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Abstract Parkinson’s disease (PD) is characterized by the
progressive loss of dopaminergic neurons in the substantia
nigra leading to the major clinical and pharmacological
abnormalities of PD. In order to establish causal or
protective treatments for PD, it is necessary to identify the
cascade of deleterious events that lead to the dysfunction
and death of dopaminergic neurons. Based on genetic,
neuropathological, and biochemical data in patients and
experimental animal models, dysfunction of the ubiquitin-
proteasome pathway, protein aggregation, mitochondrial
dysfunction, oxidative stress, activation of the c-Jun N-
terminal kinase pathway, and inflammation have all been
identified as important pathways leading to excitotoxic
and apoptotic death of dopaminergic neurons. Toxin-based
and genetically engineered animal models allow (1) the
study of the significance of these aspects and their
interaction with each other and (2) the development of
causal treatments to stop disease progression.
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Neuropathological and neuroanatomical characteristics

The pathological hallmarks of Parkinson’s disease (PD)
are the loss of nigrostriatal dopaminergic neurons and the
presence of intraneuronal proteinaceous cytoplasmic
inclusions, termed “Lewy Bodies” (LBs). During the
lifetime of a patient, the diagnosis of PD is made on
clinical grounds, but definitive diagnosis requires the

identification of both LBs and neurodegeneration in the
substantia nigra pars compacta (SNpc).

Degeneration of dopaminergic neurons in PD

The cell bodies of the nigrostriatal neurons are located in
the SNpc and project primarily to the putamen. The loss of
these neurons, which normally contain conspicuous
amounts of neuromelanin (Marsden 1983), produces the
classic gross neuropathological finding of SNpc de-
pigmentation. The pattern of SNpc cell loss appears to
parallel the expression level of the dopamine transporter
(DAT) mRNA (Uhl et al. 1994) and is consistent with the
finding that the depletion of dopamine (DA) is most
pronounced in the dorsolateral putamen (Bernheimer et al.
1973), the main site of projection for these neurons. At the
onset of symptoms, DA in the putamen is depleted by
approximately 80%, and approximately 60% of the SNpc
dopaminergic neurons have been lost. The mesolimbic
dopaminergic neurons, the cell bodies of which reside
adjacent to the SNpc in the ventral tegmental area (VTA),
are much less affected in PD (Uhl et al. 1985).
Consequently, there is significantly less depletion of DA
in the caudate (Price et al. 1978), the main site of
projection for these neurons.

The neuropil of the SNpc is composed of axon
projections from the striatum and globus pallidus. It stains
strongly for calbindin D28K, and most dopaminergic cell
bodies reside within this calbindin-rich neuropil (Damier
et al. 1999a). However, the most susceptible neurons in
PD tend to be in calbindin-poor areas of the substantia
nigra (Damier et al. 1999b). Thus, cell loss is concentrated
in ventrolateral and caudal portions of the SNpc, whereas
during normal aging, the dorsomedial aspect of the SNpc
is affected (Fearnley and Lees 1991). Therefore, even
though age is an important risk factor for PD, neurode-
generation in PD appears to be a specific process distinct
from normal aging.

Interestingly, the degree of terminal loss in the striatum
appears to be more pronounced than the magnitude of
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SNpc dopaminergic neuron loss (Bernheimer et al. 1973).
This suggests that striatal nerve terminals are the primary
target of the degenerative process and that neuronal death
in PD may result from a “dying back” process. Experi-
mental support for this concept includes the observations
that, in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated monkeys, the destruction of striatal
terminals precedes that of SNpc cell bodies (Herkenham
et al. 1991), and that, in MPTP-treated mice, protection of
the striatal terminals prevents the loss of SNpc dopami-
nergic neurons (Wu et al. 2003).

Lewy bodies

LBs are spherical eosinophilic cytoplasmic protein
aggregates composed of numerous proteins, including α-
synuclein, parkin, ubiquitin, synphilin, and neurofila-
ments. They have a diameter of more than 15 μm and
an organized structure with a dense hyaline core
surrounded by a clear halo. Electron microscopy has
revealed a dense granulovesicular core surrounded by a
ring of radiating fibrils of 8–10 nm (Duffy and Tennyson
1965; Pappolla 1986).

LBs are found in all affected brain regions (Forno 1996;
Spillantini et al. 1998). However, they are not specific for
PD and are also found in a disease called “dementia with
Lewy bodies”, in Alzheimer’s disease (AD), and, as an
incidental pathological finding, in healthy people of

Fig. 1 Hypothetical pathway of genetic (red) and metabolic (black)
abnormalities leading to the death of dopaminergic neurons.
Proteins, of which α-synuclein is only an example, undergo
permanent degradation. The ubiquitin-proteasome pathway is the
most important mediator of this turnover. Defects in this pathway,
such as the increased generation of misfolded proteins or an
impairment of ubiquitination or proteasomal function, may result in
the accumulation and aggregation of misfolded proteins. Mutations
in the α-synuclein gene lead to an increased tendency of sponta-
neous aggregation. The same applies for exogenic toxins (i.e., free
radicals, 1-methyl-4-phenylpyridinium). Since parkin has E3
ubiquitin ligase activity, loss-of-function mutations may result in

impaired ubiquitination and accumulation of (non-ubiquitinated)
proteins that cannot be degraded. Mutations in ubiquitin C-terminal
hydrolase L1 (UCH-L1) may alter the ubiquitin ligase activity and
the de-ubiquitination function of polyubiquitin. Misfolded proteins
may act cytotoxically directly or may be sequestered into Lewy
bodies. Whether this sequestration provides neuroprotection or
whether Lewy bodies are themselves toxic remains to be clarified.
PTEN-induced protein kinase 1 (PINK-1) has recently been
identified as causing autosomal recessive PD, is localized to
mitochondria, and may contribute to the well-established mitochon-
drial dysfunction in PD
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advanced age (Gibb and Lees 1988). The role of LBs in
neuronal death is controversial (see below), as are the
reasons for their increased frequency in AD and the
relationship of incidental LB to the occurrence of PD.

