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Abstract Modulation of the actin cytoskeleton in chon-
drocytes has been used to prevent or reverse dedifferenti-
ation and to enhance protein synthesis. We have
hypothesized that an actin-modifying agent, staurosporine,
could be used with fibrochondrocytes to increase the gene
expression and synthesis of critical fibrocartilage proteins.
A range of concentrations (0.1-100 nM) was applied to
fibrochondrocytes in monolayer and evaluated after 24 h
and after 4 days. High-dose staurosporine treatment (10—
100 nM) increased cartilage oligomeric matrix protein
60— to 500-fold and aggrecan gene expression two-fold.
This effective range of staurosporine was then applied to
scaffoldless tissue-engineered fibrochondrocyte constructs
for 4 weeks. Whereas glycosaminoglycan synthesis was
not affected, collagen content doubled, from 27.6+8.8 ug
in the untreated constructs to 55.2+12.2 pg per construct
with 100 nM treatment. When analyzed for specific
collagens, the 10-nM group showed a significant increase
in collagen type I content, whereas collagen type II was
unaffected. A concomitant dose-dependent reduction was
noted in construct contraction, reflecting the actin-
disrupting action of staurosporine. Thus, staurosporine
increases the gene expression for important matrix
proteins and can be used to enhance matrix production
and reduce contraction in tissue-engineered fibrocartilage
constructs.
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Introduction

A significant challenge in fibrocartilage tissue engineering
is the production of sufficient extracellular matrix (ECM).
Common approaches to stimulating fibrochondrocytes to
produce matrix include the use of growth factors (Imler et
al. 2004; Lietman et al. 2003; Pangborn and Athanasiou
2005a; Pangborn and Athanasiou 2005b), mechanical
stimulation (Deschner et al. 2005a, b; Fink et al. 2001;
Imler et al. 2004; Vanderploeg et al. 2004), and gene
transfection (Hidaka et al. 2002). Another strategy might be
to ameliorate the changes in fibrochondrocyte phenotype
that lead to the decline in ECM production.

Part of the difficulty in regulating ECM synthesis by
fibrochondrocytes is that in vitro culture of the cells leads to
their dedifferentiation; rates of synthesis decrease and the
synthesis profile changes (Isoda and Saito 1998; Tanaka et
al. 1999). Gene expression studies have demonstrated a
drop in collagen II and cartilage oligomeric matrix protein
(COMP) expression in fibrochondrocytes over time (Gunja
and Athanasiou 2007), whereas cell matrix evaluation has
found decreases in aggrecan (Verdonk et al. 2005).
Increased production of o-smooth muscle actin («SMA),
leading to deleterious cell contraction and destruction of
scaffold porosity in tissue-engineered constructs, is another
consequence of fibrochondrocyte dedifferentiation (Mueller
et al. 1999a, b). These findings in fibrochondrocytes are
further supported by the larger body of evidence with
chondrocytes. Declining collagen I, COMP, and aggrecan
gene expression has been found in chondrocyte cultures,
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and again, increased «SMA synthesis is evident (Darling
and Athanasiou 2005; Diaz-Romero et al. 2005; Honda et
al. 2004; Kaps et al. 2006; Kinner and Spector 2001;
Schnabel et al. 2002). Preventing the changes associated
with dedifferentiation and helping fibrochondrocytes
retain their native phenotype should aid tissue-engineering
strategies.

Actin-integrin interactions play a significant role in the
manifestation of dedifferentiation, including changes in
cell shape, gene expression, and ECM production (Geiger
et al. 2001). Indeed, studies of chondrocyte redifferentia-
tion in the presence of actin-modifying agents have
shown significant potential to prevent the deleterious
effects of dedifferentiation (Borge et al. 1997; Loty et al.
2000). One particular agent, staurosporine, has been
particularly effective in redifferentiating chondrocytes.
Staurosporine treatment of passaged dedifferentiated chon-
drocytes has been found to increase collagen II expression
and staining for glycosaminoglycans (GAG; Benya 1988;
Borge et al. 1997). In staurosporine-treated chondrocyte-
seeded matrices, the uptake of collagen and GAG precur-
sors increases two-fold and ten-fold, respectively (Lee et al.
2003). Treatment of chondrocytes with staurosporine has
also resulted in reduced synthesis of «SMA (Lee et al.
2003; Zaleskas et al. 2004).

