factors such as transforming growth
factor (TGF) β, insulin-like growth factor-1 and OSM
and these agents also induce matrix synthesis (Varga et al.
1987). All active MMPs bind to the protease inhibitor
α2-macroglobulin and these complexes are rapidly cleared
via endocytosis and degradation within the lysosomal
system.

Control of the localisation and clearance of MMPs

Proteolysis often occurs in the immediate vicinity of the
cell in peri-cellular pockets close to the cell membrane

where MMPs can be secreted to specific areas at the cell
surface (Fig. 4; Zucker et al. 2003). This allows a high
degree of control and these localisation mechanisms can
enhance MMP activity, prevent access of MMP inhibitors,
concentrate MMPs to their precise target substrate and limit
the extent of proteolysis to a discrete region. Although the
MMPs with transmembrane domains are the most important
cell surface enzymes, some MMPs bind to cell surface
receptors, to cell surface activating enzymes or to pericel-
lular matrix proteins. Cell surface heparan sulphate can
bind MMPs such as MMP-7 (Yu and Woessner 2000) and
also TIMP-3, whereas MMP-1 can bind to the cell-surface
protein EMMPRIN (extracellular matrix metalloproteinase
inducer; Guo et al. 2000).

Adam family of proteinases

To date, over 25 ADAM genes and 19 ADAMTS (a
disintegrin and metalloproteinase with thrombospondin
motifs) genes have been described. ADAMs are usually
membrane-anchored proteinases with diverse functions

Fig. 4 Action of MMPs at or near the cell surface (MT-MMP membrane-
type matrix metalloproteinase). MMPs can be activated at the cell surface
(1) and also cleave and release cytokines (2), adhesion molecules (3) and
proteins involved in cell-cell adhesion (4). Some cell surface proteins can
bind MMPs localising them to cleave proteins such as syndecan (6) and

various receptors (7). Active MMPs cleave ECM macromolecules (8)
leading to damage to the tissue structure. Breakdown of matrix molecules
leads to the release of growth factors (9) and the release of matrix
fragments that act on local cells (10). MMPs can also cleave inhibitors or
serine proteinases such as serpins (11)
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conferred by the addition of their different protein domains
(Becherer and Blobel 2003; Primakoff and Myles 2000;
Fig. 2). The disintegrin domain can bind to integrins and
prevent cell-cell interactions; cysteine-rich, epidermal
growth factor-like, transmembrane and cytoplasmic tail
domains are also found (Fig. 2). ADAM-17 is known for
its ability to release TNFα from the cell surface (Black et
al. 1997). Not only ADAM-17, but also ADAM-10, -12
and -15 have been described in cartilage (McKie et al.
1997). The ADAMTS family members are distinguished
from the ADAMs in that they lack these latter three
domains but have additional thrombospondin-1 (TSP-1)
domains (predominantly at the C-terminus), which are
thought to mediate interactions with the ECM (Porter et
al. 2005).

The major aggrecan fragments from resorbing cartilage
are cleaved at a specific Glu(373)-Ala(374) bond (Sandy et
al. 1992). ADAMTS-1, -4, -5, -8, -9, -15 , -16 and -18 are
all able to cleave proteoglycan at this bond, although with
dramatically different efficiencies in vitro (Caterson et al.
2000; Collins-Racie et al. 2004; Mort and Billington 2001;
Porter et al. 2005; Rodriguez-Manzaneque et al. 2002;
Tortorella et al. 2001, 2002; Yamanouchi-Pharmaceutical
2001; Zeng et al. 2006). Recent compelling data from
mouse knock-out studies indicate that ADAMTS-5 is the
pathophysiological mediator of murine aggrecan catabolism
(Glasson et al. 2005; Stanton et al. 2005), although
ADAMTS-4/ADAMTS-5 double-knock-out studies indi-
cate that a further aggrecan-degrading activity remains to be
identified (Rogerson et al. 2008). Interestingly, bovine and
porcine studies have led to the proposal that ADAMTS-4 is
responsible for cartilage-aggrecan cleavage (Powell et al.
2007; Tortorella et al. 2001), whereas in humans, the
depletion of either ADAMTS-4 or ADAMTS-5 protects
cartilage from aggrecan degradation (Song et al. 2007).
Purified chondrocyte membranes are also able to cleave
aggrecan at the Glu(373)-Ala(374) and this activity is not
associated with ADAMTS-4 or ADAMTS-5 expression
(Billington et al. 1998; Hui et al. 2005).

