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Abstract RUNX2 is a multifunctional transcription factor
that controls skeletal development by regulating the differen-
tiation of chondrocytes and osteoblasts and the expression of
many extracellular matrix protein genes during chondrocyte
and osteoblast differentiation. This transcription factor plays a
major role at the late stage of chondrocyte differentiation: it is
required for chondrocyte maturation and regulates Col10a1
expression in hypertrophic chondrocytes and the expression
of Spp1, Ibsp, and Mmp13 in terminal hypertrophic
chondrocytes. It is essential for the commitment of plurip-
otent mesenchymal cells to the osteoblast lineage. During
osteoblast differentiation, RUNX2 upregulates the expres-
sion of bone matrix protein genes including Col1a1, Spp1,
Ibsp, Bglap, and Fn1 in vitro and activates many promoters
including those of Col1a1, Col1a2, Spp1, Bglap, and
Mmp13. However, overexpression of Runx2 inhibits osteo-
blast maturation and reduces Col1a1 and Bglap expression.
The inhibition of RUNX2 in mature osteoblasts does not
reduce the expression of Col1a1 and Bglap in mice. Thus,
RUNX2 directs pluripotent mesenchymal cells to the
osteoblast lineage, triggers the expression of major bone
matrix protein genes, and keeps the osteoblasts in an
immature stage, but does not play a major role in the
maintenance of the expression of Col1a1 or Bglap in mature
osteoblasts. During bone development, RUNX2 induces
osteoblast differentiation and increases the number of
immature osteoblasts, which form immature bone, whereas
Runx2 expression has to be downregulated for differentiation
into mature osteoblasts, which form mature bone. During

dentinogenesis, Runx2 expression is downregulated, and
RUNX2 inhibits the terminal differentiation of odontoblasts.
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Introduction

The vertebrate skeleton is composed of cartilage and bone.
Bone is formed through either intramembranous or endo-
chondral ossification. Osteoblasts directly form intramem-
branous bones, whereas chondrocytes first form a
cartilaginous skeleton that is then replaced with bone by
osteoblasts and osteoclasts through the process of endo-
chondral ossification. In chrondocyte differentiation, after
mesenchymal condensation, pluripotent mesenchymal cells
differentiate into immature chondrocytes, which produce
type II collagen and proteoglycan. The immature chondro-
cytes further differentiate into hypertrophic chondrocytes,
which express Col10a1, and finally become terminal
hypertrophic chondrocytes, which express Spp1 (secreted
phophoprotein 1/osteopontin), Ibsp (integrin-binding sialo-
protein/bone sialoprotein II), and Mmp13 (matrix metal-
lopeptidase 13) (Marks and Odgren 2002; Inada et al. 1999).

These processes in chondrocyte differentation are regu-
lated by many factors, and specific transcription factors
play essential roles in the differentiation of chondrocytes.
The transcription factor SOX9 plays a crucial role in
mesenchymal condensation, leading to the formation of
the cartilaginous template, whereas SOX9, SOX5, and
SOX6 are required for the production of cartilaginous
matrix, and runt-related transcription factor 2 (RUNX2)/
core-binding factor α1 (CBFA1)/polyoma-enhancer-
binding protein 2αA (PEBP2αA) has an important function
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in the terminal diffrentiation of chondrocytes, a function
that is a prerequisite for endochondral ossification.
RUNX3, which is another Runx family transcription factor,
is also involved in the terminal differentiation of chondro-
cytes (Komori 2005) (Fig. 1).

During osteoblast differentiation, RUNX2, SP7, and
canonical Wnt signaling play essential roles in the commit-
ment of pluripotent mesenchymal cells to the osteoblastic
lineage (Komori 2006). After commitment into the osteo-
blastic lineage, the osteoblasts express bone matrix protein
genes at various expression levels depending on the
maturation level of the cells. Immature mesenchymal cells
and preosteoblasts weakly express Col1a1, and its expres-
sion is upregulated in immature osteoblasts (Aubin and
Triffitt 2002; Inada et al. 1999). Immature osteoblasts express
Spp1 and then Ibsp, and maturated osteoblasts strongly
express Bglap (bone gamma-carboxyglutamate [gla] protein/
osteocalcin) (Aubin and Triffitt 2002; Maruyama et al.
2007). Mature osteoblasts are embedded into the bone
matrix and finally become osteocytes, which express Dmp1
(dentin matrix protein 1) (Toyosawa et al. 2001) (Fig. 2).