It should be noted that intracellular protein aggregates
not only give rise to the large LBs located in the soma of
neurons. Protein aggregates can also be formed in
dendrites, resulting in local swellings termed Lewy
neurites.

Non-dopaminergic pathology in PD

Although dopaminergic neuron loss is characteristic for
PD, the neurodegeneration extends well beyond dopami-
nergic neurons. Neurodegeneration and LB formation are
found in noradrenergic (locus coeruleus), serotonergic
(raphe), and cholinergic (nucleus basalis of Meynert,
dorsal motor nucleus of vagus) systems, and in the
cerebral cortex (especially the cingulate and entorhinal
cortices), olfactory bulb, and autonomic nervous system.
The degeneration of hippocampal structures and choliner-
gic cortical inputs most likely explains the high rate of
dementia that accompanies PD, particularly in older
patients. However, the lesions in cholinergic, serotonergic,
and noradrenergic pathways are not as clearly character-
ized as those in the dopaminergic systems. Whereas
involvement of these neurochemical systems is generally
thought to occur in more severe or late-stage disease, the
temporal relationship of damage to specific neurochemical
systems is not well established. For example, some PD
patients develop depression months or years prior to the
onset of motor symptoms, which could be attributable to
an early involvement of non-dopaminergic pathways.

Pathogenesis of PD

Whatever insult initially provokes neurodegeneration,
studies of toxic PD models and the functions of genes
implicated in inherited forms of PD suggest two major
hypotheses regarding the pathogenesis of the disease: one

hypothesis posits that misfolding and aggregation of
proteins are instrumental in the death of SNpc dopami-
nergic neurons, whereas the other proposes that the culprit
is mitochondrial dysfunction and consequent oxidative
stress, including toxic oxidized dopamine species. These
pathogenic factors are not mutually exclusive, and one of
the key aims of current PD research is to elucidate the
sequence in which they act and whether points of
interaction between these pathways are relevant to the
demise of SNpc dopaminergic neurons. Potential points of
interaction are summarized in Fig. 1. A second uncertain
issue is whether the multiple molecular cell death-related
pathways activated during PD neurodegeneration ulti-
mately engage in one common downstream mechanism,
such as apoptosis, or whether they remain highly diver-
gent. Clearly, this issue is of great consequence in
determining possible therapeutic strategies for PD.

Protein aggregation and misfolding

The abnormal deposition of protein in brain tissue is a
feature of several age-related neurodegenerative diseases,
including PD, AD, and Huntington’s disease (Schulz and
Dichgans 1999). Although the composition and location of
protein aggregates differ between diseases, the existence
of protein aggregates in most age-related neurodegenera-
tive diseases suggests that protein deposition per se, or
some related event, is toxic to neurons. Protein deposition
may cause damage directly, may interfere with intracellu-
lar trafficking, or may sequester proteins that are important
for cell survival.

Work by Braak and colleagues (2003) has shown that
not every subtype of neurons has the capacity or the
requirement to form protein aggregates. Moreover, the
susceptible neuronal populations are affected in a uniform
sequence in which the dorsal vagal nucleus, locus
coeruleus, SNpc, mesocortex, and neocortex acquire
protein aggregates in this stereotypic temporal order
(Braak et al. 2003). However, these histological changes
correlate poorly with both neuronal cell loss, which is
most pronounced in the SNpc, and with functional deficits,

Table 1 Genetics of PD (PINK-1 PTEN-induced protein kinase 1, UCH-L1 ubiquitin C-terminal hydrolase L1, AD autosomal dominant, AR
autosomal recessive)

Locus
name

MIM Chromosomal
localization

Gene
product

Mode of
inheritance

Lewy body
pathology

Special
clinical features

PARK1 601508 4q21 α-Synuclein AD Yes Dementia
PARK2 600116 6q25.2-27 Parkin AR No Early onset, levodopa-induced dyskinesia,

sleep benefit, foot dystonia
PARK3 602404 2p13 Unknown AD Yes Dementia
PARK4 605543 4q21 α-Synuclein AD Yes Dementia, postural tremor
PARK5 191342 4q21 UCH-L1 AD Unknown Not described
PARK6 605909 1p35-36 PINK-1 AR Unknown Early onset, tremor dominant
PARK7 606324 1p36 DJ-1 AR Unknown Early onset, dystonia, psychic disturbances
PARK8 12cen Unknown AD Unknown Unknown
PARK9 1p32 Unknown AR (?) Unknown Late onset
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which typically are asymmetrical and vary greatly between
individuals.