Proteoglycan release from cartilage occurs following
stimulation with a variety of mediators such as IL-1, TNFα,
IL-17, retinoic acid and fibronectin fragments (Arner et al.
1998; Dudler et al. 2000; Stanton et al. 2002). Levels of
ADAMTS-4 are upregulated in cartilage in response to IL-1
and TNFα and in synovial fibroblasts in response to TGFβ
(Caterson et al. 2000; Yamanishi et al. 2002), whereas
ADAMTS-5 appears to be unaffected. In an immortalised
chondrocyte line, ADAMTS-1, -4, -5 and -9 are all
regulated by a mixture of IL-1 and OSM, although the
speed of induction differs between these enzymes (Koshy et
al. 2002b; Young et al. 2005). Aggrecanase activity can be
blocked by specific synthetic inhibitors (Ellis et al. 1994)
and by TIMP-3 (Kashiwagi et al. 2001). A role for

neprilysin-induced aggrecanase activity via the generation
of regulatory peptides has also been proposed (Chevrier et
al. 2001).

Serine proteinases

Early studies that investigated the role of serine proteinases
in matrix resorption focused on the role of elastase and
cathepsin G, both these enzymes being contained within
intracellular granules inside leukocytes. Later in vitro
experiments with tissue or cells demonstrated that a variety
of serine proteinases were upregulated by proinflammatory
stimuli and implicated the plasminogen–plasmin system in
the activation of proMMPs (Campbell et al. 1994; Nagase
and Woessner 1999). IL-1- and TNFα-induced proteogly-
can release can be blocked with an inactivator of urokinase-
type plasminogen activator (Bryson et al. 1998). Inclusion
of α1 proteinase inhibitor to resorbing cartilage effectively
blocks the release of collagen implicating serine proteinase
(s) in the activation cascades of pro-inflammatory cytokine-
induced proMMPs (Milner et al. 2001). Both tissue- and
urokinase-type plasminogen activators are found in carti-
lage and cleave plasminogen to plasmin.

Other serine proteinase activities have been implicated in
arthritis. Granzyme B can initiate proteoglycan degradation
(but not collagen); granzyme B-positive cells can be
detected in synovium and at the invasive front in RA
(Ronday et al. 2001). The serine proteinase fibroblast
activation protein alpha has been shown to be upregulated
following cytokine stimulation of chondrocytes and this
serine proteinase is elevated in osteoarthritic cartilage
(Milner et al. 2006). This study has also identified a
number of serine proteinases that are upregulated in
chondrocytes by using an active site probe and the role of
serine proteinases in tissue turnover in arthritic tissues has
been reviewed (Milner et al. 2008). The proteinase profile,
including serine proteinases, of normal and osteoarthritic
chondrocytes has recently been reported (Swingler et al.
2009).

Acid proteinases

Cysteine proteinases and bone resorption

Bone is also destroyed in RA (Walsh et al. 2005) and both
the MMPs and cysteine proteinases are involved (Skoumal
et al. 2005). Osteoblasts respond to parathyroid hormone
and other agents that induce bone resorption, such as IL-1
and TNF-α, by increasing the secretion of MMPs to
remove the osteoid layer on the bone surface. Osteoclast
precursors then adhere to the exposed bone surface,
differentiate and form a low pH microenvironment beneath
their lower surface. This removes mineral, and lysosomal
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proteinases then resorb the exposed matrix. There is clear
evidence for a central role for receptor activator of nuclear
factor κB ligand (RANKL) in the bone destruction seen in
RA. This member of the TNF ligand family of cytokines is
abundantly produced by T cells and synovial fibroblasts in
RA synovial membrane and stimulates the formation of
multinucleate osteoclasts. It is upregulated by a variety of
cytokines including IL-1, TNF-α, IL-11, OSM, parathyroid
hormone-related peptide, macrophage colony-stimulating
factor and IL-17. It binds to a specific receptor, RANK, on
the surface of osteoclast precursors. Increased levels of
RANK and RANKL, and of multinucleate cells, are evident
in arthritis models associated with bone erosions. The
potent activity of IL-17 in osteoclastogenesis is mediated
by the upregulation of RANKL and its action is antagon-
ised by the decoy receptor osteoprotegerin. This molecule is
effective in blocking bone resorption (Walsh et al. 2005)
and, in rat adjuvant arthritis and the arthritis of TNFtg mice
(Schett et al. 2003), it protects against the development of
bone and cartilage destruction.