Expression of Runx2 during skeletal development

RUNX2 is expressed as two isoforms that possess different N-
termini (type I RUNX2 starting with the sequenceMRIPVand
type II RUNX2 starting with the sequence MASNS) and that
are expressed under different promoters (Komori and
Kishimoto 1998). Both type I and type II Runx2 mRNAs
are expressed in chondrocytes and osteoblasts, although type
II Runx2 mRNA is predominantly expressed in osteoblasts
(Enomoto et al. 2000; Banerjee et al. 2001; Choi et al. 2002).
The two isoforms have similar functions but differ in their
dependency on CBFB, which is an essential co-transcription
factor of RUNX2 (Kundu et al. 2002; Miller et al. 2002;
Yoshida et al. 2002; Kanatani et al. 2006).

During skeletal development, both type I and type II
Runx2 mRNAs are weakly expressed in proliferating
chondrocytes, their expression is upregulated as chondro-
cytes differentiate, and both type I and type II Runx2
mRNAs are highly expressed in chondrocytes with matu-
rational stages ranging from prehypertrophic to hypertro-
phic chondrocytes (Simeone et al. 1995; Kim et al. 1999;
Enomoto et al. 2000; Inada et al. 1999; Stricker et al. 2002).
During the progression of osteoblast differentiation, the
expression of Runx2 mRNA and RUNX2 protein dynam-
ically change, and the expression of Spp1 (SPP1) and Bglap
(BGLAP) can be used to highlight this dynamic process.
During the development of intramembranous bones,
RUNX2 is strongly detected in preosteoblasts, immature
osteoblasts, and early mature osteoblasts. At 1 week of age
in wild-type mice, preosteoblasts in the periosteum of the

mandible express RUNX2 but not SPP1 or BGLAP,
whereas inside the mandible, both SPP1-positive immature
osteoblasts and BGLAP-positive early mature osteoblasts
express RUNX2 (Maruyama et al. 2007). During the
development of endochondral bones, RUNX2 is first
detected in mesenchymal cells in the perichondrial region:
in the femur at 1 week of age, the preosteoblasts in the
perichondrial region surrounding proliferating and prehy-
pertrophic chondrocytes express RUNX2 but not SPP1 or
BGLAP; immature osteoblasts surrounding the hypertro-
phic chondrocyte layer express RUNX2 and SPP1 but not
BGLAP; and BGLAP-positive early mature osteoblasts,
which express RUNX2, appear in the metaphyseal cortical
bone (Maruyama et al. 2007). During long bone develop-
ment, osteoblasts at the metaphysis are less mature than
those at the diaphysis: in the femur at 4 weeks of age,
SPP1-positive immature osteoblasts strongly express
RUNX2 and BGLAP-positive mature osteoblasts weakly
express RUNX2 in the metaphysis, whereas RUNX2 and
SPP1 are undetectable by immunohistochemistry in most of
the BGLAP-positive late mature osteoblasts in the diaph-
ysis even though the mRNAs of Runx2 and Spp1 are
detectable by in situ hybridization (Maruyama et al. 2007).
Thus, RUNX2 is expressed in preosteoblasts, which do not
express SPP1 or BGLAP, is strongly expressed in SPP1-
positive immature osteoblasts, and then is expressed in
BGLAP-positive early mature osteoblasts, but RUNX2
expression is finally downregulated in BGLAP-positive
late mature osteoblasts (Maruyama et al. 2007) (Fig. 2).

RUNX2 regulates the expression of extracellular matrix
protein genes in chondrocytes

During chondrocyte maturation, immature chondrocytes
express Col2a1, mature chondrocytes (hypertrophic chon-
drocytes) express Col10a1, and terminally differentiated
chondrocytes (terminal hypertrophic chondrocytes) express
Spp1 and Ibsp. Runx2-deficient (Runx2−/−) mice completely
lack bone formation because of the absence of osteoblasts
(Komori et al. 1997; Otto et al. 1997). The skeleton of
Runx2−/− mice is composed of cartilage, chondrocyte
maturation is inhibited in Runx2−/− mice, and the expression
of Col10a1 in hypertrophic chondrocytes is drastically
reduced (Inada et al. 1999; Kim et al. 1999). In restricted
skeletons, including the tibia, fibula, radius, and ulna,
however, chondrocytes maturate to terminal hypertrophic
chondrocytes. In these skeletons, Col10a1 is detected,
whereas Spp1, Ibsp, and Mmp13, which are expressed in
terminal hypertrophic chondrocytes, are undetectable.
RUNX2 directly regulates the expression of Spp1 in a
synergistic manner with ETS1 (Sato et al. 1998). Runx2 also
directly regulates Mmp13 expression, and RUNX2, which is
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activated by protein kinase A, and AP1 physically interact
and are required for parathyroid-hormone-dependent Mmp13
expression (Jiménez et al. 1999; Porte et al. 1999;
Selvamurugan et al. 2000; Hess et al. 2001) (Fig. 1).
MMP13, which efficiently degrades the native helix of
fibrillar collagen with preferential activity on type II collagen
and is able to degrade aggrecan, plays an important role in
the degradation of cartilage matrix at the chondro-osseous
junction in the process of endochondral ossification (Fosang
et al. 1996; Knäuper et al. 1996; Inada et al. 2004).