Together with other data, these observations suggest
that there is no direct link between the formation of protein
inclusions and cell death (Saudou et al. 1998; Marx et al.
2003). Following current hypotheses, it is probably not the
protein inclusions themselves but their fibrillary precursors
that mediate toxicity (Bucciantini et al. 2002; Caughey and
Lansbury 2003). In this case, LBs may even provide
protection by the sequestration of ubiquitinated proteins,
and toxicity may only occur in the absence of further
sequestration capacity.

Evidence from familial PD

Aggregation of proteins results if the capacity of the cell to
degrade proteins is impaired. The significance of the
protein degradation pathway involving ubiquitination and
the proteasome for the pathogenesis of PD has been
highlighted by the identification of gene mutations in
autosomally dominant or autosomally recessive inherited
PD (Table 1). Mutations in any one of the first three PD
genes identified, viz., α-synuclein, parkin, or ubiquitin C-
terminal hydrolase L1 (UCH-L1) are thought to impair this
pathway, as we and others have recently reviewed (Chung
et al. 2001; McNaught et al. 2001; Krüger et al. 2002).

Mutations in α-synuclein favor the aggregation of α-
synuclein and may promote LB formation. Loss-of-
function mutations of parkin abolish its ubiquitin E3
ligase activity, which is required for the polyubiquitination
necessary to target proteins to the proteasome for degra-
dation. This failure may lead to the accumulation of
misfolded proteins that are substrates of parkin. Whether
or not α-synuclein is a parkin substrate is still under
debate. Whereas the evidence that α-synuclein is directly
ubiquitinated is sparse, a new 22-kDa glycosylated form of
α-synuclein (αSp22) has been identified as a parkin
substrate in normal human brain but not in other species
(Shimura et al. 2001). In contrast to normal parkin, mutant
parkin associated with autosomal recessive PD fails to
bind αSp22.

An Ile93Met mutation in the UCH-L1 gene is thought
to cause autosomal recessive PD in one family of German
descent (Leroy et al. 1998). The UCH-L1 protein is found
in LBs in PD, and its function relates it to the ubiquitin-
proteasome pathway, because it is involved in ubiquitin re-
utilization after processing of the target proteins by the
proteasome complex (Hershko and Ciechanover 1992).
Aside from its de-ubiquitinating function, UCH-L1 exerts
a previously unrecognized ubiquitin ligase activity upon
dimerization (Liu et al. 2002). Both the I93M mutation
and a S18Y polymorphism alter UCH-L1 ligase activity in
a manner consistent with the hypothesis that impaired
activity of the ubiquitin-proteasome system is critical in
PD pathogenesis; UCH-L1 ligase activity is decreased by
the pathogenic I93M mutation and increased by the
protective S18Y polymorphism (Liu et al. 2002).

Animal models based on familial PD

Post-mortem human brains often contain artifacts attribu-
table to autopsy delay and typically show end stage
disease rather than an evolving disease process. Therefore,
animal models are needed to study the pathogenesis of PD.
Murine models expressing mutated α-synuclein show
cytoplasmic protein aggregation and the formation of
protein inclusions that are similar to those observed in PD.
They also exhibit behavioral abnormalities late in animal
life (Kahle et al. 2000; Rathke-Hartlieb et al. 2001;
Giasson et al. 2002; Kahle et al. 2002). However, protein
aggregation occurs distant from the SNpc, and no
degeneration of dopaminergic neurons is seen. Similarly,
the number of SNpc dopaminergic neurons does not
decline in parkin-deficient mice (Goldberg et al. 2003;
Itier et al. 2003).

For studies aiming at the mechanisms of and possible
protective treatment against dopaminergic cell death, these
genetically engineered models have the limitation that
their visible pathology (inclusions of aggregated protein)
are most likely irrelevant for neurodegeneration, the actual
toxins (oligomere, soluble, fibrillary protein aggregates)
are not readily accessible for histological or quantitative
assays, and neuronal cell loss as the primary outcome
measure is not present.

MPTP model of PD

Because of the limitation cited above, the best animal
model for neurodegeneration in PD is still the toxicity of
MPTP. It produces clinical, biochemical, and neuropatho-
logical changes reminiscent of those occurring in idio-
pathic PD. Several cell death mechanisms have been
implicated in MPTP toxicity, including an inhibition of
complex I in the mitochondrial electron transport chain,
the generation of reactive oxygen species (ROS), inflam-
mation, the activation of excitatory amino acid receptors,
apoptosis, and autophagia (Dawson 2000; Beal 2001).
This animal model is probably the best, if not the only,
way experimentally to determine whether the neuropatho-
logical and biochemical abnormalities found in PD brains
actually cause the dysfunction and death of dopaminergic
neurons. Since these mechanisms have been reviewed
substantially in the past, we focus here on mitochondrial
dysfunction, ROS, and apoptosis. Inflammation is re-
viewed in another part of this review series (Teismann and
Schulz 2004).