Staurosporine is known to be a protein-kinase C
(PKC) inhibitor, specifically preventing ATP from bind-
ing the kinase. Recent work in hepatocytes has linked the
action of PKC with the f-actin cytoskeleton, specifically
through an oxidative stress mechanism. Thus, one of the
effects of oxidative stress, actin disorganization, has been
found to be mediated by a PKC pathway and can be
prevented via the use of staurosporine (Perez et al.
2006). Evidence also suggests that staurosporine reduces
stress fiber formation and cell contraction via effects on
actin polymerization and mysosin contraction (Lee et al.
2003; Sakurada et al. 1998; Wakatsuki et al. 2003).
Staurosporine and other actin-modifying agents are be-
lieved to have their beneficial effects on chondrocytes
through these changes in the cytoskeleton. Overall, staur-
osporine has been shown to have several important effects
at the protein level that may be harnessed for successful
tissue engineering of tissue with fibrochondrocytes.

By preventing changes associated with fibrochondro-
cyte culture (a dedifferentiation-like process) at the gene
level, we hypothesize that staurosporine treatment might
result in greater ECM production in tissue-engineered
constructs. In this study, we first examine a range of
staurosporine treatments on short- and long-term gene
expression changes in monolayer fibrochondrocytes.
Next, the effective concentration range, identified in the
gene expression studies, has been applied to tissue-
engineered constructs to examine changes in ECM
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synthesis. In this study, we take a scaffoldless approach,
termed self-assembly (Hu and Athanasiou 2006), to
examine staurosporine treatments for fibrocartilage tissue
engineering. Self-assembly has been used successfully in
the past to create neofibrocartilage constructs and, more-
over, avoids the challenges of scaffold-based studies
(Hoben et al. 2007).

Materials and methods
Cell culture

Fibrochondrocytes were harvested from the inner 2/3 of
the medial meniscus of 1-week-old male calves (Research
87, Boston, Mass.) less than 36 h after slaughter. Cells
were isolated by overnight digestion in culture medium
with 0.2% type II collagenase (Worthington, Lakewood,
N.J.) in an incubator at 37°C, with 10% carbon dioxide.
Culture medium was composed of DMEM with 4.5 g/l
L-glucose and L-glutamine (Gibco, Grand Island, N.Y.),
10% fetal bovine serum (FBS; Biowhittaker, Walkersville,
Md.), 1% fungizone, 1% penicillin/streptomycin, 1% non-
essential amino acids, 0.4 mM proline, 10 mM HEPES,
and 50 pg/ml L-ascorbic acid. Cells were frozen at —80°C
in culture medium supplemented with 20% FBS and 10%
dimethylsufoxide (DMSO) until sufficient cells were
collected.

Staurosporine preparation

Staurosporine (Axxora, San Diego, Calif.) was dissolved
in DMSO to a concentration of 1 mM and then further
diluted in phosphate-buffered saline (PBS; Sigma, St.
Louis, Mo.) to 2 uM. This solution was then sterile-
filtered, and further dilutions to the working concen-
trations were made in culture medium.