Cysteine proteinases can degrade type I collagen at
acidic pH (Burleigh et al. 1974; Etherington 1972) and
specific inhibitors prevent the resorption of bone explants
(Delaisse et al. 1980, 1984) suggesting an involvement of
lysosomal cysteine proteinases (Turk et al. 2001) in matrix
resorption. Cathepsin B is elevated in OA tissue and raised
levels of cathepsins B, L and H are found in antigen-
induced rat arthritis models and within the rheumatoid joint.
Incubation of resorbing cartilage with specific cathepsin B
inhibitors blocks the release of proteoglycan fragments
(Buttle et al. 1995) suggesting an involvement in cartilage
proteoglycan breakdown. Everts et al. (1996) have shown
that substantial amounts of fibrillar collagen accumulate
intracellularly in the presence of cysteine proteinase
inhibitors (Everts et al. 1985). Cathepsin K plays a key
role in collagen turnover and subsequent bone resorption
(Bossard et al. 1996; Inaoka et al. 1995). It cleaves type I
collagen at the N-terminal end of the triple helix at pH
values as high as pH 6.5 (Kafienah et al. 1998) and is
produced by synovial fibroblasts, contributing to synovium-
initiated bone destruction in the rheumatoid joint (Hummel
et al. 1998). Both cathepsins K and S are expressed in RA
and OA synovia (Hou et al. 2002) and evidence has been
presented that cathepsin K, whose expression is elevated in
OA cartilage (Swingler et al. 2009), is localised to sites of
cartilage erosion (Li et al. 2000). Cathepsin K has potent
aggrecan-degrading activity and the resulting degradation
products potentiate the collagenolytic activity of cathepsin
K toward types I and II collagen (Hou et al. 2001). Bone
resorption is impaired in situations in which cathepsin K is
deficient, evidence that has made cathepsin K a drug target
for the treatment of osteoporosis in which bone resorption
is excessive.

Calpain (calcium-dependent neutral cysteine proteinase)
can cleave proteoglycan (Suzuki et al. 1992) and its
presence correlates with arthritis and tissue destruction
(Szomor et al. 1995). However, the significance of calpain
in arthritic disease is currently unclear (Ishikawa et al.
1999).

Threonine proteinases

Threonine proteinases represent a relatively new class of
proteinases (Wlodawer 1995). The proteasome is a ubiqui-
tously expressed, essential, intracellular protease complex
belonging to this new proteinase class. It performs many
intracellular roles including the degradation of phosphory-
lated and ubiquitinated inhibitor of kappa B (Tanaka et al.
2001).

Inhibition of proteinases as a therapeutic target

Synthetic MMP inhibitors

Considerable interest has been shown in the designing of
inhibitors of proteinases as a therapy for preventing tissue
breakdown (Roycik et al. 2009). Early MMP inhibitors
were designed to avoid modification within the gut whilst
retaining potency. Initial inhibitors were broad-range
inhibitors produced by using conventional pharmaceutical
screening processes and many caused musculoskeletal side-
effects. As the crystal structures of the catalytic domains of
many MMPs became available, they explained in part the
variation in substrate specificity amongst MMPs and have
allowed the design of more specific synthetic inhibitors
(Borkakoti 2004).

The challenges for MMP inhibition in the arthritides is to
decide whether broad spectrum or targeted inhibition is best
and whether proteoglycan or collagen release should be the
focus. Other considerations might involve the inclusion or
avoidance of sheddase inhibition and the prevention of the
inhibition of MMPs that have essential and beneficial
effects on tissue integrity.