Mitochondrial complex I is the principal source of free
radicals in the cell (Lenaz 1998). The respiration chain
consumes nearly 100% of molecular oxygen, and power-
ful oxidants are produced as byproducts. A large body of
evidence has established mitochondrial involvement in the
pathogenesis of PD. First, MPTP toxicity, which produces
parkinsonism in humans and laboratory animals, is
mediated by the inhibition of respiratory chain complex
I (Heikkila et al. 1985). Second, complex I deficiency and
oxidative damage have been demonstrated in the substan-
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tia nigra of PD patients (Bindoff et al. 1989; Schapira et al.
1990; Mann et al. 1992; Janetzky et al. 1994; Hattori et al.
1991). Cybrids containing mtDNA from PD platelets also
show reduced complex I activity (Gu et al. 1998), strongly
suggesting that inherited and/or somatic mtDNA muta-
tions might be responsible for the biochemical phenotype
in PD. As maternally inherited forms of PD or parkin-
sonism with complex I deficiency have been reported
(Swerdlow et al. 1998; Simon et al. 1999), these mutations
might represent the primary cause of the disease in rare
cases. Recently, mutations in a protein kinase, PINK-1,
have been identified as causing autosomally recessive
inherited PD (Valente et al. 2004). PINK-1, which carries a
mitochondrial import sequence, has been localized to
mitochondria, and the mutations causing PD also cause
sensitization to cellular stress (Valente et al. 2004).
Although the exact function of this kinase und the
biochemical consequences of the detected mutations are
unknown, a clearly inherited form of PD has, for the first
time, been directly linked to mitochondria. The product of
the fourth PD gene discovered, DJ-1 (Bonifati et al. 2003),
also appears to accumulate in mitochondria (Bonifati et al.
2003) and has been implicated as a cellular monitor of
oxidative stress (Mitsumoto and Nakagawa 2001; Mitsu-
moto et al. 2001).

As mentioned above, the inhibition of complex I
increases the production of superoxide (•O2), a ROS that
may form toxic hydroxyl radicals or react with nitric oxide
(NO•) to form the highly toxic peroxynitrite. These
molecules may cause cellular damage by the oxidation
of nucleic acids, proteins, and lipids. Several biological
markers of oxidative damage are elevated in the SNpc of
PD brains (Schulz et al. 2000). Moreover, the content of
the antioxidant glutathione is reduced in the SNpc of PD
patients (Sian et al. 1994) consistent with an increased
ROS production in PD or a primary reduction of the
protective mechanisms against ROS.

Interference with the generation of these ROS has been
shown to be protective against MPTP toxicity in a variety
of experiments. Superoxide dismutase (SOD) is the main
detoxifying enzyme for superoxide. Transgenic mice
constitutively overexpressing Cu/Zn SOD (Przedborski
et al. 1992) are resistant to MPTP toxicity, whereas mice
with a partial deficiency of manganese SOD (Andreassen
et al. 2001) or glutathion peroxidase knock-out mice
(Klivenyi et al. 2000; Zhang et al. 2000) show increased
toxicity. Conversion of hydrogen peroxide to toxic
hydroxyl radicals is prevented by the glutathione system.
Consequently, depletion of glutathion potentiates MPP+

toxicity in vivo (Wüllner et al. 1996). Pharmacological
inhibition or genetic ablation of neuronal nitric oxide
synthase (nNOS) results in protection from MPTP toxicity
(Schulz et al. 1995; Przedborski et al. 1996). In addition, a
genetic deficiency of inducible nitric oxide synthase
(iNOS), which is induced in glia cells following MPTP
toxicity, is protective (Liberatore et al. 1999; Dehmer et al.
2000)

A variety of crucial biomolecules, including lipids,
proteins, and DNA, can be damaged by ROS, thereby

potentially leading to neurodegeneration. Indeed, in-
creased lipid peroxidation and DNA damage (in the
form of OH8dG) are found in PD brains (Dexter et al.
1994). One target of these reactive species may be the
electron transport chain itself, leading to mitochondrial
damage and further production of ROS. Phospholipase A2
can be activated by phospholipid peroxidation and is
involved in the propagation of oxidative cell injury by free
radicals. Mice deficient in phospholipase A2 are less
susceptible to the detrimental effects of MPTP (Klivenyi et
al. 1998).

Oxidative stress might contribute to neurotrophic factor
κB (NF-κB) activation and nuclear translocation, which is
reported to be elevated in PD. NF-κB may increase
proinflammatory mediators, such as tumor necrosis factor
α or transforming growth factor β, in glial cells, further
enhancing the formation of free radicals. However,
translocation of NF-κB to the nucleus occurs not only in
glia cells, but also in dopaminergic neurons following
MPTP toxicity (Dehmer et al. 2004). Treatment with
agonists of the peroxisome proliferator-activated receptor
γ blocks NF-κB activation by increasing the expression of
the inhibitory protein κBα (IκBα).

Oxidative stress by dopamine metabolism

Neurodegeneration by oxidative stress may also explain
the predominant degeneration of dopaminergic neurons, as
the metabolism of dopamine can generate free radicals and
other ROS. The enzymatic oxidation of dopamine and of
its deaminated metabolites (3,4-dihydroxybenzoic acid
and homovanillic acid), catalyzed by monoamine oxidase,
leads to the formation of hydrogen peroxide (H2O2). H2O2

can be inactivated by catalase or by glutathione peroxi-
dase. Because catalase is compartmentalized into peroxi-
somes, the detoxification of cytosolic and mitochondrial
peroxides depends predominantly on glutathione peroxi-
dase. If it is not inactivated, H2O2 can react with Fe2+ and
form the highly reactive and cytotoxic hydroxyl radical
(•OH) via the Fenton reaction. As mentioned above, a
variety of crucial biomolecules, including lipids, proteins,
and DNA, can be damaged by ROS, thereby potentially
leading to neurodegeneration.