Actin staining

Tissue-culture-treated coverslips (24x30 mm; Nalgene
Nunc International, Naperville, Ill.) were seeded with
2x10° cells and treated with 0.1, 1.0, 10, and 100 nM
staurosporine in culture medium for 24 h. Cells were then
fixed in 3.7% paraformaldehyde and digested with 0.1%
Triton-X (Fisher Scientific) for 5 min. The samples were
then stained with 1:40 Alexa Fluor-647 phalloidin in PBS
(Molecular Probes, Eugene, Ore.) for 90 min, followed by
1 mM Hoechst dye (Molecular Probes) for 7 min. Slides
were then viewed on an Axioplan 2 microscope (Carl Zeiss,
Oberkochen, Germany). Images were acquired and ana-
lyzed by using Metamorph 4.15 (Universal Imaging,
Downington, Pa.).
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Quantitative mRNA analysis

Fibrochondrocytes from a single animal were seeded in
6-well plates at 2x10° cells/well and allowed to grow
until confluent. The experiment was repeated with cells
from five separate animals. Cells were then treated with
0.1, 1.0, 10, and 100 nM staurosporine in culture
medium with medium changes every day. Cells were
collected and lysed from monolayer culture with Trizol
reagent (Invitrogen, Carlsbad, Calif.) after 24 h and after
4 days of culture. RNA was then isolated from the lysate
by the addition of chloroform, centrifugation to collect
the RNA layer, and further purification with isopropanol
and DNase-I (Stratagene, La Jolla, Calif.) treatment to
remove any contaminating DNA. RNA was then quanti-
fied on a fluorospectrometer (NanoDrop, Wilmington,
Del.). Samples of 200 ng RNA were reverse-transcribed
to cDNA. For the reverse transcription reaction, RNA
samples were mixed with I mM dNTPs, 1 mM random
hexamers, and Stratagene Stratascript RT enzyme
(Stratagene) for 90 min at 37°C. After cDNA synthesis,
real-time polymerase chain reaction (PCR) for glycer-
aldehydes-3-phosphate dehydrogenase (GAPDH), colla-
gen I, collagen II, aggrecan, and COMP was performed
in a Rotor-gene 3000 real-time PCR machine (Corbett
Research, Sydney, Australia). Primers and probe
sequences were used as previously described (Darling
and Athanasiou 2005; Shieh and Athanasiou 2007).
Relative gene abundance for the gene of interest (RAgor)
was calculated by using the number of take-off cycles (C,)
and reaction efficiency (Ego;) and normalized to
GAPDH, a housekeeping gene.

(1 + Egappr)“
(1+ EGO])C'

GOl

Three-dimensional construct formation

Cylindrical 2% agarose (Sigma) molds with a 5-mm
diameter were produced in a 48-well plate, as previously
described (Hoben et al. 2007). Bovine fibrochondrocytes
were harvested as described above, and cells from 10
animals were pooled to obtain sufficient cells. Constructs
consisted of 5.5x10° cells allowed to self-assemble in the
mold. Control constructs were given culture medium, and
experimental groups received 10 nM, 50 nM, or 100 nM
staurosporine-supplemented culture medium. Constructs
were given daily complete media changes of 500 ul.
Construct dimensions, while still in culture, were measured
by using Image J software (free access at http://rsb.info.nih.
gov/ij). Construct micrographs were imported to Image J,
and measurements were scaled in the software to calculate
the construct area by using internal standards.

Construct histology and immunohistochemistry

Samples were frozen and sectioned at 12 pum. Safranin-O
and fast green were used to examine GAG distribution, and
picrosirius red staining was used to analyze collagen
distribution. Immunohistochemical analysis was performed
by fixation of the sections in chilled acetone, rehydration,
treatment with 3% H,O, in methanol, and blocking with
horse serum. The primary antibody, mouse anti-human anti-
«SMA monoclonal antibody (Sigma), was diluted 1:200 in
PBS and applied for 1 h. Visualization by using a secondary
biotinylated antibody, the ABC reagent, and diaminobenzi-
dine (DAB) was performed with the Vectastain kit (Vector
Laboratories, Burlingame, Calif.), and counterstaining with
Harris’s hematoxylin. Sections of meniscal fibrocartilage
and aorta tissue were run as positive controls, whereas
samples stained without application of the primary antibody
were used as negative controls.