MMP inhibitors and arthritis: animal and clinical trials

Pfizer, Kureha and Sanyo, Ono, Pharmacia, Wyeth and
Proctor & Gamble have all reported preclinical evaluations
of MMP inhibitors for the treatment of arthritis (Clark and
Parker 2003) and shown the efficacy of MMP inhibitors in
animal models of arthritis. Sabatini et al. (2005) have
described a wide-spectrum MMP inhibitor that has prefer-
ential activity against MMP-13 compared with MMP-1 and
that prevents the loss of cartilage ex vivo and in a guinea
pig model of OA. Ishikawa et al. (2005a, 2005b; Fujisawa
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Pharmaceuticals) have established that broad-spectrum
metalloproteinase inhibitors suppress joint destruction in
adjuvant and collagen-induced arthritis rat models, respec-
tively, and have suggested these inhibitors as novel anti-
rheumatic drugs.

Synthetic MMP inhibitors have not been shown to be
effective in terms of their ability to prevent joint
destruction in patients with arthritis, even though they
are effective in animal models. Trocade (Ro 32-3555), a
selective collagenase inhibitor, has a low nanomolar
inhibition constant (Ki) against MMP-1, -8 and -13 with
approximately 10- to 100-fold lower potency against
MMP-2, -3 and -9. It blocks IL-1α-induced collagen
release from cartilage explants and, in vivo, prevents
cartilage degradation in a rat granuloma model, a P. acnes-
induced rat arthritis model and OA model in the SRT/ORT
mouse (Lewis et al. 1997). Over 1000 RA patients were
treated with Trocade in a large scale trial that was
terminated after 1 year because of a lack of efficacy,
although this drug was reported to be well tolerated in
patients with RA (Hemmings et al. 2001).

An orally active, broad-spectrum MMP inhibitor with
nanomolar Ki against MMP-1, -2, -3, -9, -12 and -13 was
chondroprotective in both the rabbit menisectomy model of
OA and the guinea pig model of spontaneous OA
(MacPherson et al. 1997; O'Byrne et al. 1999). However,
phase I clinical trials with this compound were halted
because of concerns of toxicity with musculoskeletal side-
effects.

Tanomastat, a synthetic MMP inhibitor of MMP-3, -2,
-8, -9 and -13 with low activity against MMP-1, is effective
in guinea pig and canine models of OA (Chau et al. 1998).
Tanomastat was given to 300 OA patients for 3 months and
no musculoskeletal side-effects were reported. The drug
could be detected in the cartilage of treated patients
undergoing joint replacement (Leff et al. 2003). However,
this compound was withdrawn from a 1800-patient phase
III trial in OA following negative results in a separate trial
of the same drug in cancer patients (1999; see also MMP
inhibitors: safety and toxicity).

The antibiotic doxycycline is known to inhibit MMPs.
Periostat a modified doxycycline is currently the only US
FDA approved MMP inhibitor to be licensed for the
treatment of periodontal disease at subantimicrobial doses.

Some recent derivatives can be shown to inhibit MMPs
but have no antibiotic activity and have been proposed as a
treatment to prevent cartilage damage in the arthritides
(Ryan et al. 1996). These compounds are effective in
animal models (de Bri et al. 1998) but their effectiveness in
RA patients is currently unclear (Stone et al. 2003; van der
Laan et al. 2001). A trial of 430 OA patients randomly
assigned to receive either doxycycline or placebo (Mazzuca
et al. 2003) showed that, when the X-rays of the two groups

were compared at 30 months, the affected joint had been
protected in the treated patients.

A variety of explanations have been offered to explain
the lack of success of metalloproteinase inhibitors in
clinical trials in patients with joint diseases. There is no
doubt that MMPs are present and active in joint diseases
but, if compounds are unable to penetrate the cartilage/
bone/synovial interface, they will be ineffective. Early
inhibitors were originally screened against a limited set of
available MMPs and so may not inhibit some MMPs that
have subsequently been discovered. Further studies are
required to demonstrate the effectiveness of MMP inhib-
itors in the prevention of joint destruction, although the
clinical evaluation of these drugs is difficult and expensive.
Radiographs are still the most reliable measure of joint
damage but any change in joint damage is impossible to
detect over short periods of time. Whereas some progress
has been made with the use of magnetic resonance imaging
(MRI) to image joints, this technology is still to be proven
and routine centres do not have access to validated methods
for quantitation. There are currently no reliable biomarkers
that predict the onset or progression of joint destruction
(Felson and Lohmander 2009).