Degeneration of dopaminergic neurons and oxidative
stress by dopamine metabolism are likely to be self-
perpetuating, because synaptic dopamine depletion caused
by a decrease in dopamine neurons leads to a compensa-
tory increase in dopamine turnover, with increased
formation of H2O2. This hypothesis is supported by
experimental studies demonstrating that enhanced dopa-
mine turnover is associated with increased formation of
oxidized glutathione; this, in turn, can be prevented by
inhibitors of dopamine metabolism (Spina and Cohen
1989).

Does the replacement of dopamine in patients with PD
by administration of L-Dopa exacerbate the progression of
the disease by increasing oxidative stress? Several studies
have shown that dopamine is toxic to primary mesence-
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phalic dopaminergic neurons or dopaminergic cell lines in
culture. However, this may be an artifact of cell culture,
caused by the extracellular generation of ROS. Indeed, the
co-culture of mesencephalic dopaminergic neurons with
astrocytes enhances survival and prevents L-Dopa-induced
death (Drukarch et al. 1998; McNaught and Jenner 1999;
Zietlow et al. 1999), and L-Dopa treatment of rats does not
induce toxicity in partially 6-hydroxydopamine (6-
OHDA)-denervated PD animal models (Murer et al.
1998). In normal rats or 6-OHDA-denervated animals,
systemic administration of dopamine or stereotaxic injec-
tion of dopamine into the striatum does not induce the
production of hydroxyl radicals as measured by the
salicylate assay. However, in animals in which an inhibitor
of oxidative phosphorylation is co-injected into the
striatum, a massive increase of ROS occurs (Xia et al.
2001b). Because an inhibition of oxidative phosphoryla-
tion has repeatedly been reported in PD patients, the
current data cannot rule out that L-Dopa treatment
contributes to disease progression in PD.

Points of interaction between protein aggregation and
oxidative stress

Oxidative damage to α-synclein can enhance its ability to
misfold and aggregate (Giasson et al. 2000). Indeed,
oxidative dimer formation has been shown to be the
critical rate-limiting step for the aggregation and fibrillo-
genesis of mutant α-synclein (Krishnan et al. 2003). Toxic
protofibrils are stabilized by the formation of dopamine-
synuclein adducts (Conway et al. 2001), and after MPTP
treatment, synuclein is a preferential target for oxidative
modification (Przedborski et al. 2001). Thus, the gener-
ation of oxidative stress by MPTP, paraquat, and rotenone
leads to synuclein aggregation (Kowall et al. 2000; Lee et
al. 2002; Meredith et al. 2002). H2O2 treatment has been
shown to reduce the ubiquitination of protein (Jahngen-
Hodge et al. 1997), which should reduce physiological
protein degradation.

On the other hand, the expression of mutant synuclein
leads to increased protein carbonylation and increased
toxicity of MPP+, the active metabolite of MPTP (Lee et
al. 2001), whereas parkin inhibits protein carbonylation
(Hyun et al. 2002). A decrease of proteasomal activity,
which has been observed in the substantia nigra of PD
brains (McNaught and Jenner 2001), increases neuronal
vulnerability to normally subtoxic levels of free radicals
and amplifies energy depletion following complex I
inhibition (Höglinger et al. 2003). Accordingly, the
cytotoxicity of proteasome inhibitors has been shown to
be enhanced by dopamine (Fornai et al. 2003). Taken
together, these experiments show that tight interactions
exist between the two pathways to PD.

Mode of cell death: a common downstream pathway?

How do cells ultimately die in PD? Does a common
downstream pathway mediate all PD-related cell loss, or is
there significant heterogeneity in the pathways activated in
different sick neurons in a single patient, or among
different patients with PD? The answers to these questions
are important for the rational development of therapeutic
strategies against PD.

In human brain, apoptosis has been considered to be an
important mediator of cell death and to contribute to the
degeneration of dopaminergic SNpc neurons during the
pathogenesis of PD. Two studies have reported that 5%–
8% of neurons in the SNpc of PD patients show DNA-end
labeling, an apoptosis marker; a third study has reported
characteristic chromatin changes seen by electron micros-
copy in 6% of the melanin-containing neurons (Mochizuki
et al. 1996; Anglade et al. 1997; Tompkins et al. 1997).
However, the significance of morphological features
suggestive of apoptosis has remained controversial, and
other groups have failed to detect apoptotic changes in the
SNpc (Kosel et al. 1997; Banati et al. 1998; Wüllner et al.
1999), possibly because apoptotic DNA fragments have a
relatively short half-life. The detection of activated
caspase-3 and caspase-8 and the appearance of substrate
cleavage products (molecular markers of apoptotic cell
death) support the hypothesis that apoptosis and processed
caspases are important mediators of neuronal cell death in
neurodegenerative diseases (Hartmann et al. 2000, 2001b).

MPP+ toxicity involves the activation of caspases in
vitro (Dodel et al. 1998; von Coelln et al. 2001) and in
vivo (Yang et al. 1998; Eberhardt et al. 2000; Hartmann et
al. 2000) under most, but not all, experimental conditions
(Lotharius et al. 1999; Hartmann et al. 2001b; Han et al.
2003). The most likely explanation for the discrepancy is
the severity of the insult. The more acute and severe
insults will result in caspase-independent cell death,
whereas chronic insults will result in caspase-dependent
apoptosis. Probably, the remaining concentration of ATP
determines the mode of cell death (Hartmann et al. 2001b;
Han et al. 2003), because ATP is necessary for the
activation of caspase-9 in the mitochondrial activation
pathway.