Construct quantitative biochemistry

Samples were lyophilized for 48 h and digested in 125 png/
ml papain (Sigma) for 18 h at 60°C. For each biochemical
analysis, four to six constructs were analyzed. Cell number
was determined by using the Picogreen Cell Proliferation
Assay Kit (Molecular Probes). A hydroxyproline assay
(Reddy and Enwemeka 1996) was performed to gauge total
collagen by using bovine collagen standards (Biocolor,
Newtonabbey, Northern Ireland). Sulfated GAG was
measured with the Blyscan GAG Assay Kit (Biocolor).
Samples for enzyme-linked immunosorbent assay (ELISA)
were digested in papain at 4°C for 4 days and then a 1/10
volume of elastase (Sigma) solution in 10x TRIS-buffered
saline was added to achieve a concentration of 0.1 mg/ml
elastase. Samples were allowed to digest for an additional
48 h. The amount of collagen I amounts was quantified by
using an indirect ELISA, and that for collagen II was
determined by using a capture ELISA. For the indirect
ELISA, 96-well plates were coated with standards and
samples and incubated overnight at 4°C. The wells were
blocked with bovine serum albumin for 2 h and then exposed
to a primary antibody to collagen I (US Biological, Swamp-
scott, Mass.) for 1 h. A secondary antibody (US Biological)
was then exposed to the plate for 1 h, after which the results
were visualized at 450 nm by using TMB as a liquid
substrate. Collagen II was quantified by using a capture
ELISA kit (Chondrex, Redmond, Wash.). Plates were coated
in capture antibody solution overnight at 4°C, and then
samples and standards were applied. Protein was visualized
with TMB reagent following reaction between the biotiny-
lated secondary antibody (Chondrex) and streptavidin-
peroxidase. Between each incubation step in the ELISA,
plates were washed in PBS with 0.05% Tween-20 (Sigma).
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Fig. 1 Phalloidin actin staining (red) of monolayer cells after 24 h on
tissue culture plastic (blue nuclear counterstaining). a Untreated cells
show dense stress bundles and localization of staining at the cell
periphery. b Following 100 nM staurosporine treatment, a clear
decrease can be seen in the intensity of actin staining, with diminished
abundance at the cell periphery. Bar 10 pm

Statistics

All data were compiled as mean+SD. A one-factor analysis of
variance (ANOVA) was used when comparing means for
quantitative biochemistry. A two-factor ANOVA was used to
analyze construct contraction by using time and staurosporine
dose as factors. If an analysis showed a significant difference
(P<0.05), a Tukey’s post hoc analysis was performed to
compare sample sets. A paired (by animal) Student’s #-test
was used to determine significance between a treatment
group and the no-dose group for gene expression.

Fig. 2 Quantitative gene Collagen |

Results
Monolayer staining

Untreated cells appeared well-spread with multiple
cytoplasmic extensions, and fluorescence microscopy
revealed dense actin staining, especially around the cell
periphery (Fig. 1la). In contrast, the cells treated with
staurosporine showed faint diffuse actin staining throughout
the cell body (Fig. 1b).

Quantitative gene expression

Animal-to-animal variation was significant for all of the
genes measured, with the exception of COMP. To
account for this, a paired Student’s #-test was employed;
abundance was normalized to GAPDH and scaled relative
to the untreated controls at the respective time point
(Fig. 2). At 24 h of treatment, a significant increase was
seen in aggrecan and COMP with high-dose staurospor-
ine, together with a dose-dependent decreasing trend in
collagen I expression (P=0.097). After 4 days, high-dose
staurosporine led to increased COMP expression com-
pared with the no-dose control, and although not signif-
icant, 100 nM staurosporine showed an increase in
collagen II expression.