Overexpression of Runx2 in chondrocytes under the
control of the Col2a1 promoter accelerates chondrocyte
maturation and Col10a1 expression in mice, whereas the
expression of dominant negative (dn)-Runx2 in chondrocytes

under the control of the Col2a1 promoter decelerates
chondrocyte maturation and reduces Col10a1 expression in
mice (Ueta et al. 2001). RUNX2 and RUNX3 have
redundant functions in chondrocyte maturation, and chon-
drocyte maturation is completely inhibited in whole skel-
etons of Runx2−/−Runx3−/− mice (Yoshida et al. 2004).
Hypertrophic chondrocytes expressing Col10a1 are absent
in Runx2−/−Runx3−/− mice. In vitro analyses have shown that
RUNX2 induces Col10a1 expression, and that RUNX2
directly regulates the Col10a1 promoter by using core
responsive elements located at −2.4 kb in mouse and chicken
and between −89 and −60 bp in humans (Enomoto et al.
2000; Zheng et al. 2003; Drissi et al. 2003; Higashikawa et
al. 2009) (Fig. 1).
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Fig. 1 Regulation of extracellular matrix protein genes by RUNX2
during the differentiation of osteoblasts and chondrocytes. RUNX2 is
essential for the commitment of pluripotent mesenchymal cells to the
osteoblast lineage. During the process of endochondral ossification,
RUNX2 and RUNX3 are crucial for chondrocyte maturation and
inhibit chondrocytes from acquiring the phenotype of permanent
cartilage. RUNX2 regulates the expression of Col10a1 in hypertrophic
chondrocytes and the expression of Spp1, Ibsp, and Mmp13 in

terminal hypertrophic chondrocytes. During the process of osteoblast
differentiation, RUNX2 triggers the expression of Col1a1, Col1a2,
Spp1, Ibsp, and Bglap and maintains the expression of Spp1 and Ibsp
in immature osteoblasts. However, Runx2 expression has to be
downregulated for bone maturation (Col10a1 collagen 10a1, Spp1
secreted phophoprotein 1/osteopontin, Ibsp integrin-binding sialopro-
tein/bone sialoprotein II, Mmp13 matrix metallopeptidase 13, Bglap
bone gamma-carboxyglutamate [gla] protein/osteocalcin)
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TNC (tenascin-C) is expressed in chondrocytes once
cartilage tissue appears, but its expression becomes limited
to the articular chondrocytes as cartilage development
progresses (Pacifici 1995). In Runx2 transgenic mice under
the control of the Col2a1 promoter, permanent cartilage
enters the endochondral pathway, and TNC expression in
the presumptive joint region is lost, whereas most chon-
drocytes in dn-Runx2 transgenic mice under the control of
the Col2a1 promoter retain the expression of TNC.
Therefore, suppression of Runx2 expression is required for
the formation and maintenance of permanent cartilage
(Ueta et al. 2001) (Fig. 1). In osteoarthritis, however,
RUNX2 is detected in the articular cartilage, and RUNX2 is
colocalized with COL10A1 or MMP13 (Wang et al. 2004;
Kamekura et al. 2006).

RUNX2 regulates the expression of bone matrix protein
genes in osteoblasts

As Runx2−/− mice lack osteoblasts, the expression of bone
matrix protein genes including Spp1, Ibsp, and Bglap is
virtually absent in these mice (Komori et al. 1997; Inada et
al. 1999). In type II Runx2-specific knockout mice, the
expression of Col1a1, Spp1, and Bglap is reduced (Xiao et
al. 2005). In accordance with the results of the in vivo
studies, in vitro studies have demonstrated that RUNX2 is a
positive regulator that can upregulate the expression of
bone matrix protein genes including Col1a1, Spp1, Ibsp,
Bglap, and Fn1 (fibronectin 1) (Ducy et al. 1997; Sato et al.
1998; Harada et al. 1999; Lee et al. 2000). RUNX2 is
involved in the transcriptional activation of many promoters
including those of Col1a1, Col1a2, Spp1, and Bglap
(Banerjee et al. 1997; Kern et al. 2001; Harada et al.
1999; Jiménez et al. 1999; Sato et al. 1998). However, Ibsp
is an exception, because Ibsp expression is reduced by
RUNX2 and HDAC3 in vitro, and RUNX2 represses Ibsp
promoter activity (Lamour et al. 2007; Javed et al. 2001).
Further, expression of dn-Runx2 under the control of the
Bglap promoter, which directs reporter gene expression to
mature osteoblasts, results in osteopenia because of drastic
reductions in the expression of genes encoding the main
bone matrix proteins including COL1A1, COL1A2, SPP1,
IBSP, and BGLAP (Ducy et al. 1999).