MMP inhibitors: safety and toxicity

MMPs are involved in many physiological processes (Vu
and Werb 2000) and so their inhibition could affect the rate
of wound healing, growth and fetal development. Metal-
loproteinases are involved in the activation and/or release of
cytokines and growth factors from the ECM (Sternlicht and
Werb 2001). These released factors have a myriad of effects
on cellular proliferation, migration and behaviour. Inhibi-
tion of these enzymes could lead to fibrosis although dose-
ranging studies should avoid such complications. The most
advanced safety data available concern the musculoskeletal
pain and tendonitis identified as a reversible side-effect in
treated patients (Nemunaitis et al. 1998). These effects
commence in the small joints of the hand and upper limbs
and the symptoms are time- and dose-dependent and
reversible. These symptoms were seen with a Roche
compound Ro 31-9790 and led to its development as an
arthritis treatment being stopped. All new compounds can
be effectively screened in rodent models to eliminate those
that cause musculoskeletal events. A Bayer compound was
withdrawn as it was associated with increased tumour
growth and poor survival times in small cell lung cancer but
no other cases of such effects have been reported. It is not
necessarily logical to assume that an effect seen with one
member of this class of compounds will automatically be
seen by all and there are significant differences in chemical
structure and metabolism of individual inhibitors. Recent
reviews have been published (Pavlaki and Zucker 2003).
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Future prospectives for the inhibition of proteinase
activity and expression

Signalling pathway inhibitors and proteinase expression

The efficacy of anti-cytokine biotherapies in the treatment
of RA patients provides supporting evidence that the
inhibition of a signal-transduction pathway could be a
potential therapeutic target. Cytokine-mediated transcrip-
tional regulation has been shown to be a key mechanism in
the control of the expression of many MMPs. The four
main pathways involved in the inflammatory response are
believed to be those acting through nuclear factor kappa B
(NF-κB), mitogen-activated protein kinase (MAPK),
phosphatidylinositol-3 protein kinase and Janus kinase-
signal transducer and activator of transcription (Jak-STAT).
These pathways are activated by a variety of stimuli and
recent studies have shown that the Toll-like receptors are
also involved (Zhang et al. 2008). Both synthetic and
natural inhibitors, together with biologics, of these path-
ways have been developed and tested both in vitro and in
vivo with variable degrees of success (Morgan and
Kalsheker 1997). For example, SP600125, a pharmacolog-
ical inhibitor of the MAPK JNK (c-Jun N-terminal kinase)
pathway decreases joint destruction in an adjuvant arthritis
model, in part by diminishing the production of MMP-1
(Han et al. 2001). Inhibition of the MAPK p38 reduces
rodent collagen-induced arthritis (Medicherla et al. 2006;
Mihara et al. 2008; Nishikawa et al. 2003). However, the
p38 inhibitor Pamapimod has proved less efficacious in
human RA (Cohen et al. 2009). IL-1α and OSM signal via
the NF-κB and Jak-STAT pathways, respectively, a
cytokine combination that in vivo causes a RA-like
phenotype and rapid joint destruction concomitantly with
an upregulation of specific MMPs (Rowan et al. 2003).
Gene therapy with inhibitors of both these pathways
appears efficacious in arthritis animal models (Shouda et
al. 2001; Tak et al. 2001) and represent excellent potential
methodologies to prevent the induction of the degradative
MMPs.