In mice, chronic administration of MPTP induces
apoptotic cell death in dopaminergic SNpc neurons.
Transgenic mice expressing a dominant-negative mutant
of interleukin-1β (synonymous with caspase-1)-convert-
ing enzyme are relatively resistant to MPTP toxicity
(Klevenyi et al. 1999). Furthermore, the overexpression of
the anti-apoptic protein, Bcl-2, prevents the activation of
caspases and provides protection against MPTP toxicity
(Yang et al. 1998). In transgenic mice expressing p35 (a
broad-spectrum viral caspase inhibitor), cell loss after
MPTP treatment is reduced (Viswanath et al. 2000). In
these mice, the activation of caspase-3, caspase-8, and
caspase-9, the release of cytochrome c, and the cleavage of
Bid (a pro-apoptotic Bcl-2 family member) after MPTP
injections are reduced compared with wild-type mice
(Viswanath et al. 2001).
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Study of the effects of MPP+ in PC12 cells and primary
mesencephalic culture has established a temporal sequence
of activation after cytochrome c release from caspase-9 to
caspase-3 and finally caspase-8. All changes are prevented
by a caspase-9 inhibitor (LEHD-CHO). A caspase-8
inhibitor (IETD-CHO) decreases caspase-3 or caspase-9
activation only slightly. Bid is cleaved by caspase-8 and
promotes cytochrome c release (Viswanath et al. 2001).
The activation of caspase-8 occurs in a minority of
neurons and glial cells in parkinsonian SNpc and in nigral
neurons after MPTP treatment of mice (Hartmann et al.
2001b). These data are compatible with a model of
cytochrome c-induced caspase-9 activation leading to a
caspase-3 activation that mediates the effector phase of
apoptosis and with an amplification loop involving
caspase-8 (Viswanath et al. 2001).

In addition to the endogenous activation of caspases by
cytochrome c, there exists an exogenous receptor-activated
pathway. Fas is one of these pro-apoptotic receptors and
may activate caspase-8 (Hengartner 2000). Whether Fas is
induced following MPTP/MPP+ toxicity is a subject of
controversy (Gomez et al. 2001; Hayley et al. 2004). In
our hands, Fas ligand (FasL) does not kill primary
dopaminergic neurons in culture (R. von Coelln and J.B.
Schulz, unpublished), and MPTP toxicity is not attenuated
in lpr and gld mice, which are Fas-defective or FasL-
defective, respectively (S. Rathke-Hartlieb and J.B.
Schulz, unpublished). A recent report of Fas-deficient
mice that are more resistant to MPTP toxicity than wild-
types (Hayley et al. 2004) may be explained by the Fas-
deficient mice having a pre-existing deficit of dopamine
and its metabolites. Even though the conversion of MPTP
to MPP+ in these mice is normal, the uptake of MPP+ into
synaptic vesicles is probably reduced.

Therefore, as in most paradigms of neuronal apoptosis,
the mitochondrial activation pathway appears to be more
important than the Fas-dependent one in PD. The mito-
chondrial activation pathway requires the release of
cytochrome c from mitochondria in connection with the
opening of the mitochondrial transition pore. Cytochrome
c then forms a tertiary complex with Apaf-1 and caspase-9
in the cytosol, and in the presence of ATP, this leads to the
activation of caspase-9. MPP+ has been reported to be able
to induce the opening of the mitochondrial transition pore
(Cassarino et al. 1999). Virus-mediated expression of a
dominant-negative form of Apaf-1, consisting of the wild-
type caspase recruitment domain (CARD), provides
protection against dopaminergic cell loss and caspase
activation in the mouse MPTP model (Mochizuki et al.
2001). Neurons expressing non-activated caspase-3 seem
to be particularly prone to early degeneration as compared
with controls; their number is low in parkinsonian SNpc,
whereas a higher number of cells with activated caspase-3
(6.5% vs 3.9%) has been observed (Hartmann et al. 2000).
Consistent with this hypothesis, as MPP+-induced cell loss
proceeds in culture, the number of neurons expressing
activated caspase-3 declines rapidly.

There is growing evidence that, following protein
misfolding, cell death occurs by apoptosis. Proteasomal

inhibition induces the formation of protein inclusions and
apoptotic cell death in cultured embryonic neurons (Qiu et
al. 2000; Rideout et al. 2002). Apoptotic cell death has
also been shown in N27 and HEK 293 cells following the
overexpression of mutant α-synuclein (Zhou and Freed
2004). In vivo, the striatal administration of a proteasome
inhibitor causes the selective degeneration of dopaminer-
gic neurons and axon terminals, the appearance of
apoptotic bodies, and the formation of cytoplasmic
inclusions (Fornai et al. 2003). Even though more work
is needed, these data suggest that apoptotic cell death may
be a common downstream pathway for different models of
PD and for PD itself.