However, transgenic mice that overexpress Runx2 under
the control of a 2.3-kb mouse Col1a1 promoter, which
directs reporter gene expression to immature and mature
osteoblasts, show osteopenia with multiple fractures (Liu et
al. 2001; Geoffroy et al. 2002; Kanatani et al. 2006). Most
of the osteoblasts of these mice exhibit less mature
phenotypes, and the numbers of terminally differentiated
osteoblasts, which strongly express Bglap, and of osteo-
cytes are greatly diminished. As a result, in the osteoblasts

of these mice, the expression of Col1a1, Alpl (alkaline
phosphatase, liver/bone/kidney), Bglap, and Mmp13, all of
which normally increase during osteoblast maturation, are
reduced (Liu et al. 2001; Geoffroy et al. 2002; Kanatani et
al. 2006), although the changes in the expression of the bone
matrix protein genes could be, in part, attributable to the
abnormal osteoblast differentiation in Runx2 transgenic mice.
In dn-Runx2 transgenic mice under the control of the same
2.3-kb mouse Col1a1 promoter, the volume of the trabecular
bone is increased, and the expression of major bone matrix
protein genes including Col1a1, Spp1, and Bglap, is not
significantly affected compared with those in wild-type mice,
although dn-RUNX2 rescues the reduction of Bglap expres-
sion in the Runx2 transgenic mice (Maruyama et al. 2007).
These findings, together with the in vitro data, indicate that
RUNX2 induces the expression of major bone matrix protein
genes in osteoblast progenitors, allowing the cells to acquire
the osteoblastic phenotype while keeping the osteoblastic
cells in an immature stage. As the expression patterns of
Runx2 and Spp1 are similar during bone development, and as
Spp1 expression is increased in Runx2 transgenic mice,
RUNX2 is likely to maintain Spp1 expression in immature
osteoblasts (Maruyama et al. 2007; Liu et al. 2001; Geoffroy
et al. 2002; Kanatani et al. 2006). In mature osteoblasts, a
low level of Runx2 expression might nevertheless be
required for the maintenance of the expression of Col1a1
and Bglap (Fig. 1).

Osteoblast differentiation and bone maturation

In transgenic mice overexpressing Runx2 under the control
of the 2.3-kb Col1a1 promoter, cortical bone has a woven
bone-like structure, the cortical bone mass but not the
trabecular bone mass is severely reduced, and the reduction
in cortical bone mass is attributable to accelerated resorp-
tion caused by the increase in recruitment and activity of
osteoclasts (Liu et al. 2001; Geoffroy et al. 2002; Kanatani
et al. 2006). This seems to be caused by the immature
composition of cortical bone, which contains abundant
SPP1 with the small cell attachment motif (Arg-Gly-Asp
[RGD]); the RGD is recognized by integrins and promotes
the attachment of osteoclasts to the extracellular matrix
(Young et al. 1993). The expression of IBSP, which also
has the RGD motif, is increased in Runx2 transgenic mice
under the control of the 2.3-kb Col1a1 promoter (Liu et al.
2001; Geoffroy et al. 2002) and may also contribute to the
accelerated resorption of cortical bone.

In contrast, the trabecular bone increases in volume
without deceleration of osteoclastogenesis in adult dn-
Runx2 transgenic mice under the control of the 2.3-kb
Col1a1 promoter (Maruyama et al. 2007). The extent of
mineralization in the trabecular bone is higher in dn-Runx2

192 Cell Tissue Res (2010) 339:189–195



transgenic mice than in wild-type mice. Further, although
the collagen fibrils are loosely deposited in a random
orientation in the trabecular bone of wild-type mice, they
are densely and regularly packed in the trabecular bone of
dn-Runx2 transgenic mice. These characteristics of the
trabecular bone of dn-Runx2 transgenic mice are similar to
those seen in cortical bone, indicating that the trabecular
bone in dn-Runx2 transgenic mice has characteristics of
compact bone, which represents a more mature bone than
trabecular bone and is more resistant to osteolysis. Thus,
RUNX2 directs multipotent mesenchymal cells to the
osteoblast lineage and triggers the expression of major
bone matrix protein genes, leading to an increase in

immature osteoblasts, which form immature bone. Howev-
er, Runx2 expression has to be downregulated for the
phenotype of fully mature osteoblasts, which form mature
bone, to be acquired (Figs. 1, 2).