Collagen I
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Table 1 Construct biochemistry after 4 weeks of culture. Although
staurosporine at high concentration induces apoptosis in some cell
types, the cell number per construct tended to be higher in treated

constructs. When normalized to dry weight (DW) or per construct, no
significant differences were apparent in GAG content. In contrast,
higher doses of staurosporine resulted in greater collagen content

Staurosporine Wet weight (mg) Number of cells/ GAG/construct (pg) GAG/DW (%) Collagen/DW (%)*
concentration construct (X106)

0 nM 2.33+0.24 1.36+0.22 12.57+4.39 1.83+0.28 5.57+3.43°

10 nM 2.27+0.38 1.43+£0.71 14.86+4.56 2.02+0.29 6.04+1.99°

50 nM 2.18+0.36 1.92+0.55 12.84+3.30 2.31+0.97 7.9242.54% ®

100 nM 2.46+0.63 1.86+0.27 12.42+5.28 2.39+0.71 10.91+0.90*

Tissue-engineered constructs

The tissue-engineered constructs coalesced within 24 h in
the agarose wells and, after 4 weeks of culture, grew to wet
weights ranging from 2.18 mg to 2.46 mg (Table 1). All
tissue-engineered constructs had an initial disc diameter of
5 mm, and the untreated constructs showed continuous
contraction to 3.72+1.09 mm, whereas the 100-nM-treated
constructs only contracted to 4.27+0.60 mm (Fig. 3). Two-
factor ANOVA demonstrated both dose and time to be
significant factors. Histological examination showed in-
tense staining for collagen and a minimal appearance of
GAGs (data not shown). Staining for «SMA revealed an
accumulation of actin near the edges of the construct,
whereas staining was less intense following staurosporine
treatment, especially with the 50 nM dose (Fig. 4).
Quantitative biochemistry demonstrated significant
changes in the total quantity and proportions of the different
collagens (Fig. 5). High-dose staurosporine treatment led to
a 100% increase in total collagen per construct from 27.6+
8.8 ug to 55.2+12.2 pg per construct. When analyzed for
specific collagens, the 10-nM group exhibited a significant
increase over the control and higher doses for collagen type
I, whereas collagen type Il was similar for all groups. No
change was found in the number of cells per construct or
the GAG quantity with staurosporine treatment (Table 1).

Discussion

The unique agent employed in this two-phase study,
staurosporine, functions both as a PKC inhibitor and, by
a separate undefined mechanism, as an actin-disrupting
agent (Mobley et al. 1994). The modulation of actin
structure with agents ranging from cytochalasin D to
latrunculin has shown marked changes in protein produc-
tion by various cell types including fibroblasts, mesenchy-
mal stem cells, and especially, chondrocytes (Gerecht et al.
2007; Loty et al. 2000; Newman and Watt 1988; Pirttiniemi

and Kantomaa 1998; Zhang et al. 2006). The critical role of
actin stress fibers in the transformation of fibrochondro-
cytes to «SMA—containing myofibroblasts (Kambic et al.
2000; Mueller et al. 1999a, b) prompted the evaluation of
staurosporine treatment in this study. First, monolayer
fibrochondrocytes were treated with staurosporine and
examined for changes in actin appearance and gene
expression. Next, the effective doses of staurosporine
identified in the first phase were applied to tissue-
engineered constructs.

In monolayer culture of fibrochondrocytes, staurosporine
clearly disrupted the actin bundles and significantly
increased aggrecan and COMP gene expression; it also
stimulated an increasing trend in collagen II gene expres-
sion. These results are in agreement with our hypothesis
that staurosporine prevents a dedifferentiation-like process
in fibrochondrocytes, because prior work with chondro-
cytes and fibrochondrocytes has shown decreases in both
aggrecan and COMP expression over time as these cells
dedifferentiate in two-dimensional culture (Darling and