Therapeutic strategies

In research on PD animal models, neuroprotective strate-
gies often overlap with experiments aimed at dissecting
the molecular pathway leading from, for example, MPTP
administration to cell death. The challenge faced by
researchers is to identify strategies that interfere early
enough in the proposed pathway to be potent causal
interventions, but that occur late enough to act within the
common downstream pathway between the model and PD
itself. As cell death in PD most likely occurs through
caspase-dependent apoptosis, the inhibition of this cascade
has been intensively studied. This strategy has the
advantage of being independent of the model used.

Caspase inhibition is achieved by tripeptide or tetra-
peptide inhibitors or by viral proteins and their mammalian
homologs with different substrate specificity (Deveraux
and Reed 1999; Robertson et al. 2000). Peptide caspase
inhibitors (zVAD-fmk or selectice caspase-3 inhibitors)
protect primary mesencephalic cultures against MPP+

(Dodel et al. 1998; Eberhardt et al. 2000; Bilsland et al.
2002). However, the loss of [3H]dopamine uptake as a
marker for dendritic function is not reversed (Eberhardt et
al. 2000). Recently, more detailed analysis has provided
evidence that, although caspase inhibitors are protective
against MPP+ toxicity in primary dopaminergic neurons or
dopaminergic cell lines in culture, this rescue may be
temporary, may cause a switch from apoptosis to necrosis,
or may not result in functional benefit (Choi et al. 1999;
Eberhardt et al. 2000; Hartmann et al. 2001b). An inhibitor
of caspase-1-like enzymes was not effective against MPP+

in primary mesencephalic or cerebellar granule cells (Du et
al. 1997; Bilsland et al. 2002).

Inhibitors of apoptosis proteins (IAP) were first
discovered as viral proteins and were shown to suppress
the defensive apoptotic host response to viral infection;
ectopic expression in mammalian cells blocks apoptosis
(Deveraux and Reed 1999). These inhibitors share one or
several baculoviral IAP repeat (BIR) domains. Many of
them also have a RING domain (dispensible for anti-
apoptotic effects), and some of them possess a CARD.
They block caspase activity by directly binding to specific
pro-caspases or active caspases (Deveraux et al. 1998).
The baculoviral protein p35, for example, is a broad
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inhibitor of caspase function, whereas cowpox virus
product (CrmA) inhibits primarily caspase-1 and cas-
pase-8. In humans, at least six homologous proteins have
been discovered: NAIP, cIAP1/HIAP-2, cIAP2/HIAP-1,
Survivin, Bruce, and X-linked IAP (XIAP).

We have compared, in cellular models, the efficacy of
different adenoviral constructs (AdV-XIAP, AdV-HIAP1,
AdV-HIAP2, AdV-NAIP, AdV-p35, AdV-crmA) against
apoptotic stimuli and have found XIAP expression to be
the most effective (Simons et al. 1999; Kügler et al. 2000;
Gerhardt et al. 2001). XIAP preferably blocks the
activation of caspase-3, caspase-6, and caspase-7 by
inhibiting the processing of procaspase-9. XIAP contains
a RING finger domain and three BIR domains, of which
BIR-3 is assumed to associate with caspase-9, and BIR-1/2
with caspase-3 and caspase-7 (Robertson et al. 2000); it is
ubiquitously expressed in human tissues but is sequestered
from caspases by the Smac/Diablo and Omi/HtrAZ
proteins under normal circumstances. In some instances,
an intact c-Jun NH2-terminal kinase 1 (JNK1) signaling
pathway seems to be required for its anti-apoptotic
function (Sanna et al. 1998, 2002). Interestingly, XIAP
has recently been identified as a ubiquitin ligase, providing
additional cross-talk to the ubiquitin-proteasome system.

Transfection of the nigrostriatal pathway with an Ad-
XIAP leads to strong expression of XIAP protein in the
striatum and in dopaminergic neurons of the SNpc
(Eberhardt et al. 2000). Expression of XIAP provides
protection against the MPTP-induced loss of tyrosine-
hydroxylase-positive neurons but not against the reduction
of striatal catecholamine concentrations, suggesting a
dissociation between neuronal survival and the loss of
neuritic function. Additional studies in primary mesence-
phalic cultures have provided evidence that caspase
inhibition by zVAD-fmk rescues the tyrosine hydroxyl-
ase-positive somata, but not their neurites and synapses,
from MPP+-induced toxicity and 6-OHDA-induced toxic-
ity (Eberhardt et al. 2000; von Coelln et al. 2001). In
contrast, the adenovirus-mediated expression of glial-cell-
derived neurotrophic factor (GDNF) results in higher
striatal catecholamine concentrations but does not protect
against the MPTP-induced loss of dopaminergic neurons.
The combination of adenoviral gene transfer of XIAP and
GDNF has synergistic effects: the MPTP-induced loss of
tyrosine hydroxylase-positive neurons is almost comple-
tely blocked, and the dopamine concentrations in the
striatum are fully restored (Eberhardt et al. 2000).

In order to rescue functional neurons before irreversible
damage has occurred, recent research has focused on the
mechanisms by which pro-apoptotic factors may be
released from mitochondria to activate the caspase
cascade. Prostate apoptosis response-4 (Par-4) was
originally identified as being upregulated in prostate
tumor cells undergoing apoptosis but is now known to
be essential in developmental and pathological neuronal
death (Guo et al. 1997; Mattson 2000). Levels of Par-4
increase rapidly in response to various apoptotic stimuli
through enhanced translation of Par-4 mRNA. A leucine
zipper domain in the carboxy-terminus of Par-4 is essential

for its pro-apoptotic function, and the interactions of Par-4
with other proteins, including protein kinase Cζ and Bcl-2,
through this zipper may be central to the mechanisms by
which Par-4 induces mitochondrial dysfunction. Levels of
Par-4 are selectively increased before death in dopami-
nergic neurons of SNpc in PD brain and in mice and
monkeys following MPTP treatment (Duan et al. 1999). In
culture, the blocking of Par-4 induction by antisense
treatment provides protection.