Odontoblast differentiation and RUNX2

Endogenous Runx2 is expressed in preodontoblasts and is
downregulated during odontoblast differentiation (Bronckers
et al. 2001; Yamashiro et al. 2002; Chen et al. 2005;
Miyazaki et al. 2008) (Fig. 2). In Runx2 transgenic mice
under the control of the 2.3-kb Col1a1 promoter, transgene
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Fig. 2 Regulation of osteoblast and odontoblast differentiation by
RUNX2. RUNX2 directs pluripotent mesenchymal cells to the
osteoblast lineage, increases the number of immature osteoblasts, but
inhibits osteoblast maturation. Preosteoblasts express Runx2. Imma-
ture osteoblasts express Runx2 and Spp1 and, subsequently, Bglap.
Mature osteoblasts express Bglap, but Runx2 expression is down-
regulated. Osteocytes express Dmp1. The transition of immature
osteoblasts to osteocytes occurs at an early stage of bone development.
The common precursors of osteoblasts and odontoblasts are restricted
to neural-crest-derived mesenchymal cells, but the basal process of
osteoblast differentiation is similar in the neural-crest-derived and
non-neural-crest-derived pluripotent mesenchymal cells. Preodonto-
blasts differentiate from neural-crest-derived pluripotent mesenchymal

cells. RUNX2 is essential for differentiation of pluripotent mesenchy-
mal cells into preodontoblasts. RUNX2 also probably induces the
differentiation of preodontoblasts into immature odontoblasts at an
early stage but is inhibitory at a late stage. Preodontoblasts express
Runx2, immature odontoblasts express Dspp and Nes but Runx2
weakly, and mature odontoblasts express Dspp and Nes but not Runx2.
Runx2 expression is downregulated during odontoblast differentiation,
and RUNX2 inhibits terminal differentiation of odontoblasts. Over-
expression of Runx2 induced transdifferentiation of odontoblasts to
osteoblasts (Spp1 secreted phophoprotein 1/osteopontin, Bglap bone
gamma-carboxyglutamate [gla] protein/osteocalcin, Dspp dentin sia-
lophosphoprotein, Nes nestin, Dmp1 dentin matrix protein 1)
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expression has been detected in odontoblasts and osteoblasts
(Miyazaki et al. 2008). The overexpression of Runx2 in
odonotoblasts inhibits their terminal differentiation and
induces the transdifferentiation of odontoblasts into osteo-
blasts, forming a bone structure (Miyazaki et al. 2008). The
gene expression of DSPP (dentin sialophosphoprotein),
which is known to be a tooth-specific extracellular matrix
protein (D’Souza et al. 1997; Begue-Kirn et al. 1998), is
severely downregulated in odontoblasts of Runx2 transgenic
mice. Further, NES (nestin), which is an intermediate
filament protein and an odontoblast marker protein that is
not expressed in osteoblasts (Terling et al. 1995), is also
severely downregulated in the odontoblasts. The levels of
SPP1 and DMP1, which are noncollagenous proteins present
in both bone and teeth but with higher expression levels in
the former (D’Souza et al. 1997; Aguiar and Arana-Chavez
2007), are increased in the dentin of Runx2 transgenic mice.
The mRNA of COL1A1, a major organic component of
bone and dentin, is similarly expressed in immature
odontoblasts of both wild-type and Runx2 transgenic mice;
however, it decreases after transdifferentiation from odonto-
blasts to osteoblasts in Runx2 transgenic mice. The expres-
sion of BGLAP, another protein found in both bone and
dentin, is upregulated in immature odontoblasts, but is also
downregulated after transdifferentiation in Runx2 transgenic
mice. Therefore, RUNX2 is able to alter the expression of
extracellular matrix protein genes in odontoblasts and to
induce the expression of bone matrix protein genes in
odontoblasts, leading to their transdifferentiation to osteo-
blasts (Fig. 2). After transdifferentiation into osteoblasts,
however, the expression of Col1a1 and Bglap is down-
regulated, as has been observed in the osteoblasts of Runx2
transgenic mice (Liu et al. 2001; Geffroy et al. 2002;
Kanatani et al. 2006; Miyazaki et al. 2008).
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