Acetylation is a key post-translational protein modifica-
tion that controls signal transduction and gene transcription
events (Kouzarides 2000). Substrates for acetylation in-
clude NF-κB and STATs, transcription factors that represent
the end points of IL-1 and OSM signalling, respectively.
Deacetylation is mediated by a family of eleven enzymes,
the histone deacetylases (HDACs). Many structurally
divergent HDAC inhibitors (HDACi) have been developed
as cancer therapies as they cause cancer cells specifically to
undergo growth arrest, differentiation or apoptosis in vivo
and in vitro (Johnstone 2002). HDAC inhibitors are also
showing therapeutic promise in animal models of inflam-
matory diseases such as arthritis (Halili et al. 2009). Several

reports demonstrate that HDACi modulate gene expression
in synovial cells in vivo (Chung et al. 2003; Mori et al.
2003; Nishida et al. 2004). Structurally different HDACi
block the proliferation of synovial fibroblasts, all probably
by a similar mechanism involving the upregulation of cell
cycle inhibitors (p16INK4 and p21Cip1). In vivo, this is
mirrored by the inhibition of TNFα expression, leading to
an abrogation of cartilage destruction (Chung et al. 2003;
Nishida et al. 2004). These and other results suggest that
HDACi represent a new class of compounds for the
treatment of inflammatory diseases (Blanchard and Chipoy
2005; Choo et al. 2008; Chung et al. 2003).

We have demonstrated that the HDACi trichostatin A
and sodium butyrate potently inhibit cartilage degradation
in an explant assay. These compounds decrease the level of
collagenolytic enzymes in explant-conditioned culture and
block the cytokine (IL-1 and OSM) induction of key MMPs
(e.g. MMP-1, -3, -8 and -13) and aggrecanases (e.g.
ADAMTS4, ADAMTS5 and ADAMTS9) at the mRNA
level (Young et al. 2005). Thus, our current data indicate
that HDACi function as potent repressors of metalloprotei-
nase expression in chondrocytes and may therefore not only
be a new treatment for RA, but also potentially for any of
the destructive arthritides mediated by metalloproteinases.

MMP-substrate interactions

As more detailed information about the interaction of
MMPs with their substrates becomes available, we might
be able to design inhibitors that target areas of the enzyme
other than the active site. For example, the C-terminal
haemopexin-like domain of collagenases has long been
known to be required for collagenolysis, presumably
because of interactions with the substrate. The activation
of the proenzyme is also a valid target, again requiring a
detailed knowledge of the underlying biology (Nagase and
Brew 2003; Tallant et al. 2009).

Modification of TIMP function or expression

One further possibility for inhibiting metalloproteinase
activity is to induce the expression of their natural
inhibitors, viz. the TIMPs, or exogenously to deliver
modified TIMPs that are specifically targeted to inhibit
specific enzymes (Lee et al. 2004; Lee et al. 2005; Nagase
and Brew 2003). Both TIMP-1 and TIMP-2 are capable of
preventing cartilage destruction ex vivo, whereas the N-
terminal domain of TIMP-3 in a similar system can prevent
aggrecan release. Adenoviral delivery of TIMP-1 and -3
prevents cartilage degradation and invasion by rheumatoid
synovial fibroblasts in vitro (van der Laan et al. 2003).
However, their efficacy in arthritis-animal model studies
require further confirmation.
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Finally, like many metalloproteinases, TIMP-1, -3 and -4
are regulated at the transcriptional level and can be induced
by a number of growth factors and cytokines. Modulation
of these cytokine pathways may re-address the local
balance of metalloproteinase and TIMP activities believed
to be pivotal in determining the extent of ECM turnover in
disease.

Concluding remarks

Inhibition of cartilage collagen destruction still remains an
important and viable target to prevent joint damage in
arthritic disease. Although the trials of proteinase inhibitors
in patients have been disappointing, new agents are still
under development and these may overcome some of the
problems of both delivery and side-effects. A key to future
success is to identify the specific proteinases that are
responsible for the destruction of both bone and cartilage
within arthritic joints in various diseases. This will allow
highly specific inhibitors that target individual enzymes and
potentially reduce side-effects.

The blocking of MMPs will probably be more effective
when combined with treatments that target earlier steps in
inflammation. Furthermore, as noted above, MMPs are not
alone in being implicated in joint disease. Serine protei-
nases are involved in MMP activation and cysteine
proteinases have been shown to degrade collagen particu-
larly in the resorption of bone. Combination of proteinase
inhibitors, either in sequence or with other agents that hit
other specific steps in the pathogenesis, might be necessary
before the chronic cycle of joint destruction found in these
diseases can be broken.
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