The pro-apoptotic protein Bax may have a central role
in mediating mitochondria-dependent apoptosis in neurons
(Deckwerth et al. 1996). Models of Bax activation indicate
that its oligomerization results in a homo-multimeric pore
(Saito et al. 2000), a VDAC-containing pore (Shimizu et
al. 1999), or permeabilization of the mitochondrial outer
membrane (Kluck et al. 1999) to release cytochrome c.
Following MPTP treatment, Bax is upregulated in the
SNpc (Hartmann et al. 2001a). This upregulation appears
to be of functional relevance, since mutant mice lacking
Bax are significantly more resistant to MPTP toxicity than
are their wild-type littermates (Vila et al. 2001).
Collectively, the results indicate that Bax plays a pivotal
role in SNpc dopaminergic neuronal death in the MPTP
mouse model, probably by acting in injured neurons
before the onset of irreversible cell death events.

One way in which the new transcription of early-death-
inducing genes, including Bax, Par-4, or Bim (Putcha et al.
2001; Whitfield et al. 2001), that lead to the translocation
of cytochrome c from mitochondria may occur is via the
activation of the mitogen-activated protein (MAP) kinase
pathway. Saporito and colleagues have shown that, in the
MPTP model, the JNK pathway is activated and that the
pharmacological inhibition of this pathway with CEP1347
is neuroprotective (Saporito et al. 1999, 2000). We have
recently investigated the role of the pro-apoptotic JNK
signaling cascade in SH-SY5Y human neuroblastoma
cells in vitro and in mice in vivo (Xia et al. 2001a). MPTP/
MPP+ lead to the sequential phosphorylation and activa-
tion of JNK kinase MKK4, JNK, and c-Jun, the activation
of caspases, and apoptosis. In mice, adenoviral gene
transfer of the JNK-binding domain of JNK-interacting
protein-1 (a scaffold protein and inhibitor of JNK) inhibits
this cascade downstream of MKK4 phosphorylation and
blocks JNK, c-Jun, and caspase activation, the death of
dopaminergic neurons, and the loss of catecholamines in
the striatum. Furthermore, the gene transfer results in
behavioral benefit. Therefore, the inhibition of the JNK
pathway offers a new treatment strategy for PD by
blocking the death signaling pathway upstream of the
execution of apoptosis in dopaminergic neurons and thus
provides a therapeutic advantage over the direct inhibition
of caspases.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
has been shown to play a role in apoptosis in some cellular
models. Age-induced and cytosine-arabinoside-induced
apoptosis in cerebellar granule cells and age-induced
apoptosis in cerebral cortical cultures is associated with
increased expression of GAPDH and is prevented by
treatment with GAPDH antisense oligonucleotides (Ishi-
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tani and Chuang 1996; Ishitani et al. 1996a, 1996b). Cell
death-associated nuclear translocation of GAPDH and
antisense protection occurs in several neuronal and non-
neuronal systems (Ishitani et al. 1997; Saunders et al.
1999; Shashidharan et al. 1999). Downregulation of
GAPDH expression by antisense oligonucleotides protects
mesencephalic dopaminergic neurons from MPP+ toxicity
(Fukuhara et al. 2001). CGP3466 (dibenzo[b,f]oxepin-10-
ylmethyl-methyl-prop-2-ynyl-amine) is structurally related
to R-(−)-deprenyl and shares its ability to bind to GAPDH
and rescue neurons in several in vitro and in vivo
paradigms (Kragten et al. 1998; Carlile et al. 2000). It
also protects against MPTP-induced and 6-OHDA-in-
duced toxicity and behavioral deficits in vivo, without
affecting monoamine oxidase B activity (Andringa and
Cools 2000; Andringa et al. 2000; Waldmeier et al. 2000).
Even though this looks promising, crucial experiments,
including the establishment of GAPDH upregulation and
nuclear translocation by MPTP and the effects of
CGP3446 on these changes, still need to be carried out
in dopaminergic neurons.

Conclusions

Although several mechanisms and downstream mediators
of dopaminergic cell death have been elucidated during the
last decade, the identification of genes causing PD will
allow us to investigate the initial events that cause
neuronal dysfunction and lead to cell death. Investigations
of MPTP toxicity have shown that blocking apoptosis and
inflammation by pharmacological or genetic means often
prevents the death of dopaminergic neurons, but not their
terminals. This shortcoming may be solved by combining
a protective anti-apoptotic treatment with a neurorestora-
tive (e.g., neurotrophic) treatment. One may argue that
blocking the final demise of the cell is too late in clinical
terms and will not restore the metabolic dysfunction of
dopaminergic neurons. Once we understand the initial
pathogenetic steps that are initiated by the identified
mutant gene, we should be able to develop therapeutic
approaches that aim to interfere at the beginning of this
deleterious cascade and that may lead to full protection
and metabolic function.
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