-0 NM

--n--10 nM

—a—-50 nM
+—100 nM

Fig. 3 Construct diameter over time. Staurosporine has previously
been linked to the inhibition of construct contraction. In this study,
both time and concentration were significant factors
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Fig. 4 Immunohistochemical staining for «SMA. Constructs were
treated with 0 nM (a), 10 nM (b), 50 nM (¢), 100 nM (d)
staurosporine. Brown staining indicates positive protein staining. The
untreated construct shows intense staining along the borders of the
construct, whereas staining is lighter and more diffuse in the treated
constructs. The trend in increasing construct diameter suggests that
regulation of «SMA by staurosporine could have benefits in the
retention of construct dimensions. Bar 100 pm

Athanasiou 2005; Gunja and Athanasiou 2007). The large
increases in COMP expression in this study are particularly
interesting, as COMP has been identified as a sensitive
marker of chondrocyte dedifferentiation (Zaucke et al.
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2001). Since collagen I gene expression actually increases
with dedifferentiation, the trends seen in this work reflect
the role of staurosporine as an inhibitor of this process
(Darling and Athanasiou 2005; Gunja and Athanasiou
2007). Overall, these promising gene expression results
indicate that concentrations from 10 to 100 nM would be
most effective in ameliorating the changes in fibrochon-
drocyte characteristics seen in culture.

The concentration range identified in the monolayer
study was then applied to tissue-engineered constructs.
Most remarkably, the high-dose treatment resulted in a
doubling of the collagen content. This increase in collagen
may be related to the increased COMP gene expression, as
COMP has been found to be integral in collagen fibril
organization (Rosenberg et al. 1998; Thur et al. 2001).
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Fig. 5 Total and specific collagen content of the constructs. a Total
collagen showed a significant increase with the highest dose of
staurosporine. Bars not connected by the same letter are significantly
different, P<0.05. b Collagen I content was greatest in the 10-nM-
treated constructs. *P<0.05. ¢ Collagen II content did not vary
significantly in the constructs
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Additionally, we have observed a dose-dependent inhibition
in construct contraction. These results suggest that the
modulation of actin structures in fibrochondrocytes not
only changes the gene expression and protein synthesis
profiles, but may also, given the large increase in
collagen production, produce significant benefits for
tissue-engineering strategies.

Prior work with chondrocytes has shown the benefit of
staurosporine as manifest by the recurrence of collagen II,
the predominant collagen of hyaline cartilage, after passag-
ing (Benya and Padilla 1986; Borge et al. 1997; Lee et al.
2003). Similarly, in this study, we have seen an increasing
trend in collagen II gene expression at the 4-day time-point.
The reduction in «SMA and a concomitant reduction in
construct contraction have also been significant findings in
chondrocyte studies by Lee et al. (2003) and Zaleskas et al.
(2004); however, in our study, the inhibition in construct
contraction is less prominent. A potential reason for this
discrepancy is the absence of an exogenous scaffold in this
study. The lack of a scaffold to resist cell-mediated
contraction may have prevented the anti-contraction prop-
erties of staurosporine being as evident in our results. A
disadvantage of staurosporine treatment of chondrocytes is
its potential toxicity at concentrations approaching 1 puM,
with 100 nM concentrations resulting in 35% cell loss in
monolayer cultures after 8 h (Mukherjee et al. 2001). In
contrast, no cell loss has been seen in the staurosporine-
treated constructs versus controls in our study, suggesting
that the three-dimensional configuration may have pre-
vented staurosporine-mediated apoptosis. Thus, the
increases in collagen II expression and decreased construct
contraction correlates well with prior work on chondro-
cytes, although we have not observed the cell losses seen in
previous chondrocyte studies.

This is the first analysis of the effects of staurosporine
applied to fibrochondrocytes and, as these cells are distinct
from chondrocytes, their increased ECM production in
response to this unique stimulus merits further study.
Additionally, the mechanical properties of the new ECM
must be evaluated in future studies as another step toward
the use of this treatment in tissue-engineering strategies.
The evidence that staurosporine can modulate construct
contraction is promising for fibrocartilage tissue engineer-
ing and will be the focus of future work.
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